From d201a0b94daa5d8f7126c81678ccc04f9215772a Mon Sep 17 00:00:00 2001 From: "Rafael J. Wysocki" Date: Sat, 27 Jul 2013 01:41:34 +0200 Subject: Revert "cpuidle: Quickly notice prediction failure for repeat mode" commit 148519120c6d1f19ad53349683aeae9f228b0b8d upstream. Revert commit 69a37bea (cpuidle: Quickly notice prediction failure for repeat mode), because it has been identified as the source of a significant performance regression in v3.8 and later as explained by Jeremy Eder: We believe we've identified a particular commit to the cpuidle code that seems to be impacting performance of variety of workloads. The simplest way to reproduce is using netperf TCP_RR test, so we're using that, on a pair of Sandy Bridge based servers. We also have data from a large database setup where performance is also measurably/positively impacted, though that test data isn't easily share-able. Included below are test results from 3 test kernels: kernel reverts ----------------------------------------------------------- 1) vanilla upstream (no reverts) 2) perfteam2 reverts e11538d1f03914eb92af5a1a378375c05ae8520c 3) test reverts 69a37beabf1f0a6705c08e879bdd5d82ff6486c4 e11538d1f03914eb92af5a1a378375c05ae8520c In summary, netperf TCP_RR numbers improve by approximately 4% after reverting 69a37beabf1f0a6705c08e879bdd5d82ff6486c4. When 69a37beabf1f0a6705c08e879bdd5d82ff6486c4 is included, C0 residency never seems to get above 40%. Taking that patch out gets C0 near 100% quite often, and performance increases. The below data are histograms representing the %c0 residency @ 1-second sample rates (using turbostat), while under netperf test. - If you look at the first 4 histograms, you can see %c0 residency almost entirely in the 30,40% bin. - The last pair, which reverts 69a37beabf1f0a6705c08e879bdd5d82ff6486c4, shows %c0 in the 80,90,100% bins. Below each kernel name are netperf TCP_RR trans/s numbers for the particular kernel that can be disclosed publicly, comparing the 3 test kernels. We ran a 4th test with the vanilla kernel where we've also set /dev/cpu_dma_latency=0 to show overall impact boosting single-threaded TCP_RR performance over 11% above baseline. 3.10-rc2 vanilla RX + c0 lock (/dev/cpu_dma_latency=0): TCP_RR trans/s 54323.78 ----------------------------------------------------------- 3.10-rc2 vanilla RX (no reverts) TCP_RR trans/s 48192.47 Receiver %c0 0.0000 - 10.0000 [ 1]: * 10.0000 - 20.0000 [ 0]: 20.0000 - 30.0000 [ 0]: 30.0000 - 40.0000 [ 59]: *********************************************************** 40.0000 - 50.0000 [ 1]: * 50.0000 - 60.0000 [ 0]: 60.0000 - 70.0000 [ 0]: 70.0000 - 80.0000 [ 0]: 80.0000 - 90.0000 [ 0]: 90.0000 - 100.0000 [ 0]: Sender %c0 0.0000 - 10.0000 [ 1]: * 10.0000 - 20.0000 [ 0]: 20.0000 - 30.0000 [ 0]: 30.0000 - 40.0000 [ 11]: *********** 40.0000 - 50.0000 [ 49]: ************************************************* 50.0000 - 60.0000 [ 0]: 60.0000 - 70.0000 [ 0]: 70.0000 - 80.0000 [ 0]: 80.0000 - 90.0000 [ 0]: 90.0000 - 100.0000 [ 0]: ----------------------------------------------------------- 3.10-rc2 perfteam2 RX (reverts commit e11538d1f03914eb92af5a1a378375c05ae8520c) TCP_RR trans/s 49698.69 Receiver %c0 0.0000 - 10.0000 [ 1]: * 10.0000 - 20.0000 [ 1]: * 20.0000 - 30.0000 [ 0]: 30.0000 - 40.0000 [ 59]: *********************************************************** 40.0000 - 50.0000 [ 0]: 50.0000 - 60.0000 [ 0]: 60.0000 - 70.0000 [ 0]: 70.0000 - 80.0000 [ 0]: 80.0000 - 90.0000 [ 0]: 90.0000 - 100.0000 [ 0]: Sender %c0 0.0000 - 10.0000 [ 1]: * 10.0000 - 20.0000 [ 0]: 20.0000 - 30.0000 [ 0]: 30.0000 - 40.0000 [ 2]: ** 40.0000 - 50.0000 [ 58]: ********************************************************** 50.0000 - 60.0000 [ 0]: 60.0000 - 70.0000 [ 0]: 70.0000 - 80.0000 [ 0]: 80.0000 - 90.0000 [ 0]: 90.0000 - 100.0000 [ 0]: ----------------------------------------------------------- 3.10-rc2 test RX (reverts 69a37beabf1f0a6705c08e879bdd5d82ff6486c4 and e11538d1f03914eb92af5a1a378375c05ae8520c) TCP_RR trans/s 47766.95 Receiver %c0 0.0000 - 10.0000 [ 1]: * 10.0000 - 20.0000 [ 1]: * 20.0000 - 30.0000 [ 0]: 30.0000 - 40.0000 [ 27]: *************************** 40.0000 - 50.0000 [ 2]: ** 50.0000 - 60.0000 [ 0]: 60.0000 - 70.0000 [ 2]: ** 70.0000 - 80.0000 [ 0]: 80.0000 - 90.0000 [ 0]: 90.0000 - 100.0000 [ 28]: **************************** Sender: 0.0000 - 10.0000 [ 1]: * 10.0000 - 20.0000 [ 0]: 20.0000 - 30.0000 [ 0]: 30.0000 - 40.0000 [ 11]: *********** 40.0000 - 50.0000 [ 0]: 50.0000 - 60.0000 [ 1]: * 60.0000 - 70.0000 [ 0]: 70.0000 - 80.0000 [ 3]: *** 80.0000 - 90.0000 [ 7]: ******* 90.0000 - 100.0000 [ 38]: ************************************** These results demonstrate gaining back the tendency of the CPU to stay in more responsive, performant C-states (and thus yield measurably better performance), by reverting commit 69a37beabf1f0a6705c08e879bdd5d82ff6486c4. Requested-by: Jeremy Eder Tested-by: Len Brown Signed-off-by: Rafael J. Wysocki Signed-off-by: Greg Kroah-Hartman --- drivers/cpuidle/governors/menu.c | 73 +++------------------------------------- 1 file changed, 4 insertions(+), 69 deletions(-) (limited to 'drivers/cpuidle') diff --git a/drivers/cpuidle/governors/menu.c b/drivers/cpuidle/governors/menu.c index b69a87e22155..bc580b67a652 100644 --- a/drivers/cpuidle/governors/menu.c +++ b/drivers/cpuidle/governors/menu.c @@ -28,13 +28,6 @@ #define MAX_INTERESTING 50000 #define STDDEV_THRESH 400 -/* 60 * 60 > STDDEV_THRESH * INTERVALS = 400 * 8 */ -#define MAX_DEVIATION 60 - -static DEFINE_PER_CPU(struct hrtimer, menu_hrtimer); -static DEFINE_PER_CPU(int, hrtimer_status); -/* menu hrtimer mode */ -enum {MENU_HRTIMER_STOP, MENU_HRTIMER_REPEAT}; /* * Concepts and ideas behind the menu governor @@ -198,42 +191,17 @@ static u64 div_round64(u64 dividend, u32 divisor) return div_u64(dividend + (divisor / 2), divisor); } -/* Cancel the hrtimer if it is not triggered yet */ -void menu_hrtimer_cancel(void) -{ - int cpu = smp_processor_id(); - struct hrtimer *hrtmr = &per_cpu(menu_hrtimer, cpu); - - /* The timer is still not time out*/ - if (per_cpu(hrtimer_status, cpu)) { - hrtimer_cancel(hrtmr); - per_cpu(hrtimer_status, cpu) = MENU_HRTIMER_STOP; - } -} -EXPORT_SYMBOL_GPL(menu_hrtimer_cancel); - -/* Call back for hrtimer is triggered */ -static enum hrtimer_restart menu_hrtimer_notify(struct hrtimer *hrtimer) -{ - int cpu = smp_processor_id(); - - per_cpu(hrtimer_status, cpu) = MENU_HRTIMER_STOP; - - return HRTIMER_NORESTART; -} - /* * Try detecting repeating patterns by keeping track of the last 8 * intervals, and checking if the standard deviation of that set * of points is below a threshold. If it is... then use the * average of these 8 points as the estimated value. */ -static u32 get_typical_interval(struct menu_device *data) +static void get_typical_interval(struct menu_device *data) { int i = 0, divisor = 0; uint64_t max = 0, avg = 0, stddev = 0; int64_t thresh = LLONG_MAX; /* Discard outliers above this value. */ - unsigned int ret = 0; again: @@ -274,16 +242,13 @@ again: if (((avg > stddev * 6) && (divisor * 4 >= INTERVALS * 3)) || stddev <= 20) { data->predicted_us = avg; - ret = 1; - return ret; + return; } else if ((divisor * 4) > INTERVALS * 3) { /* Exclude the max interval */ thresh = max - 1; goto again; } - - return ret; } /** @@ -298,9 +263,6 @@ static int menu_select(struct cpuidle_driver *drv, struct cpuidle_device *dev) int i; int multiplier; struct timespec t; - int repeat = 0, low_predicted = 0; - int cpu = smp_processor_id(); - struct hrtimer *hrtmr = &per_cpu(menu_hrtimer, cpu); if (data->needs_update) { menu_update(drv, dev); @@ -335,7 +297,7 @@ static int menu_select(struct cpuidle_driver *drv, struct cpuidle_device *dev) data->predicted_us = div_round64(data->expected_us * data->correction_factor[data->bucket], RESOLUTION * DECAY); - repeat = get_typical_interval(data); + get_typical_interval(data); /* * We want to default to C1 (hlt), not to busy polling @@ -356,10 +318,8 @@ static int menu_select(struct cpuidle_driver *drv, struct cpuidle_device *dev) if (s->disabled || su->disable) continue; - if (s->target_residency > data->predicted_us) { - low_predicted = 1; + if (s->target_residency > data->predicted_us) continue; - } if (s->exit_latency > latency_req) continue; if (s->exit_latency * multiplier > data->predicted_us) @@ -369,28 +329,6 @@ static int menu_select(struct cpuidle_driver *drv, struct cpuidle_device *dev) data->exit_us = s->exit_latency; } - /* not deepest C-state chosen for low predicted residency */ - if (low_predicted) { - unsigned int timer_us = 0; - - /* - * Set a timer to detect whether this sleep is much - * longer than repeat mode predicted. If the timer - * triggers, the code will evaluate whether to put - * the CPU into a deeper C-state. - * The timer is cancelled on CPU wakeup. - */ - timer_us = 2 * (data->predicted_us + MAX_DEVIATION); - - if (repeat && (4 * timer_us < data->expected_us)) { - RCU_NONIDLE(hrtimer_start(hrtmr, - ns_to_ktime(1000 * timer_us), - HRTIMER_MODE_REL_PINNED)); - /* In repeat case, menu hrtimer is started */ - per_cpu(hrtimer_status, cpu) = MENU_HRTIMER_REPEAT; - } - } - return data->last_state_idx; } @@ -481,9 +419,6 @@ static int menu_enable_device(struct cpuidle_driver *drv, struct cpuidle_device *dev) { struct menu_device *data = &per_cpu(menu_devices, dev->cpu); - struct hrtimer *t = &per_cpu(menu_hrtimer, dev->cpu); - hrtimer_init(t, CLOCK_MONOTONIC, HRTIMER_MODE_REL); - t->function = menu_hrtimer_notify; memset(data, 0, sizeof(struct menu_device)); -- cgit v1.2.3