/* * arch/arch/mach-tegra/timer.c * * Copyright (C) 2010 Google, Inc. * Copyright (C) 2011 NVIDIA Corporation. * * Author: * Colin Cross * * Copyright (C) 2010-2011 NVIDIA Corporation. * * This software is licensed under the terms of the GNU General Public * License version 2, as published by the Free Software Foundation, and * may be copied, distributed, and modified under those terms. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "board.h" #include "clock.h" #include "timer.h" static void __iomem *timer_reg_base = IO_ADDRESS(TEGRA_TMR1_BASE); static void __iomem *rtc_base = IO_ADDRESS(TEGRA_RTC_BASE); static struct timespec persistent_ts; static u64 persistent_ms, last_persistent_ms; static u32 usec_config; static u32 usec_offset; static bool usec_suspended; static u32 system_timer; #define timer_writel(value, reg) \ __raw_writel(value, (u32)timer_reg_base + (reg)) #define timer_readl(reg) \ __raw_readl((u32)timer_reg_base + (reg)) static int tegra_timer_set_next_event(unsigned long cycles, struct clock_event_device *evt) { u32 reg; reg = 0x80000000 | ((cycles > 1) ? (cycles-1) : 0); timer_writel(reg, system_timer + TIMER_PTV); return 0; } static void tegra_timer_set_mode(enum clock_event_mode mode, struct clock_event_device *evt) { u32 reg; timer_writel(0, system_timer + TIMER_PTV); switch (mode) { case CLOCK_EVT_MODE_PERIODIC: reg = 0xC0000000 | ((1000000/HZ)-1); timer_writel(reg, system_timer + TIMER_PTV); break; case CLOCK_EVT_MODE_ONESHOT: break; case CLOCK_EVT_MODE_UNUSED: case CLOCK_EVT_MODE_SHUTDOWN: case CLOCK_EVT_MODE_RESUME: break; } } static struct clock_event_device tegra_clockevent = { .name = "timer0", .rating = 300, .features = CLOCK_EVT_FEAT_ONESHOT | CLOCK_EVT_FEAT_PERIODIC, .set_next_event = tegra_timer_set_next_event, .set_mode = tegra_timer_set_mode, }; static DEFINE_CLOCK_DATA(cd); /* * Constants generated by clocks_calc_mult_shift(m, s, 1MHz, NSEC_PER_SEC, 60). * This gives a resolution of about 1us and a wrap period of about 1h11min. */ #define SC_MULT 4194304000u #define SC_SHIFT 22 static u32 notrace tegra_read_usec(void) { u32 cyc = usec_offset; if (!usec_suspended) cyc += timer_readl(TIMERUS_CNTR_1US); return cyc; } unsigned long long notrace sched_clock(void) { u32 cyc = tegra_read_usec(); return cyc_to_fixed_sched_clock(&cd, cyc, (u32)~0, SC_MULT, SC_SHIFT); } static void notrace tegra_update_sched_clock(void) { u32 cyc = tegra_read_usec(); update_sched_clock(&cd, cyc, (u32)~0); } /* * tegra_rtc_read - Reads the Tegra RTC registers * Care must be taken that this funciton is not called while the * tegra_rtc driver could be executing to avoid race conditions * on the RTC shadow register */ static u64 tegra_rtc_read_ms(void) { u32 ms = readl(rtc_base + RTC_MILLISECONDS); u32 s = readl(rtc_base + RTC_SHADOW_SECONDS); return (u64)s * MSEC_PER_SEC + ms; } /* * read_persistent_clock - Return time from a persistent clock. * * Reads the time from a source which isn't disabled during PM, the * 32k sync timer. Convert the cycles elapsed since last read into * nsecs and adds to a monotonically increasing timespec. * Care must be taken that this funciton is not called while the * tegra_rtc driver could be executing to avoid race conditions * on the RTC shadow register */ void read_persistent_clock(struct timespec *ts) { u64 delta; struct timespec *tsp = &persistent_ts; last_persistent_ms = persistent_ms; persistent_ms = tegra_rtc_read_ms(); delta = persistent_ms - last_persistent_ms; timespec_add_ns(tsp, delta * NSEC_PER_MSEC); *ts = *tsp; } static irqreturn_t tegra_timer_interrupt(int irq, void *dev_id) { struct clock_event_device *evt = (struct clock_event_device *)dev_id; timer_writel(1<<30, system_timer + TIMER_PCR); evt->event_handler(evt); return IRQ_HANDLED; } static struct irqaction tegra_timer_irq = { .name = "timer0", .flags = IRQF_DISABLED | IRQF_TIMER | IRQF_TRIGGER_HIGH, .handler = tegra_timer_interrupt, .dev_id = &tegra_clockevent, }; static int tegra_timer_suspend(void) { usec_config = timer_readl(TIMERUS_USEC_CFG); usec_offset += timer_readl(TIMERUS_CNTR_1US); usec_suspended = true; return 0; } static void tegra_timer_resume(void) { timer_writel(usec_config, TIMERUS_USEC_CFG); usec_offset -= timer_readl(TIMERUS_CNTR_1US); usec_suspended = false; } static struct syscore_ops tegra_timer_syscore_ops = { .suspend = tegra_timer_suspend, .resume = tegra_timer_resume, }; #ifdef CONFIG_HAVE_ARM_TWD int tegra_twd_get_state(struct tegra_twd_context *context) { context->twd_ctrl = readl(twd_base + TWD_TIMER_CONTROL); context->twd_load = readl(twd_base + TWD_TIMER_LOAD); context->twd_cnt = readl(twd_base + TWD_TIMER_COUNTER); return 0; } void tegra_twd_suspend(struct tegra_twd_context *context) { context->twd_ctrl = readl(twd_base + TWD_TIMER_CONTROL); context->twd_load = readl(twd_base + TWD_TIMER_LOAD); if ((context->twd_load == 0) && (context->twd_ctrl & TWD_TIMER_CONTROL_PERIODIC) && (context->twd_ctrl & (TWD_TIMER_CONTROL_ENABLE | TWD_TIMER_CONTROL_IT_ENABLE))) { WARN("%s: TWD enabled but counter was 0\n", __func__); context->twd_load = 1; } __raw_writel(0, twd_base + TWD_TIMER_CONTROL); } void tegra_twd_resume(struct tegra_twd_context *context) { BUG_ON((context->twd_load == 0) && (context->twd_ctrl & TWD_TIMER_CONTROL_PERIODIC) && (context->twd_ctrl & (TWD_TIMER_CONTROL_ENABLE | TWD_TIMER_CONTROL_IT_ENABLE))); writel(context->twd_load, twd_base + TWD_TIMER_LOAD); writel(context->twd_ctrl, twd_base + TWD_TIMER_CONTROL); } #endif #ifdef CONFIG_RTC_CLASS /** * has_readtime - check rtc device has readtime ability * @dev: current device * @name_ptr: name to be returned * * This helper function checks to see if the rtc device can be * used for reading time */ static int has_readtime(struct device *dev, void *name_ptr) { struct rtc_device *candidate = to_rtc_device(dev); if (!candidate->ops->read_time) return 0; return 1; } /** * tegra_get_linear_age - helper function to return linear age * from Jan 2012. * * @return * 1 - Jan 2012, * 2 - Feb 2012, * ..... * 13 - Jan 2013 */ int tegra_get_linear_age(void) { struct rtc_time tm; int year, month, linear_age; struct rtc_device *rtc_dev = NULL; const char *name = NULL; int ret; struct device *dev = NULL; linear_age = -1; year = month = 0; dev = class_find_device(rtc_class, NULL, &name, has_readtime); if (!dev) { pr_err("DVFS: No device with readtime capability\n"); goto done; } name = dev_name(dev); pr_info("DVFS: Got RTC device name:%s\n", name); if (name) rtc_dev = rtc_class_open((char *)name); if (!rtc_dev) { pr_err("DVFS: No RTC device\n"); goto error_dev; } ret = rtc_read_time(rtc_dev, &tm); if (ret < 0) { pr_err("DVFS: Can't read RTC time\n"); goto error_rtc; } year = tm.tm_year; /*Normalize it to 2012*/ year -= 112; month = tm.tm_mon + 1; if (year >= 0) linear_age = year * 12 + month; error_rtc: rtc_class_close(rtc_dev); error_dev: put_device(dev); done: return linear_age; } #else int tegra_get_linear_age() { return -1; } #endif static void __init tegra_init_timer(void) { struct clk *clk; int ret; clk = clk_get_sys("timer", NULL); BUG_ON(IS_ERR(clk)); clk_enable(clk); /* * rtc registers are used by read_persistent_clock, keep the rtc clock * enabled */ clk = clk_get_sys("rtc-tegra", NULL); BUG_ON(IS_ERR(clk)); clk_enable(clk); #ifdef CONFIG_HAVE_ARM_TWD twd_base = IO_ADDRESS(TEGRA_ARM_PERIF_BASE + 0x600); #endif #ifdef CONFIG_ARCH_TEGRA_2x_SOC tegra2_init_timer(&system_timer, &tegra_timer_irq.irq); #else tegra3_init_timer(&system_timer, &tegra_timer_irq.irq); #endif init_fixed_sched_clock(&cd, tegra_update_sched_clock, 32, 1000000, SC_MULT, SC_SHIFT); if (clocksource_mmio_init(timer_reg_base + TIMERUS_CNTR_1US, "timer_us", 1000000, 300, 32, clocksource_mmio_readl_up)) { printk(KERN_ERR "Failed to register clocksource\n"); BUG(); } ret = setup_irq(tegra_timer_irq.irq, &tegra_timer_irq); if (ret) { printk(KERN_ERR "Failed to register timer IRQ: %d\n", ret); BUG(); } clockevents_calc_mult_shift(&tegra_clockevent, 1000000, 5); tegra_clockevent.max_delta_ns = clockevent_delta2ns(0x1fffffff, &tegra_clockevent); tegra_clockevent.min_delta_ns = clockevent_delta2ns(0x1, &tegra_clockevent); tegra_clockevent.cpumask = cpu_all_mask; tegra_clockevent.irq = tegra_timer_irq.irq; clockevents_register_device(&tegra_clockevent); register_syscore_ops(&tegra_timer_syscore_ops); } struct sys_timer tegra_timer = { .init = tegra_init_timer, };