/* * Copyright (C) 2011 Google, Inc. * * Author: * Colin Cross * * This software is licensed under the terms of the GNU General Public * License version 2, as published by the Free Software Foundation, and * may be copied, distributed, and modified under those terms. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * */ #include #include #include #include #include #include #include "tegra2_emc.h" #define TEGRA_MRR_DIVLD (1<<20) #define TEGRA_EMC_STATUS 0x02b4 #define TEGRA_EMC_MRR 0x00ec static DEFINE_MUTEX(tegra_emc_mrr_lock); #ifdef CONFIG_TEGRA_EMC_SCALING_ENABLE static bool emc_enable = true; #else static bool emc_enable; #endif module_param(emc_enable, bool, 0644); static void __iomem *emc = IO_ADDRESS(TEGRA_EMC_BASE); static const struct tegra_emc_table *tegra_emc_table; static int tegra_emc_table_size; static unsigned long tegra_emc_max_bus_rate; /* 2 * 1000 * maximum emc_clock rate */ static unsigned long tegra_emc_min_bus_rate; /* 2 * 1000 * minimum emc_clock rate */ static inline void emc_writel(u32 val, unsigned long addr) { writel(val, emc + addr); } static inline u32 emc_readl(unsigned long addr) { return readl(emc + addr); } #ifndef CONFIG_MACH_COLIBRI_T20 /* read LPDDR2 memory modes */ static int tegra_emc_read_mrr(unsigned long addr) { u32 value; int count = 100; mutex_lock(&tegra_emc_mrr_lock); do { emc_readl(TEGRA_EMC_MRR); } while (--count && (emc_readl(TEGRA_EMC_STATUS) & TEGRA_MRR_DIVLD)); if (count == 0) { pr_err("%s: Failed to read memory type\n", __func__); BUG(); } value = (1 << 30) | (addr << 16); emc_writel(value, TEGRA_EMC_MRR); count = 100; while (--count && !(emc_readl(TEGRA_EMC_STATUS) & TEGRA_MRR_DIVLD)); if (count == 0) { pr_err("%s: Failed to read memory type\n", __func__); BUG(); } value = emc_readl(TEGRA_EMC_MRR) & 0xFFFF; mutex_unlock(&tegra_emc_mrr_lock); return value; } #endif /* !CONFIG_MACH_COLIBRI_T20 */ static const unsigned long emc_reg_addr[TEGRA_EMC_NUM_REGS] = { 0x2c, /* RC */ 0x30, /* RFC */ 0x34, /* RAS */ 0x38, /* RP */ 0x3c, /* R2W */ 0x40, /* W2R */ 0x44, /* R2P */ 0x48, /* W2P */ 0x4c, /* RD_RCD */ 0x50, /* WR_RCD */ 0x54, /* RRD */ 0x58, /* REXT */ 0x5c, /* WDV */ 0x60, /* QUSE */ 0x64, /* QRST */ 0x68, /* QSAFE */ 0x6c, /* RDV */ 0x70, /* REFRESH */ 0x74, /* BURST_REFRESH_NUM */ 0x78, /* PDEX2WR */ 0x7c, /* PDEX2RD */ 0x80, /* PCHG2PDEN */ 0x84, /* ACT2PDEN */ 0x88, /* AR2PDEN */ 0x8c, /* RW2PDEN */ 0x90, /* TXSR */ 0x94, /* TCKE */ 0x98, /* TFAW */ 0x9c, /* TRPAB */ 0xa0, /* TCLKSTABLE */ 0xa4, /* TCLKSTOP */ 0xa8, /* TREFBW */ 0xac, /* QUSE_EXTRA */ 0x114, /* FBIO_CFG6 */ 0xb0, /* ODT_WRITE */ 0xb4, /* ODT_READ */ 0x104, /* FBIO_CFG5 */ 0x2bc, /* CFG_DIG_DLL */ 0x2c0, /* DLL_XFORM_DQS */ 0x2c4, /* DLL_XFORM_QUSE */ 0x2e0, /* ZCAL_REF_CNT */ 0x2e4, /* ZCAL_WAIT_CNT */ 0x2a8, /* AUTO_CAL_INTERVAL */ 0x2d0, /* CFG_CLKTRIM_0 */ 0x2d4, /* CFG_CLKTRIM_1 */ 0x2d8, /* CFG_CLKTRIM_2 */ }; /* Select the closest EMC rate that is higher than the requested rate */ long tegra_emc_round_rate(unsigned long rate) { int i; int best = -1; unsigned long distance = ULONG_MAX; if (!tegra_emc_table) return -EINVAL; if (!emc_enable) return -EINVAL; if (rate >= tegra_emc_max_bus_rate) { best = tegra_emc_table_size - 1; goto round_out; } else if (rate <= tegra_emc_min_bus_rate) { best = 0; goto round_out; } pr_debug("%s: %lu\n", __func__, rate); /* * The EMC clock rate is twice the bus rate, and the bus rate is * measured in kHz */ rate = rate / 2 / 1000; for (i = 0; i < tegra_emc_table_size; i++) { if (tegra_emc_table[i].rate >= rate && (tegra_emc_table[i].rate - rate) < distance) { distance = tegra_emc_table[i].rate - rate; best = i; } } if (best < 0) return -EINVAL; round_out: pr_debug("%s: using %lu\n", __func__, tegra_emc_table[best].rate); return tegra_emc_table[best].rate * 2 * 1000; } /* * The EMC registers have shadow registers. When the EMC clock is updated * in the clock controller, the shadow registers are copied to the active * registers, allowing glitchless memory bus frequency changes. * This function updates the shadow registers for a new clock frequency, * and relies on the clock lock on the emc clock to avoid races between * multiple frequency changes */ int tegra_emc_set_rate(unsigned long rate) { int i; int j; if (!tegra_emc_table) return -EINVAL; /* * The EMC clock rate is twice the bus rate, and the bus rate is * measured in kHz */ rate = rate / 2 / 1000; for (i = tegra_emc_table_size - 1; i >= 0; i--) if (tegra_emc_table[i].rate == rate) break; if (i < 0) return -EINVAL; pr_debug("%s: setting to %lu\n", __func__, rate); for (j = 0; j < TEGRA_EMC_NUM_REGS; j++) emc_writel(tegra_emc_table[i].regs[j], emc_reg_addr[j]); emc_readl(tegra_emc_table[i].regs[TEGRA_EMC_NUM_REGS - 1]); return 0; } void tegra_init_emc(const struct tegra_emc_chip *chips, int chips_size) { int i; #ifndef CONFIG_MACH_COLIBRI_T20 int vid; int rev_id1; int rev_id2; int pid; #endif /* !CONFIG_MACH_COLIBRI_T20 */ int chip_matched = -1; #ifndef CONFIG_MACH_COLIBRI_T20 //somehow this only seems to work for LPDDR2 but we have regular DDR2 vid = tegra_emc_read_mrr(5); rev_id1 = tegra_emc_read_mrr(6); rev_id2 = tegra_emc_read_mrr(7); pid = tegra_emc_read_mrr(8); #endif /* !CONFIG_MACH_COLIBRI_T20 */ for (i = 0; i < chips_size; i++) { #ifndef CONFIG_MACH_COLIBRI_T20 //for now just go with the one and only chip table if (chips[i].mem_manufacturer_id >= 0) { if (chips[i].mem_manufacturer_id != vid) continue; } if (chips[i].mem_revision_id1 >= 0) { if (chips[i].mem_revision_id1 != rev_id1) continue; } if (chips[i].mem_revision_id2 >= 0) { if (chips[i].mem_revision_id2 != rev_id2) continue; } if (chips[i].mem_pid >= 0) { if (chips[i].mem_pid != pid) continue; } #endif /* !CONFIG_MACH_COLIBRI_T20 */ chip_matched = i; break; } if (chip_matched >= 0) { pr_info("%s: %s memory found\n", __func__, chips[chip_matched].description); tegra_emc_table = chips[chip_matched].table; tegra_emc_table_size = chips[chip_matched].table_size; tegra_emc_min_bus_rate = tegra_emc_table[0].rate * 2 * 1000; tegra_emc_max_bus_rate = tegra_emc_table[tegra_emc_table_size - 1].rate * 2 * 1000; } else { pr_err("%s: Memory not recognized, memory scaling disabled\n", __func__); #ifndef CONFIG_MACH_COLIBRI_T20 pr_info("%s: Memory vid = 0x%04x", __func__, vid); pr_info("%s: Memory rev_id1 = 0x%04x", __func__, rev_id1); pr_info("%s: Memory rev_id2 = 0x%04x", __func__, rev_id2); pr_info("%s: Memory pid = 0x%04x", __func__, pid); #endif /* !CONFIG_MACH_COLIBRI_T20 */ } }