From 2731b2eadeaa141e6f305fa8086106608112bbaa Mon Sep 17 00:00:00 2001 From: Roshni Shah Date: Mon, 14 Mar 2011 06:49:42 -0400 Subject: Add support for the i.MX53 QSB This patch seems to have originated from the 11.01.00 release from Freescale, which is no longer available except through the gitweb interface from Freescale. http://opensource.freescale.com/git?p=imx/linux-2.6-imx.git;a=commit;h=27fdf7bae11978d21e8aba09bb635f49b07edd4a --- drivers/mtd/nand/mxc_nd.c | 1413 +++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 1413 insertions(+) create mode 100644 drivers/mtd/nand/mxc_nd.c (limited to 'drivers/mtd/nand/mxc_nd.c') diff --git a/drivers/mtd/nand/mxc_nd.c b/drivers/mtd/nand/mxc_nd.c new file mode 100644 index 000000000000..7344bafa77fa --- /dev/null +++ b/drivers/mtd/nand/mxc_nd.c @@ -0,0 +1,1413 @@ +/* + * Copyright 2004-2010 Freescale Semiconductor, Inc. All Rights Reserved. + */ + +/* + * The code contained herein is licensed under the GNU General Public + * License. You may obtain a copy of the GNU General Public License + * Version 2 or later at the following locations: + * + * http://www.opensource.org/licenses/gpl-license.html + * http://www.gnu.org/copyleft/gpl.html + */ + +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + +#include "mxc_nd.h" + +#define DVR_VER "2.1" + +struct mxc_mtd_s { + struct mtd_info mtd; + struct nand_chip nand; + struct mtd_partition *parts; + struct device *dev; +}; + +static struct mxc_mtd_s *mxc_nand_data; + +/* + * Define delays in microsec for NAND device operations + */ +#define TROP_US_DELAY 2000 +/* + * Macros to get half word and bit positions of ECC + */ +#define COLPOS(x) ((x) >> 4) +#define BITPOS(x) ((x) & 0xf) + +/* Define single bit Error positions in Main & Spare area */ +#define MAIN_SINGLEBIT_ERROR 0x4 +#define SPARE_SINGLEBIT_ERROR 0x1 + +struct nand_info { + bool bSpareOnly; + bool bStatusRequest; + u16 colAddr; +}; + +static struct nand_info g_nandfc_info; + +#ifdef CONFIG_MTD_NAND_MXC_SWECC +static int hardware_ecc; +#else +static int hardware_ecc = 1; +#endif + +#ifndef CONFIG_MTD_NAND_MXC_ECC_CORRECTION_OPTION2 +static int Ecc_disabled; +#endif + +static int is2k_Pagesize; + +static struct clk *nfc_clk; + +/* + * OOB placement block for use with hardware ecc generation + */ +static struct nand_ecclayout nand_hw_eccoob_8 = { + .eccbytes = 5, + .eccpos = {6, 7, 8, 9, 10}, + .oobfree = {{0, 5}, {11, 5} } +}; + +static struct nand_ecclayout nand_hw_eccoob_16 = { + .eccbytes = 5, + .eccpos = {6, 7, 8, 9, 10}, + .oobfree = {{0, 6}, {12, 4} } +}; + +static struct nand_ecclayout nand_hw_eccoob_2k = { + .eccbytes = 20, + .eccpos = {6, 7, 8, 9, 10, 22, 23, 24, 25, 26, + 38, 39, 40, 41, 42, 54, 55, 56, 57, 58}, + .oobfree = { + {.offset = 0, + .length = 5}, + + {.offset = 11, + .length = 10}, + + {.offset = 27, + .length = 10}, + + {.offset = 43, + .length = 10}, + + {.offset = 59, + .length = 5} + } +}; + +/*! + * @defgroup NAND_MTD NAND Flash MTD Driver for MXC processors + */ + +/*! + * @file mxc_nd.c + * + * @brief This file contains the hardware specific layer for NAND Flash on + * MXC processor + * + * @ingroup NAND_MTD + */ + +#ifdef CONFIG_MTD_PARTITIONS +static const char *part_probes[] = { "RedBoot", "cmdlinepart", NULL }; +#endif + +static wait_queue_head_t irq_waitq; + +static irqreturn_t mxc_nfc_irq(int irq, void *dev_id) +{ + NFC_CONFIG1 |= NFC_INT_MSK; /* Disable interrupt */ + wake_up(&irq_waitq); + + return IRQ_RETVAL(1); +} + +/*! + * This function polls the NANDFC to wait for the basic operation to complete by + * checking the INT bit of config2 register. + * + * @param maxRetries number of retry attempts (separated by 1 us) + * @param param parameter for debug + * @param useirq True if IRQ should be used rather than polling + */ +static void wait_op_done(int maxRetries, u16 param, bool useirq) +{ + if (useirq) { + if ((NFC_CONFIG2 & NFC_INT) == 0) { + NFC_CONFIG1 &= ~NFC_INT_MSK; /* Enable interrupt */ + wait_event(irq_waitq, NFC_CONFIG2 & NFC_INT); + } + NFC_CONFIG2 &= ~NFC_INT; + } else { + while (maxRetries-- > 0) { + if (NFC_CONFIG2 & NFC_INT) { + NFC_CONFIG2 &= ~NFC_INT; + break; + } + udelay(1); + } + if (maxRetries <= 0) + DEBUG(MTD_DEBUG_LEVEL0, "%s(%d): INT not set\n", + __FUNCTION__, param); + } +} + +/*! + * This function issues the specified command to the NAND device and + * waits for completion. + * + * @param cmd command for NAND Flash + * @param useirq True if IRQ should be used rather than polling + */ +static void send_cmd(u16 cmd, bool useirq) +{ + DEBUG(MTD_DEBUG_LEVEL3, "send_cmd(0x%x, %d)\n", cmd, useirq); + + NFC_FLASH_CMD = (u16) cmd; + NFC_CONFIG2 = NFC_CMD; + + /* Wait for operation to complete */ + wait_op_done(TROP_US_DELAY, cmd, useirq); +} + +/*! + * This function sends an address (or partial address) to the + * NAND device. The address is used to select the source/destination for + * a NAND command. + * + * @param addr address to be written to NFC. + * @param islast True if this is the last address cycle for command + */ +static void send_addr(u16 addr, bool islast) +{ + DEBUG(MTD_DEBUG_LEVEL3, "send_addr(0x%x %d)\n", addr, islast); + + NFC_FLASH_ADDR = addr; + NFC_CONFIG2 = NFC_ADDR; + + /* Wait for operation to complete */ + wait_op_done(TROP_US_DELAY, addr, islast); +} + +/*! + * This function requests the NANDFC to initate the transfer + * of data currently in the NANDFC RAM buffer to the NAND device. + * + * @param buf_id Specify Internal RAM Buffer number (0-3) + * @param bSpareOnly set true if only the spare area is transferred + */ +static void send_prog_page(u8 buf_id, bool bSpareOnly) +{ + DEBUG(MTD_DEBUG_LEVEL3, "send_prog_page (%d)\n", bSpareOnly); + + /* NANDFC buffer 0 is used for page read/write */ + + NFC_BUF_ADDR = buf_id; + + /* Configure spare or page+spare access */ + if (!is2k_Pagesize) { + if (bSpareOnly) { + NFC_CONFIG1 |= NFC_SP_EN; + } else { + NFC_CONFIG1 &= ~(NFC_SP_EN); + } + } + NFC_CONFIG2 = NFC_INPUT; + + /* Wait for operation to complete */ + wait_op_done(TROP_US_DELAY, bSpareOnly, true); +} + +/*! + * This function will correct the single bit ECC error + * + * @param buf_id Specify Internal RAM Buffer number (0-3) + * @param eccpos Ecc byte and bit position + * @param bSpareOnly set to true if only spare area needs correction + */ + +static void mxc_nd_correct_error(u8 buf_id, u16 eccpos, bool bSpareOnly) +{ + u16 col; + u8 pos; + volatile u16 *buf; + + /* Get col & bit position of error + these macros works for both 8 & 16 bits */ + col = COLPOS(eccpos); /* Get half-word position */ + pos = BITPOS(eccpos); /* Get bit position */ + + DEBUG(MTD_DEBUG_LEVEL3, + "mxc_nd_correct_error (col=%d pos=%d)\n", col, pos); + + /* Set the pointer for main / spare area */ + if (!bSpareOnly) { + buf = (volatile u16 *)(MAIN_AREA0 + col + (256 * buf_id)); + } else { + buf = (volatile u16 *)(SPARE_AREA0 + col + (8 * buf_id)); + } + + /* Fix the data */ + *buf ^= (1 << pos); +} + +/*! + * This function will maintains state of single bit Error + * in Main & spare area + * + * @param buf_id Specify Internal RAM Buffer number (0-3) + * @param spare set to true if only spare area needs correction + */ +static void mxc_nd_correct_ecc(u8 buf_id, bool spare) +{ +#ifdef CONFIG_MTD_NAND_MXC_ECC_CORRECTION_OPTION2 + static int lastErrMain, lastErrSpare; /* To maintain single bit + error in previous page */ +#endif + u16 value, ecc_status; + /* Read the ECC result */ + ecc_status = NFC_ECC_STATUS_RESULT; + DEBUG(MTD_DEBUG_LEVEL3, + "mxc_nd_correct_ecc (Ecc status=%x)\n", ecc_status); + +#ifdef CONFIG_MTD_NAND_MXC_ECC_CORRECTION_OPTION2 + /* Check for Error in Mainarea */ + if ((ecc_status & 0xC) == MAIN_SINGLEBIT_ERROR) { + /* Check for error in previous page */ + if (lastErrMain && !spare) { + value = NFC_RSLTMAIN_AREA; + /* Correct single bit error in Mainarea + NFC will not correct the error in + current page */ + mxc_nd_correct_error(buf_id, value, false); + } else { + /* Set if single bit error in current page */ + lastErrMain = 1; + } + } else { + /* Reset if no single bit error in current page */ + lastErrMain = 0; + } + + /* Check for Error in Sparearea */ + if ((ecc_status & 0x3) == SPARE_SINGLEBIT_ERROR) { + /* Check for error in previous page */ + if (lastErrSpare) { + value = NFC_RSLTSPARE_AREA; + /* Correct single bit error in Mainarea + NFC will not correct the error in + current page */ + mxc_nd_correct_error(buf_id, value, true); + } else { + /* Set if single bit error in current page */ + lastErrSpare = 1; + } + } else { + /* Reset if no single bit error in current page */ + lastErrSpare = 0; + } +#else + if (((ecc_status & 0xC) == MAIN_SINGLEBIT_ERROR) + || ((ecc_status & 0x3) == SPARE_SINGLEBIT_ERROR)) { + if (Ecc_disabled) { + if ((ecc_status & 0xC) == MAIN_SINGLEBIT_ERROR) { + value = NFC_RSLTMAIN_AREA; + /* Correct single bit error in Mainarea + NFC will not correct the error in + current page */ + mxc_nd_correct_error(buf_id, value, false); + } + if ((ecc_status & 0x3) == SPARE_SINGLEBIT_ERROR) { + value = NFC_RSLTSPARE_AREA; + /* Correct single bit error in Mainarea + NFC will not correct the error in + current page */ + mxc_nd_correct_error(buf_id, value, true); + } + + } else { + /* Disable ECC */ + NFC_CONFIG1 &= ~(NFC_ECC_EN); + Ecc_disabled = 1; + } + } else if (ecc_status == 0) { + if (Ecc_disabled) { + /* Enable ECC */ + NFC_CONFIG1 |= NFC_ECC_EN; + Ecc_disabled = 0; + } + } else { + /* 2-bit Error Do nothing */ + } +#endif /* CONFIG_MTD_NAND_MXC_ECC_CORRECTION_OPTION2 */ + +} + +/*! + * This function requests the NANDFC to initated the transfer + * of data from the NAND device into in the NANDFC ram buffer. + * + * @param buf_id Specify Internal RAM Buffer number (0-3) + * @param bSpareOnly set true if only the spare area is transferred + */ +static void send_read_page(u8 buf_id, bool bSpareOnly) +{ + DEBUG(MTD_DEBUG_LEVEL3, "send_read_page (%d)\n", bSpareOnly); + + /* NANDFC buffer 0 is used for page read/write */ + NFC_BUF_ADDR = buf_id; + + /* Configure spare or page+spare access */ + if (!is2k_Pagesize) { + if (bSpareOnly) { + NFC_CONFIG1 |= NFC_SP_EN; + } else { + NFC_CONFIG1 &= ~(NFC_SP_EN); + } + } + + NFC_CONFIG2 = NFC_OUTPUT; + + /* Wait for operation to complete */ + wait_op_done(TROP_US_DELAY, bSpareOnly, true); + + /* If there are single bit errors in + two consecutive page reads then + the error is not corrected by the + NFC for the second page. + Correct single bit error in driver */ + + mxc_nd_correct_ecc(buf_id, bSpareOnly); +} + +/*! + * This function requests the NANDFC to perform a read of the + * NAND device ID. + */ +static void send_read_id(void) +{ + struct nand_chip *this = &mxc_nand_data->nand; + + /* NANDFC buffer 0 is used for device ID output */ + NFC_BUF_ADDR = 0x0; + + /* Read ID into main buffer */ + NFC_CONFIG1 &= (~(NFC_SP_EN)); + NFC_CONFIG2 = NFC_ID; + + /* Wait for operation to complete */ + wait_op_done(TROP_US_DELAY, 0, true); + + if (this->options & NAND_BUSWIDTH_16) { + volatile u16 *mainBuf = MAIN_AREA0; + + /* + * Pack the every-other-byte result for 16-bit ID reads + * into every-byte as the generic code expects and various + * chips implement. + */ + + mainBuf[0] = (mainBuf[0] & 0xff) | ((mainBuf[1] & 0xff) << 8); + mainBuf[1] = (mainBuf[2] & 0xff) | ((mainBuf[3] & 0xff) << 8); + mainBuf[2] = (mainBuf[4] & 0xff) | ((mainBuf[5] & 0xff) << 8); + } +} + +/*! + * This function requests the NANDFC to perform a read of the + * NAND device status and returns the current status. + * + * @return device status + */ +static u16 get_dev_status(void) +{ + volatile u16 *mainBuf = MAIN_AREA1; + u32 store; + u16 ret; + /* Issue status request to NAND device */ + + /* store the main area1 first word, later do recovery */ + store = *((u32 *) mainBuf); + /* + * NANDFC buffer 1 is used for device status to prevent + * corruption of read/write buffer on status requests. + */ + NFC_BUF_ADDR = 1; + + /* Read status into main buffer */ + NFC_CONFIG1 &= (~(NFC_SP_EN)); + NFC_CONFIG2 = NFC_STATUS; + + /* Wait for operation to complete */ + wait_op_done(TROP_US_DELAY, 0, true); + + /* Status is placed in first word of main buffer */ + /* get status, then recovery area 1 data */ + ret = mainBuf[0]; + *((u32 *) mainBuf) = store; + + return ret; +} + +/*! + * This functions is used by upper layer to checks if device is ready + * + * @param mtd MTD structure for the NAND Flash + * + * @return 0 if device is busy else 1 + */ +static int mxc_nand_dev_ready(struct mtd_info *mtd) +{ + /* + * NFC handles R/B internally.Therefore,this function + * always returns status as ready. + */ + return 1; +} + +static void mxc_nand_enable_hwecc(struct mtd_info *mtd, int mode) +{ + /* + * If HW ECC is enabled, we turn it on during init. There is + * no need to enable again here. + */ +} + +static int mxc_nand_correct_data(struct mtd_info *mtd, u_char *dat, + u_char *read_ecc, u_char *calc_ecc) +{ + /* + * 1-Bit errors are automatically corrected in HW. No need for + * additional correction. 2-Bit errors cannot be corrected by + * HW ECC, so we need to return failure + */ + u16 ecc_status = NFC_ECC_STATUS_RESULT; + + if (((ecc_status & 0x3) == 2) || ((ecc_status >> 2) == 2)) { + DEBUG(MTD_DEBUG_LEVEL0, + "MXC_NAND: HWECC uncorrectable 2-bit ECC error\n"); + return -1; + } + + return 0; +} + +static int mxc_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat, + u_char *ecc_code) +{ + /* + * Just return success. HW ECC does not read/write the NFC spare + * buffer. Only the FLASH spare area contains the calcuated ECC. + */ + return 0; +} + +/*! + * This function reads byte from the NAND Flash + * + * @param mtd MTD structure for the NAND Flash + * + * @return data read from the NAND Flash + */ +static u_char mxc_nand_read_byte(struct mtd_info *mtd) +{ + u_char retVal = 0; + u16 col, rdWord; + volatile u16 *mainBuf = MAIN_AREA0; + volatile u16 *spareBuf = SPARE_AREA0; + + /* Check for status request */ + if (g_nandfc_info.bStatusRequest) { + return get_dev_status() & 0xFF; + } + + /* Get column for 16-bit access */ + col = g_nandfc_info.colAddr >> 1; + + /* If we are accessing the spare region */ + if (g_nandfc_info.bSpareOnly) { + rdWord = spareBuf[col]; + } else { + rdWord = mainBuf[col]; + } + + /* Pick upper/lower byte of word from RAM buffer */ + if (g_nandfc_info.colAddr & 0x1) { + retVal = (rdWord >> 8) & 0xFF; + } else { + retVal = rdWord & 0xFF; + } + + /* Update saved column address */ + g_nandfc_info.colAddr++; + + return retVal; +} + +/*! + * This function reads word from the NAND Flash + * + * @param mtd MTD structure for the NAND Flash + * + * @return data read from the NAND Flash + */ +static u16 mxc_nand_read_word(struct mtd_info *mtd) +{ + u16 col; + u16 rdWord, retVal; + volatile u16 *p; + + DEBUG(MTD_DEBUG_LEVEL3, + "mxc_nand_read_word(col = %d)\n", g_nandfc_info.colAddr); + + col = g_nandfc_info.colAddr; + /* Adjust saved column address */ + if (col < mtd->writesize && g_nandfc_info.bSpareOnly) + col += mtd->writesize; + + if (col < mtd->writesize) + p = (MAIN_AREA0) + (col >> 1); + else + p = (SPARE_AREA0) + ((col - mtd->writesize) >> 1); + + if (col & 1) { + rdWord = *p; + retVal = (rdWord >> 8) & 0xff; + rdWord = *(p + 1); + retVal |= (rdWord << 8) & 0xff00; + + } else { + retVal = *p; + + } + + /* Update saved column address */ + g_nandfc_info.colAddr = col + 2; + + return retVal; +} + +/*! + * This function writes data of length \b len to buffer \b buf. The data to be + * written on NAND Flash is first copied to RAMbuffer. After the Data Input + * Operation by the NFC, the data is written to NAND Flash + * + * @param mtd MTD structure for the NAND Flash + * @param buf data to be written to NAND Flash + * @param len number of bytes to be written + */ +static void mxc_nand_write_buf(struct mtd_info *mtd, + const u_char *buf, int len) +{ + int n; + int col; + int i = 0; + + DEBUG(MTD_DEBUG_LEVEL3, + "mxc_nand_write_buf(col = %d, len = %d)\n", g_nandfc_info.colAddr, + len); + + col = g_nandfc_info.colAddr; + + /* Adjust saved column address */ + if (col < mtd->writesize && g_nandfc_info.bSpareOnly) + col += mtd->writesize; + + n = mtd->writesize + mtd->oobsize - col; + n = min(len, n); + + DEBUG(MTD_DEBUG_LEVEL3, + "%s:%d: col = %d, n = %d\n", __FUNCTION__, __LINE__, col, n); + + while (n) { + volatile u32 *p; + if (col < mtd->writesize) + p = (volatile u32 *)((ulong) (MAIN_AREA0) + (col & ~3)); + else + p = (volatile u32 *)((ulong) (SPARE_AREA0) - + mtd->writesize + (col & ~3)); + + DEBUG(MTD_DEBUG_LEVEL3, "%s:%d: p = %p\n", __FUNCTION__, + __LINE__, p); + + if (((col | (int)&buf[i]) & 3) || n < 16) { + u32 data = 0; + + if (col & 3 || n < 4) + data = *p; + + switch (col & 3) { + case 0: + if (n) { + data = (data & 0xffffff00) | + (buf[i++] << 0); + n--; + col++; + } + case 1: + if (n) { + data = (data & 0xffff00ff) | + (buf[i++] << 8); + n--; + col++; + } + case 2: + if (n) { + data = (data & 0xff00ffff) | + (buf[i++] << 16); + n--; + col++; + } + case 3: + if (n) { + data = (data & 0x00ffffff) | + (buf[i++] << 24); + n--; + col++; + } + } + + *p = data; + } else { + int m = mtd->writesize - col; + + if (col >= mtd->writesize) + m += mtd->oobsize; + + m = min(n, m) & ~3; + + DEBUG(MTD_DEBUG_LEVEL3, + "%s:%d: n = %d, m = %d, i = %d, col = %d\n", + __FUNCTION__, __LINE__, n, m, i, col); + + memcpy((void *)(p), &buf[i], m); + col += m; + i += m; + n -= m; + } + } + /* Update saved column address */ + g_nandfc_info.colAddr = col; + +} + +/*! + * This function id is used to read the data buffer from the NAND Flash. To + * read the data from NAND Flash first the data output cycle is initiated by + * the NFC, which copies the data to RAMbuffer. This data of length \b len is + * then copied to buffer \b buf. + * + * @param mtd MTD structure for the NAND Flash + * @param buf data to be read from NAND Flash + * @param len number of bytes to be read + */ +static void mxc_nand_read_buf(struct mtd_info *mtd, u_char * buf, int len) +{ + + int n; + int col; + int i = 0; + + DEBUG(MTD_DEBUG_LEVEL3, + "mxc_nand_read_buf(col = %d, len = %d)\n", g_nandfc_info.colAddr, + len); + + col = g_nandfc_info.colAddr; + /* Adjust saved column address */ + if (col < mtd->writesize && g_nandfc_info.bSpareOnly) + col += mtd->writesize; + + n = mtd->writesize + mtd->oobsize - col; + n = min(len, n); + + while (n) { + volatile u32 *p; + + if (col < mtd->writesize) + p = (volatile u32 *)((ulong) (MAIN_AREA0) + (col & ~3)); + else + p = (volatile u32 *)((ulong) (SPARE_AREA0) - + mtd->writesize + (col & ~3)); + + if (((col | (int)&buf[i]) & 3) || n < 16) { + u32 data; + + data = *p; + switch (col & 3) { + case 0: + if (n) { + buf[i++] = (u8) (data); + n--; + col++; + } + case 1: + if (n) { + buf[i++] = (u8) (data >> 8); + n--; + col++; + } + case 2: + if (n) { + buf[i++] = (u8) (data >> 16); + n--; + col++; + } + case 3: + if (n) { + buf[i++] = (u8) (data >> 24); + n--; + col++; + } + } + } else { + int m = mtd->writesize - col; + + if (col >= mtd->writesize) + m += mtd->oobsize; + + m = min(n, m) & ~3; + memcpy(&buf[i], (void *)(p), m); + col += m; + i += m; + n -= m; + } + } + /* Update saved column address */ + g_nandfc_info.colAddr = col; + +} + +/*! + * This function is used by the upper layer to verify the data in NAND Flash + * with the data in the \b buf. + * + * @param mtd MTD structure for the NAND Flash + * @param buf data to be verified + * @param len length of the data to be verified + * + * @return -EFAULT if error else 0 + * + */ +static int +mxc_nand_verify_buf(struct mtd_info *mtd, const u_char * buf, int len) +{ + return -EFAULT; +} + +/*! + * This function is used by upper layer for select and deselect of the NAND + * chip + * + * @param mtd MTD structure for the NAND Flash + * @param chip val indicating select or deselect + */ +static void mxc_nand_select_chip(struct mtd_info *mtd, int chip) +{ +#ifdef CONFIG_MTD_NAND_MXC_FORCE_CE + if (chip > 0) { + DEBUG(MTD_DEBUG_LEVEL0, + "ERROR: Illegal chip select (chip = %d)\n", chip); + return; + } + + if (chip == -1) { + NFC_CONFIG1 &= (~(NFC_CE)); + return; + } + + NFC_CONFIG1 |= NFC_CE; +#endif + + switch (chip) { + case -1: + /* Disable the NFC clock */ + clk_disable(nfc_clk); + break; + case 0: + /* Enable the NFC clock */ + clk_enable(nfc_clk); + break; + + default: + break; + } +} + +/*! + * This function is used by the upper layer to write command to NAND Flash for + * different operations to be carried out on NAND Flash + * + * @param mtd MTD structure for the NAND Flash + * @param command command for NAND Flash + * @param column column offset for the page read + * @param page_addr page to be read from NAND Flash + */ +static void mxc_nand_command(struct mtd_info *mtd, unsigned command, + int column, int page_addr) +{ + bool useirq = true; + + DEBUG(MTD_DEBUG_LEVEL3, + "mxc_nand_command (cmd = 0x%x, col = 0x%x, page = 0x%x)\n", + command, column, page_addr); + + /* + * Reset command state information + */ + g_nandfc_info.bStatusRequest = false; + + /* Reset column address to 0 */ + g_nandfc_info.colAddr = 0; + + /* + * Command pre-processing step + */ + switch (command) { + + case NAND_CMD_STATUS: + g_nandfc_info.bStatusRequest = true; + break; + + case NAND_CMD_READ0: + g_nandfc_info.colAddr = column; + g_nandfc_info.bSpareOnly = false; + useirq = false; + break; + + case NAND_CMD_READOOB: + g_nandfc_info.colAddr = column; + g_nandfc_info.bSpareOnly = true; + useirq = false; + if (is2k_Pagesize) + command = NAND_CMD_READ0; /* only READ0 is valid */ + break; + + case NAND_CMD_SEQIN: + if (column >= mtd->writesize) { + if (is2k_Pagesize) { + /** + * FIXME: before send SEQIN command for write OOB, + * We must read one page out. + * For K9F1GXX has no READ1 command to set current HW + * pointer to spare area, we must write the whole page including OOB together. + */ + /* call itself to read a page */ + mxc_nand_command(mtd, NAND_CMD_READ0, 0, + page_addr); + } + g_nandfc_info.colAddr = column - mtd->writesize; + g_nandfc_info.bSpareOnly = true; + /* Set program pointer to spare region */ + if (!is2k_Pagesize) + send_cmd(NAND_CMD_READOOB, false); + } else { + g_nandfc_info.bSpareOnly = false; + g_nandfc_info.colAddr = column; + /* Set program pointer to page start */ + if (!is2k_Pagesize) + send_cmd(NAND_CMD_READ0, false); + } + useirq = false; + break; + + case NAND_CMD_PAGEPROG: +#ifndef CONFIG_MTD_NAND_MXC_ECC_CORRECTION_OPTION2 + if (Ecc_disabled) { + /* Enable Ecc for page writes */ + NFC_CONFIG1 |= NFC_ECC_EN; + } +#endif + + send_prog_page(0, g_nandfc_info.bSpareOnly); + + if (is2k_Pagesize) { + /* data in 4 areas datas */ + send_prog_page(1, g_nandfc_info.bSpareOnly); + send_prog_page(2, g_nandfc_info.bSpareOnly); + send_prog_page(3, g_nandfc_info.bSpareOnly); + } + + break; + + case NAND_CMD_ERASE1: + useirq = false; + break; + } + + /* + * Write out the command to the device. + */ + send_cmd(command, useirq); + + /* + * Write out column address, if necessary + */ + if (column != -1) { + /* + * MXC NANDFC can only perform full page+spare or + * spare-only read/write. When the upper layers + * layers perform a read/write buf operation, + * we will used the saved column adress to index into + * the full page. + */ + send_addr(0, page_addr == -1); + if (is2k_Pagesize) + /* another col addr cycle for 2k page */ + send_addr(0, false); + } + + /* + * Write out page address, if necessary + */ + if (page_addr != -1) { + send_addr((page_addr & 0xff), false); /* paddr_0 - p_addr_7 */ + + if (is2k_Pagesize) { + /* One more address cycle for higher density devices */ + if (mtd->size >= 0x10000000) { + /* paddr_8 - paddr_15 */ + send_addr((page_addr >> 8) & 0xff, false); + send_addr((page_addr >> 16) & 0xff, true); + } else + /* paddr_8 - paddr_15 */ + send_addr((page_addr >> 8) & 0xff, true); + } else { + /* One more address cycle for higher density devices */ + if (mtd->size >= 0x4000000) { + /* paddr_8 - paddr_15 */ + send_addr((page_addr >> 8) & 0xff, false); + send_addr((page_addr >> 16) & 0xff, true); + } else + /* paddr_8 - paddr_15 */ + send_addr((page_addr >> 8) & 0xff, true); + } + } + + /* + * Command post-processing step + */ + switch (command) { + + case NAND_CMD_RESET: + break; + + case NAND_CMD_READOOB: + case NAND_CMD_READ0: + if (is2k_Pagesize) { + /* send read confirm command */ + send_cmd(NAND_CMD_READSTART, true); + /* read for each AREA */ + send_read_page(0, g_nandfc_info.bSpareOnly); + send_read_page(1, g_nandfc_info.bSpareOnly); + send_read_page(2, g_nandfc_info.bSpareOnly); + send_read_page(3, g_nandfc_info.bSpareOnly); + } else { + send_read_page(0, g_nandfc_info.bSpareOnly); + } + break; + + case NAND_CMD_READID: + send_read_id(); + break; + + case NAND_CMD_PAGEPROG: +#ifndef CONFIG_MTD_NAND_MXC_ECC_CORRECTION_OPTION2 + if (Ecc_disabled) { + /* Disble Ecc after page writes */ + NFC_CONFIG1 &= ~(NFC_ECC_EN); + } +#endif + break; + + case NAND_CMD_STATUS: + break; + + case NAND_CMD_ERASE2: + break; + } +} + +/* Define some generic bad / good block scan pattern which are used + * while scanning a device for factory marked good / bad blocks. */ +static uint8_t scan_ff_pattern[] = { 0xff, 0xff }; + +static struct nand_bbt_descr smallpage_memorybased = { + .options = NAND_BBT_SCAN2NDPAGE, + .offs = 5, + .len = 1, + .pattern = scan_ff_pattern +}; + +static struct nand_bbt_descr largepage_memorybased = { + .options = 0, + .offs = 0, + .len = 2, + .pattern = scan_ff_pattern +}; + +/* Generic flash bbt decriptors +*/ +static uint8_t bbt_pattern[] = { 'B', 'b', 't', '0' }; +static uint8_t mirror_pattern[] = { '1', 't', 'b', 'B' }; + +static struct nand_bbt_descr bbt_main_descr = { + .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE + | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP, + .offs = 0, + .len = 4, + .veroffs = 4, + .maxblocks = 4, + .pattern = bbt_pattern +}; + +static struct nand_bbt_descr bbt_mirror_descr = { + .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE + | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP, + .offs = 0, + .len = 4, + .veroffs = 4, + .maxblocks = 4, + .pattern = mirror_pattern +}; + +static int mxc_nand_scan_bbt(struct mtd_info *mtd) +{ + struct nand_chip *this = mtd->priv; + + /* Config before scanning */ + /* Do not rely on NFMS_BIT, set/clear NFMS bit based on mtd->writesize */ + if (mtd->writesize == 2048) { + NFMS |= (1 << NFMS_BIT); + is2k_Pagesize = 1; + } else { + if ((NFMS >> NFMS_BIT) & 0x1) { /* This case strangly happened on MXC91321 P1.2.2 */ + printk(KERN_INFO + "Oops... NFMS Bit set for 512B Page, resetting it. [RCSR: 0x%08x]\n", + NFMS); + NFMS &= ~(1 << NFMS_BIT); + } + is2k_Pagesize = 0; + } + + if (is2k_Pagesize) + this->ecc.layout = &nand_hw_eccoob_2k; + + /* jffs2 not write oob */ + mtd->flags &= ~MTD_OOB_WRITEABLE; + + /* use flash based bbt */ + this->bbt_td = &bbt_main_descr; + this->bbt_md = &bbt_mirror_descr; + + /* update flash based bbt */ + this->options |= NAND_USE_FLASH_BBT; + + if (!this->badblock_pattern) { + if (mtd->writesize == 2048) + this->badblock_pattern = &smallpage_memorybased; + else + this->badblock_pattern = (mtd->writesize > 512) ? + &largepage_memorybased : &smallpage_memorybased; + } + /* Build bad block table */ + return nand_scan_bbt(mtd, this->badblock_pattern); +} + +#ifdef CONFIG_MXC_NAND_LOW_LEVEL_ERASE +static void mxc_low_erase(struct mtd_info *mtd) +{ + + struct nand_chip *this = mtd->priv; + unsigned int page_addr, addr; + u_char status; + + DEBUG(MTD_DEBUG_LEVEL0, "MXC_ND : mxc_low_erase:Erasing NAND\n"); + for (addr = 0; addr < this->chipsize; addr += mtd->erasesize) { + page_addr = addr / mtd->writesize; + mxc_nand_command(mtd, NAND_CMD_ERASE1, -1, page_addr); + mxc_nand_command(mtd, NAND_CMD_ERASE2, -1, -1); + mxc_nand_command(mtd, NAND_CMD_STATUS, -1, -1); + status = mxc_nand_read_byte(mtd); + if (status & NAND_STATUS_FAIL) { + printk(KERN_ERR + "ERASE FAILED(block = %d,status = 0x%x)\n", + addr / mtd->erasesize, status); + } + } + +} +#endif +/*! + * This function is called during the driver binding process. + * + * @param pdev the device structure used to store device specific + * information that is used by the suspend, resume and + * remove functions + * + * @return The function always returns 0. + */ +static int __init mxcnd_probe(struct platform_device *pdev) +{ + struct nand_chip *this; + struct mtd_info *mtd; + struct flash_platform_data *flash = pdev->dev.platform_data; + int nr_parts = 0; + + int err = 0; + /* Allocate memory for MTD device structure and private data */ + mxc_nand_data = kzalloc(sizeof(struct mxc_mtd_s), GFP_KERNEL); + if (!mxc_nand_data) { + printk(KERN_ERR "%s: failed to allocate mtd_info\n", + __FUNCTION__); + err = -ENOMEM; + goto out; + } + memset((char *)&g_nandfc_info, 0, sizeof(g_nandfc_info)); + + mxc_nand_data->dev = &pdev->dev; + /* structures must be linked */ + this = &mxc_nand_data->nand; + mtd = &mxc_nand_data->mtd; + mtd->priv = this; + mtd->owner = THIS_MODULE; + + /* 50 us command delay time */ + this->chip_delay = 5; + + this->priv = mxc_nand_data; + this->dev_ready = mxc_nand_dev_ready; + this->cmdfunc = mxc_nand_command; + this->select_chip = mxc_nand_select_chip; + this->read_byte = mxc_nand_read_byte; + this->read_word = mxc_nand_read_word; + this->write_buf = mxc_nand_write_buf; + this->read_buf = mxc_nand_read_buf; + this->verify_buf = mxc_nand_verify_buf; + this->scan_bbt = mxc_nand_scan_bbt; + + nfc_clk = clk_get(&pdev->dev, "nfc_clk"); + clk_enable(nfc_clk); + + NFC_CONFIG1 |= NFC_INT_MSK; + init_waitqueue_head(&irq_waitq); + err = request_irq(MXC_INT_NANDFC, mxc_nfc_irq, 0, "mxc_nd", NULL); + if (err) { + goto out_1; + } + + if (hardware_ecc) { + this->ecc.calculate = mxc_nand_calculate_ecc; + this->ecc.hwctl = mxc_nand_enable_hwecc; + this->ecc.correct = mxc_nand_correct_data; + this->ecc.mode = NAND_ECC_HW; + this->ecc.size = 512; + this->ecc.bytes = 3; + this->ecc.layout = &nand_hw_eccoob_8; + NFC_CONFIG1 |= NFC_ECC_EN; + } else { + this->ecc.mode = NAND_ECC_SOFT; + } + + /* Reset NAND */ + this->cmdfunc(mtd, NAND_CMD_RESET, -1, -1); + + /* preset operation */ + /* Unlock the internal RAM Buffer */ + NFC_CONFIG = 0x2; + + /* Blocks to be unlocked */ + NFC_UNLOCKSTART_BLKADDR = 0x0; + NFC_UNLOCKEND_BLKADDR = 0x4000; + + /* Unlock Block Command for given address range */ + NFC_WRPROT = 0x4; + + /* NAND bus width determines access funtions used by upper layer */ + if (flash->width == 2) { + this->options |= NAND_BUSWIDTH_16; + this->ecc.layout = &nand_hw_eccoob_16; + } else { + this->options |= 0; + } + + is2k_Pagesize = 0; + + /* Scan to find existence of the device */ + if (nand_scan(mtd, 1)) { + DEBUG(MTD_DEBUG_LEVEL0, + "MXC_ND: Unable to find any NAND device.\n"); + err = -ENXIO; + goto out_1; + } + + /* Register the partitions */ +#ifdef CONFIG_MTD_PARTITIONS + nr_parts = + parse_mtd_partitions(mtd, part_probes, &mxc_nand_data->parts, 0); + if (nr_parts > 0) + add_mtd_partitions(mtd, mxc_nand_data->parts, nr_parts); + else if (flash->parts) + add_mtd_partitions(mtd, flash->parts, flash->nr_parts); + else +#endif + { + pr_info("Registering %s as whole device\n", mtd->name); + add_mtd_device(mtd); + } +#ifdef CONFIG_MXC_NAND_LOW_LEVEL_ERASE + /* Erase all the blocks of a NAND */ + mxc_low_erase(mtd); +#endif + + platform_set_drvdata(pdev, mtd); + return 0; + + out_1: + kfree(mxc_nand_data); + out: + return err; + +} + + /*! + * Dissociates the driver from the device. + * + * @param pdev the device structure used to give information on which + * + * @return The function always returns 0. + */ + +static int __exit mxcnd_remove(struct platform_device *pdev) +{ + struct mtd_info *mtd = platform_get_drvdata(pdev); + + clk_put(nfc_clk); + platform_set_drvdata(pdev, NULL); + + if (mxc_nand_data) { + nand_release(mtd); + free_irq(MXC_INT_NANDFC, NULL); + kfree(mxc_nand_data); + } + + return 0; +} + +#ifdef CONFIG_PM +/*! + * This function is called to put the NAND in a low power state. Refer to the + * document driver-model/driver.txt in the kernel source tree for more + * information. + * + * @param pdev the device information structure + * + * @param state the power state the device is entering + * + * @return The function returns 0 on success and -1 on failure + */ + +static int mxcnd_suspend(struct platform_device *pdev, pm_message_t state) +{ + struct mtd_info *info = platform_get_drvdata(pdev); + int ret = 0; + + DEBUG(MTD_DEBUG_LEVEL0, "MXC_ND : NAND suspend\n"); + if (info) + ret = info->suspend(info); + + /* Disable the NFC clock */ + clk_disable(nfc_clk); + + return ret; +} + +/*! + * This function is called to bring the NAND back from a low power state. Refer + * to the document driver-model/driver.txt in the kernel source tree for more + * information. + * + * @param pdev the device information structure + * + * @return The function returns 0 on success and -1 on failure + */ +static int mxcnd_resume(struct platform_device *pdev) +{ + struct mtd_info *info = platform_get_drvdata(pdev); + int ret = 0; + + DEBUG(MTD_DEBUG_LEVEL0, "MXC_ND : NAND resume\n"); + /* Enable the NFC clock */ + clk_enable(nfc_clk); + + if (info) { + info->resume(info); + } + + return ret; +} + +#else +#define mxcnd_suspend NULL +#define mxcnd_resume NULL +#endif /* CONFIG_PM */ + +/*! + * This structure contains pointers to the power management callback functions. + */ +static struct platform_driver mxcnd_driver = { + .driver = { + .name = "mxc_nand_flash", + }, + .probe = mxcnd_probe, + .remove = __exit_p(mxcnd_remove), + .suspend = mxcnd_suspend, + .resume = mxcnd_resume, +}; + +/*! + * Main initialization routine + * @return 0 if successful; non-zero otherwise + */ +static int __init mxc_nd_init(void) +{ + /* Register the device driver structure. */ + pr_info("MXC MTD nand Driver %s\n", DVR_VER); + if (platform_driver_register(&mxcnd_driver) != 0) { + printk(KERN_ERR "Driver register failed for mxcnd_driver\n"); + return -ENODEV; + } + return 0; +} + +/*! + * Clean up routine + */ +static void __exit mxc_nd_cleanup(void) +{ + /* Unregister the device structure */ + platform_driver_unregister(&mxcnd_driver); +} + +module_init(mxc_nd_init); +module_exit(mxc_nd_cleanup); + +MODULE_AUTHOR("Freescale Semiconductor, Inc."); +MODULE_DESCRIPTION("MXC NAND MTD driver"); +MODULE_LICENSE("GPL"); -- cgit v1.2.3