/* * Copyright (C) 2015-2016 Freescale Semiconductor, Inc. * * The code contained herein is licensed under the GNU General Public * License. You may obtain a copy of the GNU General Public License * Version 2 or later at the following locations: * * http://www.opensource.org/licenses/gpl-license.html * http://www.gnu.org/copyleft/gpl.html */ #include #include #include #include #include #include #include #include #include #include #include #include "common.h" #include "hardware.h" #define IMR_NUM 4 #define GPC_MAX_IRQS (IMR_NUM * 32) #define GPC_LPCR_A7_BSC 0x0 #define GPC_LPCR_A7_AD 0x4 #define GPC_LPCR_M4 0x8 #define GPC_SLPCR 0x14 #define GPC_MLPCR 0x20 #define GPC_PGC_ACK_SEL_A7 0x24 #define GPC_MISC 0x2c #define GPC_IMR1_CORE0 0x30 #define GPC_IMR1_CORE1 0x40 #define GPC_IMR1_M4 0x50 #define GPC_SLOT0_CFG 0xb0 #define GPC_PGC_CPU_MAPPING 0xec #define GPC_CPU_PGC_SW_PUP_REQ 0xf0 #define GPC_PU_PGC_SW_PUP_REQ 0xf8 #define GPC_CPU_PGC_SW_PDN_REQ 0xfc #define GPC_PU_PGC_SW_PDN_REQ 0x104 #define GPC_GTOR 0x124 #define GPC_PGC_C0 0x800 #define GPC_PGC_C0_PUPSCR 0x804 #define GPC_PGC_SCU_TIMING 0x890 #define GPC_PGC_C1 0x840 #define GPC_PGC_C1_PUPSCR 0x844 #define GPC_PGC_SCU 0x880 #define GPC_PGC_FM 0xa00 #define BM_LPCR_A7_BSC_IRQ_SRC_A7_WAKEUP 0x70000000 #define BM_LPCR_A7_BSC_CPU_CLK_ON_LPM 0x4000 #define BM_LPCR_A7_BSC_LPM1 0xc #define BM_LPCR_A7_BSC_LPM0 0x3 #define BP_LPCR_A7_BSC_LPM1 2 #define BP_LPCR_A7_BSC_LPM0 0 #define BM_LPCR_M4_MASK_DSM_TRIGGER 0x80000000 #define BM_SLPCR_EN_DSM 0x80000000 #define BM_SLPCR_RBC_EN 0x40000000 #define BM_SLPCR_REG_BYPASS_COUNT 0x3f000000 #define BM_SLPCR_VSTBY 0x4 #define BM_SLPCR_SBYOS 0x2 #define BM_SLPCR_BYPASS_PMIC_READY 0x1 #define BM_SLPCR_EN_A7_FASTWUP_WAIT_MODE 0x10000 #define BM_LPCR_A7_AD_L2PGE 0x10000 #define BM_LPCR_A7_AD_EN_C1_PUP 0x800 #define BM_LPCR_A7_AD_EN_C1_IRQ_PUP 0x400 #define BM_LPCR_A7_AD_EN_C0_PUP 0x200 #define BM_LPCR_A7_AD_EN_C0_IRQ_PUP 0x100 #define BM_LPCR_A7_AD_EN_PLAT_PDN 0x10 #define BM_LPCR_A7_AD_EN_C1_PDN 0x8 #define BM_LPCR_A7_AD_EN_C1_WFI_PDN 0x4 #define BM_LPCR_A7_AD_EN_C0_PDN 0x2 #define BM_LPCR_A7_AD_EN_C0_WFI_PDN 0x1 #define BM_CPU_PGC_SW_PDN_PUP_REQ_CORE1_A7 0x2 #define BM_GPC_PGC_PCG 0x1 #define BM_GPC_PGC_CORE_PUPSCR 0x7fff80 #define BM_GPC_PGC_ACK_SEL_A7_DUMMY_PUP_ACK 0x80000000 #define BM_GPC_PGC_ACK_SEL_A7_DUMMY_PDN_ACK 0x8000 #define BM_GPC_MLPCR_MEMLP_CTL_DIS 0x1 #define BP_LPCR_A7_BSC_IRQ_SRC 28 #define MAX_SLOT_NUMBER 10 #define A7_LPM_WAIT 0x5 #define A7_LPM_STOP 0xa enum imx_gpc_slot { CORE0_A7, CORE1_A7, SCU_A7, FAST_MEGA_MIX, MIPI_PHY, PCIE_PHY, USB_OTG1_PHY, USB_OTG2_PHY, USB_HSIC_PHY, CORE0_M4, }; static void __iomem *gpc_base; static u32 gpcv2_wake_irqs[IMR_NUM]; static u32 gpcv2_saved_imrs[IMR_NUM]; static u32 gpcv2_saved_imrs_m4[IMR_NUM]; static u32 gpcv2_mf_irqs[IMR_NUM]; static u32 gpcv2_mf_request_on[IMR_NUM]; static DEFINE_SPINLOCK(gpcv2_lock); void imx_gpcv2_add_m4_wake_up_irq(u32 hwirq, bool enable) { unsigned int idx = hwirq / 32; unsigned long flags; u32 mask; /* Sanity check for SPI irq */ if (hwirq < 32) return; mask = 1 << hwirq % 32; spin_lock_irqsave(&gpcv2_lock, flags); gpcv2_wake_irqs[idx] = enable ? gpcv2_wake_irqs[idx] | mask : gpcv2_wake_irqs[idx] & ~mask; spin_unlock_irqrestore(&gpcv2_lock, flags); } static int imx_gpcv2_irq_set_wake(struct irq_data *d, unsigned int on) { unsigned int idx = d->hwirq / 32; unsigned long flags; u32 mask; BUG_ON(idx >= IMR_NUM); mask = 1 << d->hwirq % 32; spin_lock_irqsave(&gpcv2_lock, flags); gpcv2_wake_irqs[idx] = on ? gpcv2_wake_irqs[idx] | mask : gpcv2_wake_irqs[idx] & ~mask; spin_unlock_irqrestore(&gpcv2_lock, flags); return 0; } void imx_gpcv2_mask_all(void) { void __iomem *reg_imr1 = gpc_base + GPC_IMR1_CORE0; int i; for (i = 0; i < IMR_NUM; i++) { gpcv2_saved_imrs[i] = readl_relaxed(reg_imr1 + i * 4); writel_relaxed(~0, reg_imr1 + i * 4); } } void imx_gpcv2_restore_all(void) { void __iomem *reg_imr1 = gpc_base + GPC_IMR1_CORE0; int i; for (i = 0; i < IMR_NUM; i++) writel_relaxed(gpcv2_saved_imrs[i], reg_imr1 + i * 4); } void imx_gpcv2_hwirq_unmask(unsigned int hwirq) { void __iomem *reg; u32 val; reg = gpc_base + GPC_IMR1_CORE0 + (hwirq / 32) * 4; val = readl_relaxed(reg); val &= ~(1 << hwirq % 32); writel_relaxed(val, reg); } void imx_gpcv2_hwirq_mask(unsigned int hwirq) { void __iomem *reg; u32 val; reg = gpc_base + GPC_IMR1_CORE0 + (hwirq / 32) * 4; val = readl_relaxed(reg); val |= 1 << (hwirq % 32); writel_relaxed(val, reg); } static void imx_gpcv2_irq_unmask(struct irq_data *d) { imx_gpcv2_hwirq_unmask(d->hwirq); irq_chip_unmask_parent(d); } static void imx_gpcv2_irq_mask(struct irq_data *d) { imx_gpcv2_hwirq_mask(d->hwirq); irq_chip_mask_parent(d); } void imx_gpcv2_set_slot_ack(u32 index, enum imx_gpc_slot m_core, bool mode, bool ack) { u32 val; if (index >= MAX_SLOT_NUMBER) pr_err("Invalid slot index!\n"); /* set slot */ writel_relaxed(readl_relaxed(gpc_base + GPC_SLOT0_CFG + index * 4) | ((mode + 1) << (m_core * 2)), gpc_base + GPC_SLOT0_CFG + index * 4); if (ack) { /* set ack */ val = readl_relaxed(gpc_base + GPC_PGC_ACK_SEL_A7); /* clear dummy ack */ val &= ~(1 << (15 + (mode ? 16 : 0))); val |= 1 << (m_core + (mode ? 16 : 0)); writel_relaxed(val, gpc_base + GPC_PGC_ACK_SEL_A7); } } void imx_gpcv2_set_lpm_mode(enum mxc_cpu_pwr_mode mode) { unsigned long flags; u32 val1, val2; spin_lock_irqsave(&gpcv2_lock, flags); val1 = readl_relaxed(gpc_base + GPC_LPCR_A7_BSC); val2 = readl_relaxed(gpc_base + GPC_SLPCR); /* all cores' LPM settings must be same */ val1 &= ~(BM_LPCR_A7_BSC_LPM0 | BM_LPCR_A7_BSC_LPM1); val1 |= BM_LPCR_A7_BSC_CPU_CLK_ON_LPM; val2 &= ~(BM_SLPCR_EN_DSM | BM_SLPCR_VSTBY | BM_SLPCR_RBC_EN | BM_SLPCR_SBYOS | BM_SLPCR_BYPASS_PMIC_READY); /* * GPC: When improper low-power sequence is used, * the SoC enters low power mode before the ARM core executes WFI. * * Software workaround: * 1) Software should trigger IRQ #32 (IOMUX) to be always pending * by setting IOMUX_GPR1_IRQ. * 2) Software should then unmask IRQ #32 in GPC before setting GPC * Low-Power mode. * 3) Software should mask IRQ #32 right after GPC Low-Power mode * is set. */ switch (mode) { case WAIT_CLOCKED: imx_gpcv2_hwirq_unmask(0); break; case WAIT_UNCLOCKED: val1 |= A7_LPM_WAIT << BP_LPCR_A7_BSC_LPM0; val1 &= ~BM_LPCR_A7_BSC_CPU_CLK_ON_LPM; imx_gpcv2_hwirq_mask(0); break; case STOP_POWER_ON: val1 |= A7_LPM_STOP << BP_LPCR_A7_BSC_LPM0; val1 &= ~BM_LPCR_A7_BSC_CPU_CLK_ON_LPM; val2 |= BM_SLPCR_EN_DSM; val2 |= BM_SLPCR_RBC_EN; val2 |= BM_SLPCR_BYPASS_PMIC_READY; imx_gpcv2_hwirq_mask(0); break; case STOP_POWER_OFF: val1 |= A7_LPM_STOP << BP_LPCR_A7_BSC_LPM0; val1 &= ~BM_LPCR_A7_BSC_CPU_CLK_ON_LPM; val2 |= BM_SLPCR_EN_DSM; val2 |= BM_SLPCR_RBC_EN; val2 |= BM_SLPCR_SBYOS; val2 |= BM_SLPCR_VSTBY; val2 |= BM_SLPCR_BYPASS_PMIC_READY; imx_gpcv2_hwirq_mask(0); break; default: return; } writel_relaxed(val1, gpc_base + GPC_LPCR_A7_BSC); writel_relaxed(val2, gpc_base + GPC_SLPCR); spin_unlock_irqrestore(&gpcv2_lock, flags); } void imx_gpcv2_set_plat_power_gate_by_lpm(bool pdn) { u32 val = readl_relaxed(gpc_base + GPC_LPCR_A7_AD); val &= ~(BM_LPCR_A7_AD_EN_PLAT_PDN | BM_LPCR_A7_AD_L2PGE); if (pdn) val |= BM_LPCR_A7_AD_EN_PLAT_PDN | BM_LPCR_A7_AD_L2PGE; writel_relaxed(val, gpc_base + GPC_LPCR_A7_AD); } void imx_gpcv2_set_m_core_pgc(bool enable, u32 offset) { u32 val = readl_relaxed(gpc_base + offset) & (~BM_GPC_PGC_PCG); if (enable) val |= BM_GPC_PGC_PCG; writel_relaxed(val, gpc_base + offset); } void imx_gpcv2_set_core1_pdn_pup_by_software(bool pdn) { u32 val = readl_relaxed(gpc_base + (pdn ? GPC_CPU_PGC_SW_PDN_REQ : GPC_CPU_PGC_SW_PUP_REQ)); imx_gpcv2_set_m_core_pgc(true, GPC_PGC_C1); val |= BM_CPU_PGC_SW_PDN_PUP_REQ_CORE1_A7; writel_relaxed(val, gpc_base + (pdn ? GPC_CPU_PGC_SW_PDN_REQ : GPC_CPU_PGC_SW_PUP_REQ)); while ((readl_relaxed(gpc_base + (pdn ? GPC_CPU_PGC_SW_PDN_REQ : GPC_CPU_PGC_SW_PUP_REQ)) & BM_CPU_PGC_SW_PDN_PUP_REQ_CORE1_A7) != 0) ; imx_gpcv2_set_m_core_pgc(false, GPC_PGC_C1); } void imx_gpcv2_set_cpu_power_gate_by_wfi(u32 cpu, bool pdn) { unsigned long flags; u32 val; spin_lock_irqsave(&gpcv2_lock, flags); val = readl_relaxed(gpc_base + GPC_LPCR_A7_AD); if (cpu == 0) { if (pdn) { imx_gpcv2_set_m_core_pgc(true, GPC_PGC_C0); val |= BM_LPCR_A7_AD_EN_C0_WFI_PDN | BM_LPCR_A7_AD_EN_C0_IRQ_PUP; } else { imx_gpcv2_set_m_core_pgc(false, GPC_PGC_C0); val &= ~(BM_LPCR_A7_AD_EN_C0_WFI_PDN | BM_LPCR_A7_AD_EN_C0_IRQ_PUP); } } if (cpu == 1) { if (pdn) { imx_gpcv2_set_m_core_pgc(true, GPC_PGC_C1); val |= BM_LPCR_A7_AD_EN_C1_WFI_PDN | BM_LPCR_A7_AD_EN_C1_IRQ_PUP; } else { imx_gpcv2_set_m_core_pgc(false, GPC_PGC_C1); val &= ~(BM_LPCR_A7_AD_EN_C1_WFI_PDN | BM_LPCR_A7_AD_EN_C1_IRQ_PUP); } } writel_relaxed(val, gpc_base + GPC_LPCR_A7_AD); spin_unlock_irqrestore(&gpcv2_lock, flags); } void imx_gpcv2_set_cpu_power_gate_by_lpm(u32 cpu, bool pdn) { unsigned long flags; u32 val; spin_lock_irqsave(&gpcv2_lock, flags); val = readl_relaxed(gpc_base + GPC_LPCR_A7_AD); if (cpu == 0) { if (pdn) val |= BM_LPCR_A7_AD_EN_C0_PDN | BM_LPCR_A7_AD_EN_C0_PUP; else val &= ~(BM_LPCR_A7_AD_EN_C0_PDN | BM_LPCR_A7_AD_EN_C0_PUP); } if (cpu == 1) { if (pdn) val |= BM_LPCR_A7_AD_EN_C1_PDN | BM_LPCR_A7_AD_EN_C1_PUP; else val &= ~(BM_LPCR_A7_AD_EN_C1_PDN | BM_LPCR_A7_AD_EN_C1_PUP); } writel_relaxed(val, gpc_base + GPC_LPCR_A7_AD); spin_unlock_irqrestore(&gpcv2_lock, flags); } void imx_gpcv2_set_cpu_power_gate_in_idle(bool pdn) { unsigned long flags; u32 cpu; for_each_possible_cpu(cpu) imx_gpcv2_set_cpu_power_gate_by_lpm(cpu, pdn); spin_lock_irqsave(&gpcv2_lock, flags); imx_gpcv2_set_m_core_pgc(pdn, GPC_PGC_C0); if (num_online_cpus() > 1) imx_gpcv2_set_m_core_pgc(pdn, GPC_PGC_C1); imx_gpcv2_set_m_core_pgc(pdn, GPC_PGC_SCU); imx_gpcv2_set_plat_power_gate_by_lpm(pdn); if (pdn) { imx_gpcv2_set_slot_ack(0, CORE0_A7, false, false); if (num_online_cpus() > 1) imx_gpcv2_set_slot_ack(2, CORE1_A7, false, false); imx_gpcv2_set_slot_ack(3, SCU_A7, false, true); imx_gpcv2_set_slot_ack(6, SCU_A7, true, false); if (num_online_cpus() > 1) imx_gpcv2_set_slot_ack(6, CORE1_A7, true, false); imx_gpcv2_set_slot_ack(6, CORE0_A7, true, true); } else { writel_relaxed(0x0, gpc_base + GPC_SLOT0_CFG + 0 * 0x4); writel_relaxed(0x0, gpc_base + GPC_SLOT0_CFG + 2 * 0x4); writel_relaxed(0x0, gpc_base + GPC_SLOT0_CFG + 3 * 0x4); writel_relaxed(0x0, gpc_base + GPC_SLOT0_CFG + 6 * 0x4); writel_relaxed(0x0, gpc_base + GPC_SLOT0_CFG + 7 * 0x4); writel_relaxed(0x0, gpc_base + GPC_SLOT0_CFG + 8 * 0x4); writel_relaxed(BM_GPC_PGC_ACK_SEL_A7_DUMMY_PUP_ACK | BM_GPC_PGC_ACK_SEL_A7_DUMMY_PDN_ACK, gpc_base + GPC_PGC_ACK_SEL_A7); imx_gpcv2_enable_rbc(false); } spin_unlock_irqrestore(&gpcv2_lock, flags); } void imx_gpcv2_set_mix_phy_gate_by_lpm(u32 pdn_index, u32 pup_index) { /* set power down slot */ writel_relaxed(1 << (FAST_MEGA_MIX * 2), gpc_base + GPC_SLOT0_CFG + pdn_index * 4); /* set power up slot */ writel_relaxed(1 << (FAST_MEGA_MIX * 2 + 1), gpc_base + GPC_SLOT0_CFG + pup_index * 4); } unsigned int imx_gpcv2_is_mf_mix_off(void) { return readl_relaxed(gpc_base + GPC_PGC_FM); } static void imx_gpcv2_mf_mix_off(void) { int i; for (i = 0; i < IMR_NUM; i++) if (((gpcv2_wake_irqs[i] | gpcv2_mf_request_on[i]) & gpcv2_mf_irqs[i]) != 0) return; pr_info("Turn off Mega/Fast mix in DSM\n"); imx_gpcv2_set_slot_ack(1, FAST_MEGA_MIX, false, false); imx_gpcv2_set_slot_ack(5, FAST_MEGA_MIX, true, false); imx_gpcv2_set_m_core_pgc(true, GPC_PGC_FM); } int imx_gpcv2_mf_power_on(unsigned int irq, unsigned int on) { struct irq_desc *desc = irq_to_desc(irq); unsigned long hwirq = desc->irq_data.hwirq; unsigned int idx = hwirq / 32; unsigned long flags; u32 mask = 1 << (hwirq % 32); BUG_ON(idx >= IMR_NUM); spin_lock_irqsave(&gpcv2_lock, flags); gpcv2_mf_request_on[idx] = on ? gpcv2_mf_request_on[idx] | mask : gpcv2_mf_request_on[idx] & ~mask; spin_unlock_irqrestore(&gpcv2_lock, flags); return 0; } void imx_gpcv2_enable_rbc(bool enable) { u32 val; /* * need to mask all interrupts in GPC before * operating RBC configurations */ imx_gpcv2_mask_all(); /* configure RBC enable bit */ val = readl_relaxed(gpc_base + GPC_SLPCR); val &= ~BM_SLPCR_RBC_EN; val |= enable ? BM_SLPCR_RBC_EN : 0; writel_relaxed(val, gpc_base + GPC_SLPCR); /* configure RBC count */ val = readl_relaxed(gpc_base + GPC_SLPCR); val &= ~BM_SLPCR_REG_BYPASS_COUNT; val |= enable ? BM_SLPCR_REG_BYPASS_COUNT : 0; writel(val, gpc_base + GPC_SLPCR); /* * need to delay at least 2 cycles of CKIL(32K) * due to hardware design requirement, which is * ~61us, here we use 65us for safe */ udelay(65); /* restore GPC interrupt mask settings */ imx_gpcv2_restore_all(); } void imx_gpcv2_pre_suspend(bool arm_power_off) { void __iomem *reg_imr1 = gpc_base + GPC_IMR1_CORE0; int i; if (arm_power_off) { imx_gpcv2_set_lpm_mode(STOP_POWER_OFF); /* enable core0 power down/up with low power mode */ imx_gpcv2_set_cpu_power_gate_by_lpm(0, true); /* enable plat power down with low power mode */ imx_gpcv2_set_plat_power_gate_by_lpm(true); /* * To avoid confuse, we use slot 0~4 for power down, * slot 5~9 for power up. * * Power down slot sequence: * Slot0 -> CORE0 * Slot1 -> Mega/Fast MIX * Slot2 -> SCU * * Power up slot sequence: * Slot5 -> Mega/Fast MIX * Slot6 -> SCU * Slot7 -> CORE0 */ imx_gpcv2_set_slot_ack(0, CORE0_A7, false, false); imx_gpcv2_set_slot_ack(2, SCU_A7, false, true); if ((!imx_src_is_m4_enabled()) || (imx_src_is_m4_enabled() && imx_mu_is_m4_in_stop())) imx_gpcv2_mf_mix_off();; imx_gpcv2_set_slot_ack(6, SCU_A7, true, false); imx_gpcv2_set_slot_ack(6, CORE0_A7, true, true); /* enable core0, scu */ imx_gpcv2_set_m_core_pgc(true, GPC_PGC_C0); imx_gpcv2_set_m_core_pgc(true, GPC_PGC_SCU); } else { imx_gpcv2_set_lpm_mode(STOP_POWER_ON); } for (i = 0; i < IMR_NUM; i++) { gpcv2_saved_imrs[i] = readl_relaxed(reg_imr1 + i * 4); writel_relaxed(~gpcv2_wake_irqs[i], reg_imr1 + i * 4); } } void imx_gpcv2_enable_wakeup_for_m4(void) { void __iomem *reg_imr2 = gpc_base + GPC_IMR1_M4; u32 i; for (i = 0; i < IMR_NUM; i++) { gpcv2_saved_imrs_m4[i] = readl_relaxed(reg_imr2 + i * 4); writel_relaxed(~gpcv2_wake_irqs[i], reg_imr2 + i * 4); } } void imx_gpcv2_disable_wakeup_for_m4(void) { void __iomem *reg_imr2 = gpc_base + GPC_IMR1_M4; u32 i; for (i = 0; i < IMR_NUM; i++) writel_relaxed(gpcv2_saved_imrs_m4[i], reg_imr2 + i * 4); } void imx_gpcv2_post_resume(void) { void __iomem *reg_imr1 = gpc_base + GPC_IMR1_CORE0; int i, val; /* only external IRQs to wake up LPM and core 0/1 */ val = readl_relaxed(gpc_base + GPC_LPCR_A7_BSC); val |= BM_LPCR_A7_BSC_IRQ_SRC_A7_WAKEUP; writel_relaxed(val, gpc_base + GPC_LPCR_A7_BSC); /* mask m4 dsm trigger if M4 NOT enabled */ if (!imx_src_is_m4_enabled()) writel_relaxed(readl_relaxed(gpc_base + GPC_LPCR_M4) | BM_LPCR_M4_MASK_DSM_TRIGGER, gpc_base + GPC_LPCR_M4); /* set mega/fast mix in A7 domain */ writel_relaxed(0x1, gpc_base + GPC_PGC_CPU_MAPPING); /* set SCU timing */ writel_relaxed((0x59 << 10) | 0x5B | (0x2 << 20), gpc_base + GPC_PGC_SCU_TIMING); /* set C0/C1 power up timming per design requirement */ val = readl_relaxed(gpc_base + GPC_PGC_C0_PUPSCR); val &= ~BM_GPC_PGC_CORE_PUPSCR; val |= (0x1A << 7); writel_relaxed(val, gpc_base + GPC_PGC_C0_PUPSCR); val = readl_relaxed(gpc_base + GPC_PGC_C1_PUPSCR); val &= ~BM_GPC_PGC_CORE_PUPSCR; val |= (0x1A << 7); writel_relaxed(val, gpc_base + GPC_PGC_C1_PUPSCR); val = readl_relaxed(gpc_base + GPC_SLPCR); val &= ~(BM_SLPCR_EN_DSM); if (!imx_src_is_m4_enabled()) val &= ~(BM_SLPCR_VSTBY | BM_SLPCR_RBC_EN | BM_SLPCR_SBYOS | BM_SLPCR_BYPASS_PMIC_READY); val |= BM_SLPCR_EN_A7_FASTWUP_WAIT_MODE; writel_relaxed(val, gpc_base + GPC_SLPCR); if (imx_get_soc_revision() == IMX_CHIP_REVISION_1_0) { /* disable memory low power mode */ val = readl_relaxed(gpc_base + GPC_MLPCR); val |= BM_GPC_MLPCR_MEMLP_CTL_DIS; writel_relaxed(val, gpc_base + GPC_MLPCR); } for (i = 0; i < IMR_NUM; i++) writel_relaxed(gpcv2_saved_imrs[i], reg_imr1 + i * 4); imx_gpcv2_set_lpm_mode(WAIT_CLOCKED); imx_gpcv2_set_cpu_power_gate_by_lpm(0, false); imx_gpcv2_set_plat_power_gate_by_lpm(false); imx_gpcv2_set_m_core_pgc(false, GPC_PGC_C0); imx_gpcv2_set_m_core_pgc(false, GPC_PGC_SCU); imx_gpcv2_set_m_core_pgc(false, GPC_PGC_FM); for (i = 0; i < MAX_SLOT_NUMBER; i++){ if (i == 1 || i == 5) /* skip slts m4 uses */ continue; writel_relaxed(0x0, gpc_base + GPC_SLOT0_CFG + i * 0x4); } writel_relaxed(BM_GPC_PGC_ACK_SEL_A7_DUMMY_PUP_ACK | BM_GPC_PGC_ACK_SEL_A7_DUMMY_PDN_ACK, gpc_base + GPC_PGC_ACK_SEL_A7); /* disable RBC */ imx_gpcv2_enable_rbc(false); } static struct irq_chip imx_gpcv2_chip = { .name = "GPCV2", .irq_eoi = irq_chip_eoi_parent, .irq_mask = imx_gpcv2_irq_mask, .irq_unmask = imx_gpcv2_irq_unmask, .irq_retrigger = irq_chip_retrigger_hierarchy, .irq_set_wake = imx_gpcv2_irq_set_wake, #ifdef CONFIG_SMP .irq_set_affinity = irq_chip_set_affinity_parent, #endif }; static int imx_gpcv2_domain_xlate(struct irq_domain *domain, struct device_node *controller, const u32 *intspec, unsigned int intsize, unsigned long *out_hwirq, unsigned int *out_type) { if (irq_domain_get_of_node(domain) != controller) return -EINVAL; /* Shouldn't happen, really... */ if (intsize != 3) return -EINVAL; /* Not GIC compliant */ if (intspec[0] != 0) return -EINVAL; /* No PPI should point to this domain */ *out_hwirq = intspec[1]; *out_type = intspec[2]; return 0; } static int imx_gpcv2_domain_alloc(struct irq_domain *domain, unsigned int irq, unsigned int nr_irqs, void *data) { struct irq_fwspec *fwspec = data; struct irq_fwspec parent_fwspec; irq_hw_number_t hwirq; int i; if (fwspec->param_count != 3) return -EINVAL; /* Not GIC compliant */ if (fwspec->param[0] != 0) return -EINVAL; /* No PPI should point to this domain */ hwirq = fwspec->param[1]; if (hwirq >= GPC_MAX_IRQS) return -EINVAL; /* Can't deal with this */ for (i = 0; i < nr_irqs; i++) irq_domain_set_hwirq_and_chip(domain, irq + i, hwirq + i, &imx_gpcv2_chip, NULL); parent_fwspec.fwnode = domain->parent->fwnode; parent_fwspec.param_count = 3; parent_fwspec.param[0] = 0; parent_fwspec.param[1] = hwirq; parent_fwspec.param[2] = fwspec->param[2]; return irq_domain_alloc_irqs_parent(domain, irq, nr_irqs, &parent_fwspec); } static struct irq_domain_ops imx_gpcv2_domain_ops = { .xlate = imx_gpcv2_domain_xlate, .alloc = imx_gpcv2_domain_alloc, .free = irq_domain_free_irqs_common, }; static int __init imx_gpcv2_init(struct device_node *node, struct device_node *parent) { struct irq_domain *parent_domain, *domain; int i, val; if (!parent) { pr_err("%s: no parent, giving up\n", node->full_name); return -ENODEV; } parent_domain = irq_find_host(parent); if (!parent_domain) { pr_err("%s: unable to obtain parent domain\n", node->full_name); return -ENXIO; } gpc_base = of_iomap(node, 0); if (WARN_ON(!gpc_base)) return -ENOMEM; domain = irq_domain_add_hierarchy(parent_domain, 0, GPC_MAX_IRQS, node, &imx_gpcv2_domain_ops, NULL); if (!domain) { iounmap(gpc_base); return -ENOMEM; } /* Initially mask all interrupts */ for (i = 0; i < IMR_NUM; i++) { writel_relaxed(~0, gpc_base + GPC_IMR1_CORE0 + i * 4); writel_relaxed(~0, gpc_base + GPC_IMR1_CORE1 + i * 4); } /* * Due to hardware design requirement, need to make sure GPR * interrupt(#32) is unmasked during RUN mode to avoid entering * DSM by mistake. */ writel_relaxed(~0x1, gpc_base + GPC_IMR1_CORE0); /* Read supported wakeup source in M/F domain */ if (cpu_is_imx7d()) { of_property_read_u32_index(node, "fsl,mf-mix-wakeup-irq", 0, &gpcv2_mf_irqs[0]); of_property_read_u32_index(node, "fsl,mf-mix-wakeup-irq", 1, &gpcv2_mf_irqs[1]); of_property_read_u32_index(node, "fsl,mf-mix-wakeup-irq", 2, &gpcv2_mf_irqs[2]); of_property_read_u32_index(node, "fsl,mf-mix-wakeup-irq", 3, &gpcv2_mf_irqs[3]); if (!(gpcv2_mf_irqs[0] | gpcv2_mf_irqs[1] | gpcv2_mf_irqs[2] | gpcv2_mf_irqs[3])) pr_info("No wakeup source in Mega/Fast domain found!\n"); } /* only external IRQs to wake up LPM and core 0/1 */ val = readl_relaxed(gpc_base + GPC_LPCR_A7_BSC); val |= BM_LPCR_A7_BSC_IRQ_SRC_A7_WAKEUP; writel_relaxed(val, gpc_base + GPC_LPCR_A7_BSC); /* mask m4 dsm trigger if M4 NOT enabled */ if (!imx_src_is_m4_enabled()) writel_relaxed(readl_relaxed(gpc_base + GPC_LPCR_M4) | BM_LPCR_M4_MASK_DSM_TRIGGER, gpc_base + GPC_LPCR_M4); /* set mega/fast mix in A7 domain */ writel_relaxed(0x1, gpc_base + GPC_PGC_CPU_MAPPING); /* set SCU timing */ writel_relaxed((0x59 << 10) | 0x5B | (0x2 << 20), gpc_base + GPC_PGC_SCU_TIMING); /* set C0/C1 power up timming per design requirement */ val = readl_relaxed(gpc_base + GPC_PGC_C0_PUPSCR); val &= ~BM_GPC_PGC_CORE_PUPSCR; val |= (0x1A << 7); writel_relaxed(val, gpc_base + GPC_PGC_C0_PUPSCR); val = readl_relaxed(gpc_base + GPC_PGC_C1_PUPSCR); val &= ~BM_GPC_PGC_CORE_PUPSCR; val |= (0x1A << 7); writel_relaxed(val, gpc_base + GPC_PGC_C1_PUPSCR); writel_relaxed(BM_GPC_PGC_ACK_SEL_A7_DUMMY_PUP_ACK | BM_GPC_PGC_ACK_SEL_A7_DUMMY_PDN_ACK, gpc_base + GPC_PGC_ACK_SEL_A7); val = readl_relaxed(gpc_base + GPC_SLPCR); val &= ~(BM_SLPCR_EN_DSM); if (!imx_src_is_m4_enabled()) val &= ~(BM_SLPCR_VSTBY | BM_SLPCR_RBC_EN | BM_SLPCR_SBYOS | BM_SLPCR_BYPASS_PMIC_READY); val |= BM_SLPCR_EN_A7_FASTWUP_WAIT_MODE; writel_relaxed(val, gpc_base + GPC_SLPCR); if (imx_get_soc_revision() == IMX_CHIP_REVISION_1_0) { /* disable memory low power mode */ val = readl_relaxed(gpc_base + GPC_MLPCR); val |= BM_GPC_MLPCR_MEMLP_CTL_DIS; writel_relaxed(val, gpc_base + GPC_MLPCR); } /* disable RBC */ imx_gpcv2_enable_rbc(false); /* * Clear the OF_POPULATED flag set in of_irq_init so that * later the GPC power domain driver will not be skipped. */ of_node_clear_flag(node, OF_POPULATED); return 0; } /* * We cannot use the IRQCHIP_DECLARE macro that lives in * drivers/irqchip, so we're forced to roll our own. Not very nice. */ OF_DECLARE_2(irqchip, imx_gpcv2, "fsl,imx7d-gpc", imx_gpcv2_init); void __init imx_gpcv2_check_dt(void) { struct device_node *np; np = of_find_compatible_node(NULL, NULL, "fsl,imx7d-gpc"); if (WARN_ON(!np)) return; if (WARN_ON(!of_find_property(np, "interrupt-controller", NULL))) { pr_warn("Outdated DT detected, suspend/resume will NOT work\n"); /* map GPC, so that at least CPUidle and WARs keep working */ gpc_base = of_iomap(np, 0); } }