/* * Copyright 2009-2010 Freescale Semiconductor, Inc. All Rights Reserved. */ /* * The code contained herein is licensed under the GNU General Public * License. You may obtain a copy of the GNU General Public License * Version 2 or later at the following locations: * * http://www.opensource.org/licenses/gpl-license.html * http://www.gnu.org/copyleft/gpl.html */ /*! * @file bus_freq.c * * @brief A common API for the Freescale Semiconductor i.MXC CPUfreq module * and DVFS CORE module. * * The APIs are for setting bus frequency to low or high. * * @ingroup PM */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "crm_regs.h" #define LP_LOW_VOLTAGE 1050000 #define LP_NORMAL_VOLTAGE 1250000 #define LP_APM_CLK 24000000 #define NAND_LP_APM_CLK 12000000 #define AXI_A_NORMAL_CLK 166250000 #define AXI_A_CLK_NORMAL_DIV 4 #define AXI_B_CLK_NORMAL_DIV 5 #define AHB_CLK_NORMAL_DIV AXI_B_CLK_NORMAL_DIV #define EMI_SLOW_CLK_NORMAL_DIV AXI_B_CLK_NORMAL_DIV #define NFC_CLK_NORMAL_DIV 4 #define SPIN_DELAY 1000000 /* in nanoseconds */ DEFINE_SPINLOCK(ddr_freq_lock); static unsigned long lp_normal_rate; static unsigned long lp_med_rate; static unsigned long ddr_normal_rate; static unsigned long ddr_low_rate; static struct clk *ddr_clk; static struct clk *pll1_sw_clk; static struct clk *pll1; static struct clk *pll2; static struct clk *pll3; static struct clk *pll4; static struct clk *main_bus_clk; static struct clk *axi_a_clk; static struct clk *axi_b_clk; static struct clk *cpu_clk; static struct clk *ddr_hf_clk; static struct clk *ahb_clk; static struct clk *ddr_clk; static struct clk *periph_apm_clk; static struct clk *lp_apm; static struct clk *osc; static struct clk *gpc_dvfs_clk; static struct clk *emi_garb_clk; static void __iomem *pll1_base; static void __iomem *pll4_base; struct regulator *lp_regulator; int low_bus_freq_mode; int high_bus_freq_mode; int bus_freq_scaling_initialized; char *gp_reg_id = "SW1"; char *lp_reg_id = "SW2"; static struct cpu_wp *cpu_wp_tbl; static struct device *busfreq_dev; static int busfreq_suspended; static int cpu_podf; /* True if bus_frequency is scaled not using DVFS-PER */ int bus_freq_scaling_is_active; int cpu_wp_nr; int lp_high_freq; int lp_med_freq; void enter_lpapm_mode_mx50(void); void enter_lpapm_mode_mx51(void); void exit_lpapm_mode_mx50(void); void exit_lpapm_mode_mx51(void); void *ddr_freq_change_iram_base; void (*change_ddr_freq)(void *ccm_addr, void *databahn_addr, u32 freq) = NULL; extern void mx50_ddr_freq_change(u32 ccm_base, u32 databahn_addr, u32 freq); extern int dvfs_core_is_active; extern struct cpu_wp *(*get_cpu_wp)(int *wp); extern void propagate_rate(struct clk *tclk); extern void __iomem *ccm_base; extern void __iomem *databahn_base; struct dvfs_wp dvfs_core_setpoint[] = { {33, 8, 33, 10, 10, 0x08}, {26, 0, 33, 20, 10, 0x08}, {28, 8, 33, 20, 30, 0x08}, {29, 0, 33, 20, 10, 0x08},}; int set_low_bus_freq(void) { u32 reg; struct timespec nstimeofday; struct timespec curtime; if (busfreq_suspended) return 0; if (bus_freq_scaling_initialized) { /* can not enter low bus freq, when cpu is in highest freq */ if (clk_get_rate(cpu_clk) != cpu_wp_tbl[cpu_wp_nr - 1].cpu_rate) { return 0; } stop_dvfs_per(); stop_sdram_autogating(); /* Set PLL3 to 133Mhz if no-one is using it. */ if ((clk_get_usecount(pll3) == 0) && !cpu_is_mx53()) { u32 pll3_rate = clk_get_rate(pll3); clk_enable(pll3); clk_set_rate(pll3, clk_round_rate(pll3, 133000000)); if (cpu_is_mx50()) enter_lpapm_mode_mx50(); else enter_lpapm_mode_mx51(); /* Set PLL3 back to original rate. */ clk_set_rate(pll3, clk_round_rate(pll3, pll3_rate)); clk_disable(pll3); } else if (cpu_is_mx53()) { /*Change the DDR freq to 133Mhz. */ clk_set_rate(ddr_hf_clk, clk_round_rate(ddr_hf_clk, ddr_low_rate)); /* move cpu clk to pll2, 400 / 3 = 133Mhz for cpu */ clk_set_parent(pll1_sw_clk, pll2); cpu_podf = __raw_readl(MXC_CCM_CACRR); reg = __raw_readl(MXC_CCM_CDHIPR); if ((reg & MXC_CCM_CDHIPR_ARM_PODF_BUSY) == 0) __raw_writel(0x2, MXC_CCM_CACRR); else printk(KERN_DEBUG "ARM_PODF still in busy!!!!\n"); /* ahb = 400/8, axi_b = 400/8, axi_a = 133*/ reg = __raw_readl(MXC_CCM_CBCDR); reg &= ~(MXC_CCM_CBCDR_AXI_A_PODF_MASK | MXC_CCM_CBCDR_AXI_B_PODF_MASK | MXC_CCM_CBCDR_AHB_PODF_MASK); reg |= (2 << MXC_CCM_CBCDR_AXI_A_PODF_OFFSET | 7 << MXC_CCM_CBCDR_AXI_B_PODF_OFFSET | 7 << MXC_CCM_CBCDR_AHB_PODF_OFFSET); __raw_writel(reg, MXC_CCM_CBCDR); getnstimeofday(&nstimeofday); while (__raw_readl(MXC_CCM_CDHIPR) & (MXC_CCM_CDHIPR_AXI_A_PODF_BUSY | MXC_CCM_CDHIPR_AXI_B_PODF_BUSY | MXC_CCM_CDHIPR_AHB_PODF_BUSY)) { getnstimeofday(&curtime); if (curtime.tv_nsec - nstimeofday.tv_nsec > SPIN_DELAY) panic("low bus freq set rate error\n"); } /* keep this infront of propagating */ low_bus_freq_mode = 1; high_bus_freq_mode = 0; propagate_rate(main_bus_clk); propagate_rate(pll1_sw_clk); if (clk_get_usecount(pll1) == 0) { reg = __raw_readl(pll1_base + MXC_PLL_DP_CTL); reg &= ~MXC_PLL_DP_CTL_UPEN; __raw_writel(reg, pll1_base + MXC_PLL_DP_CTL); } if (clk_get_usecount(pll4) == 0) { reg = __raw_readl(pll4_base + MXC_PLL_DP_CTL); reg &= ~MXC_PLL_DP_CTL_UPEN; __raw_writel(reg, pll4_base + MXC_PLL_DP_CTL); } } } return 0; } void enter_lpapm_mode_mx50() { u32 reg; unsigned long flags; spin_lock_irqsave(&ddr_freq_lock, flags); /* Set the parent of main_bus_clk to be PLL3 */ clk_set_parent(main_bus_clk, pll3); /* Set the AHB dividers to be 1. */ /* Set the dividers to be 1, so the clock rates * are at 133MHz. */ reg = __raw_readl(MXC_CCM_CBCDR); reg &= ~(MXC_CCM_CBCDR_AXI_A_PODF_MASK | MXC_CCM_CBCDR_AXI_B_PODF_MASK | MXC_CCM_CBCDR_AHB_PODF_MASK | MX50_CCM_CBCDR_WEIM_PODF_MASK); reg |= (0 << MXC_CCM_CBCDR_AXI_A_PODF_OFFSET | 0 << MXC_CCM_CBCDR_AXI_B_PODF_OFFSET | 0 << MXC_CCM_CBCDR_AHB_PODF_OFFSET | 0 << MX50_CCM_CBCDR_WEIM_PODF_OFFSET); __raw_writel(reg, MXC_CCM_CBCDR); while (__raw_readl(MXC_CCM_CDHIPR) & 0x0F) udelay(10); low_bus_freq_mode = 1; high_bus_freq_mode = 0; /* Set the source of main_bus_clk to be lp-apm. */ clk_set_parent(main_bus_clk, lp_apm); /* Set SYS_CLK to 24MHz. sourced from XTAL*/ /* Turn on the XTAL_CLK_GATE. */ reg = __raw_readl(MXC_CCM_CLK_SYS); reg |= 3 << MXC_CCM_CLK_SYS_SYS_XTAL_CLKGATE_OFFSET; __raw_writel(reg, MXC_CCM_CLK_SYS); /* Set the divider. */ reg = __raw_readl(MXC_CCM_CLK_SYS); reg &= ~MXC_CCM_CLK_SYS_DIV_XTAL_MASK; reg |= 1 << MXC_CCM_CLK_SYS_DIV_XTAL_OFFSET; __raw_writel(reg, MXC_CCM_CLK_SYS); while (__raw_readl(MXC_CCM_CSR2) & 0x1) udelay(10); /* Set the source to be XTAL. */ reg = __raw_readl(MXC_CCM_CLKSEQ_BYPASS); reg &= ~0x1; __raw_writel(reg, MXC_CCM_CLKSEQ_BYPASS); while (!(__raw_readl(MXC_CCM_CSR2) & 0x400)) udelay(10); /* Turn OFF the PLL_CLK_GATE. */ reg = __raw_readl(MXC_CCM_CLK_SYS); reg &= ~MXC_CCM_CLK_SYS_SYS_PLL_CLKGATE_MASK; __raw_writel(reg, MXC_CCM_CLK_SYS); spin_unlock_irqrestore(&ddr_freq_lock, flags); } void enter_lpapm_mode_mx51() { u32 reg; /*Change the DDR freq to 133Mhz. */ clk_set_rate(ddr_hf_clk, clk_round_rate(ddr_hf_clk, ddr_low_rate)); /* Set the parent of Periph_apm_clk to be PLL3 */ clk_set_parent(periph_apm_clk, pll3); clk_set_parent(main_bus_clk, periph_apm_clk); /* Set the dividers to be 1, so the clock rates * are at 133MHz. */ reg = __raw_readl(MXC_CCM_CBCDR); reg &= ~(MXC_CCM_CBCDR_AXI_A_PODF_MASK | MXC_CCM_CBCDR_AXI_B_PODF_MASK | MXC_CCM_CBCDR_AHB_PODF_MASK | MXC_CCM_CBCDR_EMI_PODF_MASK | MXC_CCM_CBCDR_NFC_PODF_OFFSET); reg |= (0 << MXC_CCM_CBCDR_AXI_A_PODF_OFFSET | 0 << MXC_CCM_CBCDR_AXI_B_PODF_OFFSET | 0 << MXC_CCM_CBCDR_AHB_PODF_OFFSET | 0 << MXC_CCM_CBCDR_EMI_PODF_OFFSET | 3 << MXC_CCM_CBCDR_NFC_PODF_OFFSET); __raw_writel(reg, MXC_CCM_CBCDR); clk_enable(emi_garb_clk); while (__raw_readl(MXC_CCM_CDHIPR) & 0x1F) udelay(10); clk_disable(emi_garb_clk); /* Set the source of Periph_APM_Clock to be lp-apm. */ clk_set_parent(periph_apm_clk, lp_apm); } int set_high_bus_freq(int high_bus_freq) { u32 reg; struct timespec nstimeofday; struct timespec curtime; if (bus_freq_scaling_initialized) { stop_sdram_autogating(); if (low_bus_freq_mode) { /* Relock PLL3 to 133MHz */ if ((clk_get_usecount(pll3) == 0) && !cpu_is_mx53()) { u32 pll3_rate = clk_get_rate(pll3); clk_enable(pll3); clk_set_rate(pll3, clk_round_rate(pll3, 133000000)); if (cpu_is_mx50()) exit_lpapm_mode_mx50(); else exit_lpapm_mode_mx51(); /* Relock PLL3 to its original rate */ clk_set_rate(pll3, clk_round_rate(pll3, pll3_rate)); clk_disable(pll3); } else if (cpu_is_mx53()) { /* move cpu clk to pll1 */ reg = __raw_readl(MXC_CCM_CDHIPR); if ((reg & MXC_CCM_CDHIPR_ARM_PODF_BUSY) == 0) __raw_writel(cpu_podf & 0x7, MXC_CCM_CACRR); else printk(KERN_DEBUG "ARM_PODF still in busy!!!!\n"); clk_set_parent(pll1_sw_clk, pll1); /* ahb = 400/3, axi_b = 400/3, axi_a = 400*/ reg = __raw_readl(MXC_CCM_CBCDR); reg &= ~(MXC_CCM_CBCDR_AXI_A_PODF_MASK | MXC_CCM_CBCDR_AXI_B_PODF_MASK | MXC_CCM_CBCDR_AHB_PODF_MASK); reg |= (0 << MXC_CCM_CBCDR_AXI_A_PODF_OFFSET | 2 << MXC_CCM_CBCDR_AXI_B_PODF_OFFSET | 2 << MXC_CCM_CBCDR_AHB_PODF_OFFSET); __raw_writel(reg, MXC_CCM_CBCDR); getnstimeofday(&nstimeofday); while (__raw_readl(MXC_CCM_CDHIPR) & (MXC_CCM_CDHIPR_AXI_A_PODF_BUSY | MXC_CCM_CDHIPR_AXI_B_PODF_BUSY | MXC_CCM_CDHIPR_AHB_PODF_BUSY)) { getnstimeofday(&curtime); if (curtime.tv_nsec - nstimeofday.tv_nsec > SPIN_DELAY) panic("bus freq error\n"); } /* keep this infront of propagating */ low_bus_freq_mode = 1; high_bus_freq_mode = 0; propagate_rate(main_bus_clk); propagate_rate(pll1_sw_clk); /*Change the DDR freq to mormal_rate*/ clk_set_rate(ddr_hf_clk, clk_round_rate(ddr_hf_clk, ddr_normal_rate)); } start_dvfs_per(); } if (bus_freq_scaling_is_active) { /* * If the CPU freq is 800MHz, set the bus to the high * setpoint (133MHz) and DDR to 200MHz. */ if (clk_get_rate(cpu_clk) != cpu_wp_tbl[cpu_wp_nr - 1].cpu_rate) high_bus_freq = 1; if (((clk_get_rate(ahb_clk) == lp_med_rate) && lp_high_freq) || high_bus_freq) { /* Set to the high setpoint. */ high_bus_freq_mode = 1; clk_set_rate(ahb_clk, clk_round_rate(ahb_clk, lp_normal_rate)); clk_set_rate(ddr_hf_clk, clk_round_rate(ddr_hf_clk, ddr_normal_rate)); } if (!lp_high_freq && !high_bus_freq) { /* Set to the medium setpoint. */ high_bus_freq_mode = 0; low_bus_freq_mode = 0; clk_set_rate(ddr_hf_clk, clk_round_rate(ddr_hf_clk, ddr_low_rate)); clk_set_rate(ahb_clk, clk_round_rate(ahb_clk, lp_med_rate)); } } start_sdram_autogating(); } return 0; } void exit_lpapm_mode_mx50() { u32 reg; unsigned long flags; spin_lock_irqsave(&ddr_freq_lock, flags); /* Set SYS_CLK to source from PLL1 */ /* Set sys_clk back to 200MHz. */ /* Set the divider to 4. */ reg = __raw_readl(MXC_CCM_CLK_SYS); reg &= ~MXC_CCM_CLK_SYS_DIV_PLL_MASK; reg |= 0x4 << MXC_CCM_CLK_SYS_DIV_PLL_OFFSET; __raw_writel(reg, MXC_CCM_CLK_SYS); udelay(100); /* Turn ON the PLL CLK_GATE. */ reg = __raw_readl(MXC_CCM_CLK_SYS); reg |= 3 << MXC_CCM_CLK_SYS_SYS_PLL_CLKGATE_OFFSET; __raw_writel(reg, MXC_CCM_CLK_SYS); /* Source the SYS_CLK from PLL */ reg = __raw_readl(MXC_CCM_CLKSEQ_BYPASS); reg |= 0x3; __raw_writel(reg, MXC_CCM_CLKSEQ_BYPASS); while (__raw_readl(MXC_CCM_CSR2) & 0x400) udelay(10); /* Turn OFF the XTAL_CLK_GATE. */ reg = __raw_readl(MXC_CCM_CLK_SYS); reg &= ~MXC_CCM_CLK_SYS_SYS_XTAL_CLKGATE_MASK; __raw_writel(reg, MXC_CCM_CLK_SYS); clk_set_parent(main_bus_clk, pll3); /* Set the dividers to the default dividers */ reg = __raw_readl(MXC_CCM_CBCDR); reg &= ~(MXC_CCM_CBCDR_AXI_A_PODF_MASK | MXC_CCM_CBCDR_AXI_B_PODF_MASK | MXC_CCM_CBCDR_AHB_PODF_MASK | MX50_CCM_CBCDR_WEIM_PODF_MASK); reg |= (0 << MXC_CCM_CBCDR_AXI_A_PODF_OFFSET |1 << MXC_CCM_CBCDR_AXI_B_PODF_OFFSET |2 << MXC_CCM_CBCDR_AHB_PODF_OFFSET |0 << MX50_CCM_CBCDR_WEIM_PODF_OFFSET); __raw_writel(reg, MXC_CCM_CBCDR); while (__raw_readl(MXC_CCM_CDHIPR) & 0xF) udelay(10); low_bus_freq_mode = 0; high_bus_freq_mode = 1; /*Set the main_bus_clk parent to be PLL2. */ clk_set_parent(main_bus_clk, pll2); spin_unlock_irqrestore(&ddr_freq_lock, flags); udelay(100); } void exit_lpapm_mode_mx51() { u32 reg; clk_set_parent(periph_apm_clk, pll3); /* Set the dividers to the default dividers */ reg = __raw_readl(MXC_CCM_CBCDR); reg &= ~(MXC_CCM_CBCDR_AXI_A_PODF_MASK | MXC_CCM_CBCDR_AXI_B_PODF_MASK | MXC_CCM_CBCDR_AHB_PODF_MASK | MXC_CCM_CBCDR_EMI_PODF_MASK | MXC_CCM_CBCDR_NFC_PODF_OFFSET); reg |= (3 << MXC_CCM_CBCDR_AXI_A_PODF_OFFSET | 4 << MXC_CCM_CBCDR_AXI_B_PODF_OFFSET | 4 << MXC_CCM_CBCDR_AHB_PODF_OFFSET | 4 << MXC_CCM_CBCDR_EMI_PODF_OFFSET | 3 << MXC_CCM_CBCDR_NFC_PODF_OFFSET); __raw_writel(reg, MXC_CCM_CBCDR); clk_enable(emi_garb_clk); while (__raw_readl(MXC_CCM_CDHIPR) & 0x1F) udelay(10); low_bus_freq_mode = 0; high_bus_freq_mode = 1; clk_disable(emi_garb_clk); /*Set the main_bus_clk parent to be PLL2. */ clk_set_parent(main_bus_clk, pll2); /*Change the DDR freq to 200MHz*/ clk_set_rate(ddr_hf_clk, clk_round_rate(ddr_hf_clk, ddr_normal_rate)); } int low_freq_bus_used(void) { if ((lp_high_freq == 0) && (lp_med_freq == 0)) return 1; else return 0; } void setup_pll(void) { } static ssize_t bus_freq_scaling_enable_show(struct device *dev, struct device_attribute *attr, char *buf) { if (bus_freq_scaling_is_active) return sprintf(buf, "Bus frequency scaling is enabled\n"); else return sprintf(buf, "Bus frequency scaling is disabled\n"); } static ssize_t bus_freq_scaling_enable_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t size) { u32 reg; if (strncmp(buf, "1", 1) == 0) { if (dvfs_per_active()) { printk(KERN_INFO "bus frequency scaling cannot be\ enabled when DVFS-PER is active\n"); return size; } /* Initialize DVFS-PODF to 0. */ reg = __raw_readl(MXC_CCM_CDCR); reg &= ~MXC_CCM_CDCR_PERIPH_CLK_DVFS_PODF_MASK; __raw_writel(reg, MXC_CCM_CDCR); clk_set_parent(main_bus_clk, pll2); bus_freq_scaling_is_active = 1; set_high_bus_freq(0); } else if (strncmp(buf, "0", 1) == 0) { if (bus_freq_scaling_is_active) set_high_bus_freq(1); bus_freq_scaling_is_active = 0; } return size; } static int busfreq_suspend(struct platform_device *pdev, pm_message_t message) { if (low_bus_freq_mode) set_high_bus_freq(1); busfreq_suspended = 1; return 0; } static int busfreq_resume(struct platform_device *pdev) { busfreq_suspended = 0; return 0; } static DEVICE_ATTR(enable, 0644, bus_freq_scaling_enable_show, bus_freq_scaling_enable_store); /*! * This is the probe routine for the bus frequency driver. * * @param pdev The platform device structure * * @return The function returns 0 on success * */ static int __devinit busfreq_probe(struct platform_device *pdev) { int err = 0; unsigned long pll2_rate, pll1_rate; unsigned long iram_paddr; pll1_base = ioremap(MX53_BASE_ADDR(PLL1_BASE_ADDR), SZ_4K); if (cpu_is_mx53()) pll4_base = ioremap(MX53_BASE_ADDR(PLL4_BASE_ADDR), SZ_4K); busfreq_dev = &pdev->dev; main_bus_clk = clk_get(NULL, "main_bus_clk"); if (IS_ERR(main_bus_clk)) { printk(KERN_DEBUG "%s: failed to get main_bus_clk\n", __func__); return PTR_ERR(main_bus_clk); } pll1_sw_clk = clk_get(NULL, "pll1_sw_clk"); if (IS_ERR(pll1_sw_clk)) { printk(KERN_DEBUG "%s: failed to get pll1_sw_clk\n", __func__); return PTR_ERR(pll1_sw_clk); } pll1 = clk_get(NULL, "pll1_main_clk"); if (IS_ERR(pll1)) { printk(KERN_DEBUG "%s: failed to get pll1\n", __func__); return PTR_ERR(pll1); } pll2 = clk_get(NULL, "pll2"); if (IS_ERR(pll2)) { printk(KERN_DEBUG "%s: failed to get pll2\n", __func__); return PTR_ERR(pll2); } pll3 = clk_get(NULL, "pll3"); if (IS_ERR(pll3)) { printk(KERN_DEBUG "%s: failed to get pll3\n", __func__); return PTR_ERR(pll3); } if (cpu_is_mx53()) { pll4 = clk_get(NULL, "pll4"); if (IS_ERR(pll4)) { printk(KERN_DEBUG "%s: failed to get pll4\n", __func__); return PTR_ERR(pll4); } } axi_a_clk = clk_get(NULL, "axi_a_clk"); if (IS_ERR(axi_a_clk)) { printk(KERN_DEBUG "%s: failed to get axi_a_clk\n", __func__); return PTR_ERR(axi_a_clk); } axi_b_clk = clk_get(NULL, "axi_b_clk"); if (IS_ERR(axi_b_clk)) { printk(KERN_DEBUG "%s: failed to get axi_b_clk\n", __func__); return PTR_ERR(axi_b_clk); } ddr_clk = clk_get(NULL, "ddr_clk"); if (IS_ERR(ddr_clk)) { printk(KERN_DEBUG "%s: failed to get ddr_clk\n", __func__); return PTR_ERR(ddr_clk); } ddr_hf_clk = clk_get_parent(ddr_clk); if (IS_ERR(ddr_hf_clk)) { printk(KERN_DEBUG "%s: failed to get ddr_hf_clk\n", __func__); return PTR_ERR(ddr_hf_clk); } ahb_clk = clk_get(NULL, "ahb_clk"); if (IS_ERR(ahb_clk)) { printk(KERN_DEBUG "%s: failed to get ahb_clk\n", __func__); return PTR_ERR(ahb_clk); } cpu_clk = clk_get(NULL, "cpu_clk"); if (IS_ERR(cpu_clk)) { printk(KERN_DEBUG "%s: failed to get cpu_clk\n", __func__); return PTR_ERR(cpu_clk); } if (cpu_is_mx51()) emi_garb_clk = clk_get(NULL, "emi_garb_clk"); else if (cpu_is_mx53()) emi_garb_clk = clk_get(NULL, "emi_intr_clk.1"); else emi_garb_clk = clk_get(NULL, "ocram_clk"); if (IS_ERR(emi_garb_clk)) { printk(KERN_DEBUG "%s: failed to get emi_garb_clk\n", __func__); return PTR_ERR(emi_garb_clk); } if (cpu_is_mx51() || cpu_is_mx53()) { periph_apm_clk = clk_get(NULL, "periph_apm_clk"); if (IS_ERR(periph_apm_clk)) { printk(KERN_DEBUG "%s: failed to get periph_apm_clk\n", __func__); return PTR_ERR(periph_apm_clk); } } lp_apm = clk_get(NULL, "lp_apm"); if (IS_ERR(lp_apm)) { printk(KERN_DEBUG "%s: failed to get lp_apm\n", __func__); return PTR_ERR(lp_apm); } osc = clk_get(NULL, "osc"); if (IS_ERR(osc)) { printk(KERN_DEBUG "%s: failed to get osc\n", __func__); return PTR_ERR(osc); } gpc_dvfs_clk = clk_get(NULL, "gpc_dvfs_clk"); if (IS_ERR(gpc_dvfs_clk)) { printk(KERN_DEBUG "%s: failed to get gpc_dvfs_clk\n", __func__); return PTR_ERR(gpc_dvfs_clk); } err = sysfs_create_file(&busfreq_dev->kobj, &dev_attr_enable.attr); if (err) { printk(KERN_ERR "Unable to register sysdev entry for BUSFREQ"); return err; } pll1_rate = clk_get_rate(pll1_sw_clk); pll2_rate = clk_get_rate(pll2); if (pll2_rate == 665000000) { /* for mx51 */ lp_normal_rate = pll2_rate / 5; lp_med_rate = pll2_rate / 8; ddr_normal_rate = pll1_rate / 4; /* 200M */ ddr_low_rate = pll1_rate / 6; /* 133M */ } else if (pll2_rate == 600000000) { /* for mx53 evk rev.A */ lp_normal_rate = pll2_rate / 5; lp_med_rate = pll2_rate / 8; ddr_normal_rate = pll2_rate / 2; ddr_low_rate = pll2_rate / 2; } else if (pll2_rate == 400000000) { /* for mx53 evk rev.B */ lp_normal_rate = pll2_rate / 3; lp_med_rate = pll2_rate / 5; if (cpu_is_mx53()) { ddr_normal_rate = pll2_rate / 1; ddr_low_rate = pll2_rate / 3; } else if (cpu_is_mx50()) { ddr_normal_rate = clk_get_rate(ddr_clk); ddr_low_rate = LP_APM_CLK; } } if (cpu_is_mx50()) { iram_alloc(SZ_8K, &iram_paddr); /* Need to remap the area here since we want the memory region to be executable. */ ddr_freq_change_iram_base = __arm_ioremap(iram_paddr, SZ_8K, MT_HIGH_VECTORS); memcpy(ddr_freq_change_iram_base, mx50_ddr_freq_change, SZ_8K); change_ddr_freq = (void *)ddr_freq_change_iram_base; lp_regulator = regulator_get(NULL, "SW2"); if (IS_ERR(lp_regulator)) { printk(KERN_DEBUG "%s: failed to get lp regulator\n", __func__); return PTR_ERR(lp_regulator); } } cpu_wp_tbl = get_cpu_wp(&cpu_wp_nr); low_bus_freq_mode = 0; high_bus_freq_mode = 1; bus_freq_scaling_is_active = 0; bus_freq_scaling_initialized = 1; return 0; } static struct platform_driver busfreq_driver = { .driver = { .name = "busfreq", }, .probe = busfreq_probe, .suspend = busfreq_suspend, .resume = busfreq_resume, }; /*! * Initialise the busfreq_driver. * * @return The function always returns 0. */ static int __init busfreq_init(void) { if (platform_driver_register(&busfreq_driver) != 0) { printk(KERN_ERR "busfreq_driver register failed\n"); return -ENODEV; } printk(KERN_INFO "Bus freq driver module loaded\n"); return 0; } static void __exit busfreq_cleanup(void) { sysfs_remove_file(&busfreq_dev->kobj, &dev_attr_enable.attr); /* Unregister the device structure */ platform_driver_unregister(&busfreq_driver); bus_freq_scaling_initialized = 0; } module_init(busfreq_init); module_exit(busfreq_cleanup); MODULE_AUTHOR("Freescale Semiconductor, Inc."); MODULE_DESCRIPTION("BusFreq driver"); MODULE_LICENSE("GPL");