/* * Versatile Express Serial Power Controller (SPC) support * * Copyright (C) 2013 ARM Ltd. * * Authors: Sudeep KarkadaNagesha * Achin Gupta * Lorenzo Pieralisi * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * * This program is distributed "as is" WITHOUT ANY WARRANTY of any * kind, whether express or implied; without even the implied warranty * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ #include #include #include #include #include #include #include #include #include #include #include #include #include "spc.h" #define SPCLOG "vexpress-spc: " #define PERF_LVL_A15 0x00 #define PERF_REQ_A15 0x04 #define PERF_LVL_A7 0x08 #define PERF_REQ_A7 0x0c #define COMMS 0x10 #define COMMS_REQ 0x14 #define PWC_STATUS 0x18 #define PWC_FLAG 0x1c /* SPC wake-up IRQs status and mask */ #define WAKE_INT_MASK 0x24 #define WAKE_INT_RAW 0x28 #define WAKE_INT_STAT 0x2c /* SPC power down registers */ #define A15_PWRDN_EN 0x30 #define A7_PWRDN_EN 0x34 /* SPC per-CPU mailboxes */ #define A15_BX_ADDR0 0x68 #define A7_BX_ADDR0 0x78 /* SPC CPU/cluster reset statue */ #define STANDBYWFI_STAT 0x3c #define STANDBYWFI_STAT_A15_CPU_MASK(cpu) (1 << (cpu)) #define STANDBYWFI_STAT_A7_CPU_MASK(cpu) (1 << (3 + (cpu))) /* SPC system config interface registers */ #define SYSCFG_WDATA 0x70 #define SYSCFG_RDATA 0x74 /* A15/A7 OPP virtual register base */ #define A15_PERFVAL_BASE 0xC10 #define A7_PERFVAL_BASE 0xC30 /* Config interface control bits */ #define SYSCFG_START (1 << 31) #define SYSCFG_SCC (6 << 20) #define SYSCFG_STAT (14 << 20) /* wake-up interrupt masks */ #define GBL_WAKEUP_INT_MSK (0x3 << 10) /* TC2 static dual-cluster configuration */ #define MAX_CLUSTERS 2 /* * Even though the SPC takes max 3-5 ms to complete any OPP/COMMS * operation, the operation could start just before jiffie is about * to be incremented. So setting timeout value of 20ms = 2jiffies@100Hz */ #define TIMEOUT_US 20000 #define MAX_OPPS 8 #define CA15_DVFS 0 #define CA7_DVFS 1 #define SPC_SYS_CFG 2 #define STAT_COMPLETE(type) ((1 << 0) << (type << 2)) #define STAT_ERR(type) ((1 << 1) << (type << 2)) #define RESPONSE_MASK(type) (STAT_COMPLETE(type) | STAT_ERR(type)) struct ve_spc_opp { unsigned long freq; unsigned long u_volt; }; struct ve_spc_drvdata { void __iomem *baseaddr; /* * A15s cluster identifier * It corresponds to A15 processors MPIDR[15:8] bitfield */ u32 a15_clusid; uint32_t cur_rsp_mask; uint32_t cur_rsp_stat; struct semaphore sem; struct completion done; struct ve_spc_opp *opps[MAX_CLUSTERS]; int num_opps[MAX_CLUSTERS]; }; static struct ve_spc_drvdata *info; static inline bool cluster_is_a15(u32 cluster) { return cluster == info->a15_clusid; } /** * ve_spc_global_wakeup_irq() * * Function to set/clear global wakeup IRQs. Not protected by locking since * it might be used in code paths where normal cacheable locks are not * working. Locking must be provided by the caller to ensure atomicity. * * @set: if true, global wake-up IRQs are set, if false they are cleared */ void ve_spc_global_wakeup_irq(bool set) { u32 reg; reg = readl_relaxed(info->baseaddr + WAKE_INT_MASK); if (set) reg |= GBL_WAKEUP_INT_MSK; else reg &= ~GBL_WAKEUP_INT_MSK; writel_relaxed(reg, info->baseaddr + WAKE_INT_MASK); } /** * ve_spc_cpu_wakeup_irq() * * Function to set/clear per-CPU wake-up IRQs. Not protected by locking since * it might be used in code paths where normal cacheable locks are not * working. Locking must be provided by the caller to ensure atomicity. * * @cluster: mpidr[15:8] bitfield describing cluster affinity level * @cpu: mpidr[7:0] bitfield describing cpu affinity level * @set: if true, wake-up IRQs are set, if false they are cleared */ void ve_spc_cpu_wakeup_irq(u32 cluster, u32 cpu, bool set) { u32 mask, reg; if (cluster >= MAX_CLUSTERS) return; mask = 1 << cpu; if (!cluster_is_a15(cluster)) mask <<= 4; reg = readl_relaxed(info->baseaddr + WAKE_INT_MASK); if (set) reg |= mask; else reg &= ~mask; writel_relaxed(reg, info->baseaddr + WAKE_INT_MASK); } /** * ve_spc_set_resume_addr() - set the jump address used for warm boot * * @cluster: mpidr[15:8] bitfield describing cluster affinity level * @cpu: mpidr[7:0] bitfield describing cpu affinity level * @addr: physical resume address */ void ve_spc_set_resume_addr(u32 cluster, u32 cpu, u32 addr) { void __iomem *baseaddr; if (cluster >= MAX_CLUSTERS) return; if (cluster_is_a15(cluster)) baseaddr = info->baseaddr + A15_BX_ADDR0 + (cpu << 2); else baseaddr = info->baseaddr + A7_BX_ADDR0 + (cpu << 2); writel_relaxed(addr, baseaddr); } /** * ve_spc_powerdown() * * Function to enable/disable cluster powerdown. Not protected by locking * since it might be used in code paths where normal cacheable locks are not * working. Locking must be provided by the caller to ensure atomicity. * * @cluster: mpidr[15:8] bitfield describing cluster affinity level * @enable: if true enables powerdown, if false disables it */ void ve_spc_powerdown(u32 cluster, bool enable) { u32 pwdrn_reg; if (cluster >= MAX_CLUSTERS) return; pwdrn_reg = cluster_is_a15(cluster) ? A15_PWRDN_EN : A7_PWRDN_EN; writel_relaxed(enable, info->baseaddr + pwdrn_reg); } static u32 standbywfi_cpu_mask(u32 cpu, u32 cluster) { return cluster_is_a15(cluster) ? STANDBYWFI_STAT_A15_CPU_MASK(cpu) : STANDBYWFI_STAT_A7_CPU_MASK(cpu); } /** * ve_spc_cpu_in_wfi(u32 cpu, u32 cluster) * * @cpu: mpidr[7:0] bitfield describing CPU affinity level within cluster * @cluster: mpidr[15:8] bitfield describing cluster affinity level * * @return: non-zero if and only if the specified CPU is in WFI * * Take care when interpreting the result of this function: a CPU might * be in WFI temporarily due to idle, and is not necessarily safely * parked. */ int ve_spc_cpu_in_wfi(u32 cpu, u32 cluster) { int ret; u32 mask = standbywfi_cpu_mask(cpu, cluster); if (cluster >= MAX_CLUSTERS) return 1; ret = readl_relaxed(info->baseaddr + STANDBYWFI_STAT); pr_debug("%s: PCFGREG[0x%X] = 0x%08X, mask = 0x%X\n", __func__, STANDBYWFI_STAT, ret, mask); return ret & mask; } static int ve_spc_get_performance(int cluster, u32 *freq) { struct ve_spc_opp *opps = info->opps[cluster]; u32 perf_cfg_reg = 0; u32 perf; perf_cfg_reg = cluster_is_a15(cluster) ? PERF_LVL_A15 : PERF_LVL_A7; perf = readl_relaxed(info->baseaddr + perf_cfg_reg); if (perf >= info->num_opps[cluster]) return -EINVAL; opps += perf; *freq = opps->freq; return 0; } /* find closest match to given frequency in OPP table */ static int ve_spc_round_performance(int cluster, u32 freq) { int idx, max_opp = info->num_opps[cluster]; struct ve_spc_opp *opps = info->opps[cluster]; u32 fmin = 0, fmax = ~0, ftmp; freq /= 1000; /* OPP entries in kHz */ for (idx = 0; idx < max_opp; idx++, opps++) { ftmp = opps->freq; if (ftmp >= freq) { if (ftmp <= fmax) fmax = ftmp; } else { if (ftmp >= fmin) fmin = ftmp; } } if (fmax != ~0) return fmax * 1000; else return fmin * 1000; } static int ve_spc_find_performance_index(int cluster, u32 freq) { int idx, max_opp = info->num_opps[cluster]; struct ve_spc_opp *opps = info->opps[cluster]; for (idx = 0; idx < max_opp; idx++, opps++) if (opps->freq == freq) break; return (idx == max_opp) ? -EINVAL : idx; } static int ve_spc_waitforcompletion(int req_type) { int ret = wait_for_completion_interruptible_timeout( &info->done, usecs_to_jiffies(TIMEOUT_US)); if (ret == 0) ret = -ETIMEDOUT; else if (ret > 0) ret = info->cur_rsp_stat & STAT_COMPLETE(req_type) ? 0 : -EIO; return ret; } static int ve_spc_set_performance(int cluster, u32 freq) { u32 perf_cfg_reg; int ret, perf, req_type; if (cluster_is_a15(cluster)) { req_type = CA15_DVFS; perf_cfg_reg = PERF_LVL_A15; } else { req_type = CA7_DVFS; perf_cfg_reg = PERF_LVL_A7; } perf = ve_spc_find_performance_index(cluster, freq); if (perf < 0) return perf; if (down_timeout(&info->sem, usecs_to_jiffies(TIMEOUT_US))) return -ETIME; init_completion(&info->done); info->cur_rsp_mask = RESPONSE_MASK(req_type); writel(perf, info->baseaddr + perf_cfg_reg); ret = ve_spc_waitforcompletion(req_type); info->cur_rsp_mask = 0; up(&info->sem); return ret; } static int ve_spc_read_sys_cfg(int func, int offset, uint32_t *data) { int ret; if (down_timeout(&info->sem, usecs_to_jiffies(TIMEOUT_US))) return -ETIME; init_completion(&info->done); info->cur_rsp_mask = RESPONSE_MASK(SPC_SYS_CFG); /* Set the control value */ writel(SYSCFG_START | func | offset >> 2, info->baseaddr + COMMS); ret = ve_spc_waitforcompletion(SPC_SYS_CFG); if (ret == 0) *data = readl(info->baseaddr + SYSCFG_RDATA); info->cur_rsp_mask = 0; up(&info->sem); return ret; } static irqreturn_t ve_spc_irq_handler(int irq, void *data) { struct ve_spc_drvdata *drv_data = data; uint32_t status = readl_relaxed(drv_data->baseaddr + PWC_STATUS); if (info->cur_rsp_mask & status) { info->cur_rsp_stat = status; complete(&drv_data->done); } return IRQ_HANDLED; } /* * +--------------------------+ * | 31 20 | 19 0 | * +--------------------------+ * | m_volt | freq(kHz) | * +--------------------------+ */ #define MULT_FACTOR 20 #define VOLT_SHIFT 20 #define FREQ_MASK (0xFFFFF) static int ve_spc_populate_opps(uint32_t cluster) { uint32_t data = 0, off, ret, idx; struct ve_spc_opp *opps; opps = kzalloc(sizeof(*opps) * MAX_OPPS, GFP_KERNEL); if (!opps) return -ENOMEM; info->opps[cluster] = opps; off = cluster_is_a15(cluster) ? A15_PERFVAL_BASE : A7_PERFVAL_BASE; for (idx = 0; idx < MAX_OPPS; idx++, off += 4, opps++) { ret = ve_spc_read_sys_cfg(SYSCFG_SCC, off, &data); if (!ret) { opps->freq = (data & FREQ_MASK) * MULT_FACTOR; opps->u_volt = (data >> VOLT_SHIFT) * 1000; } else { break; } } info->num_opps[cluster] = idx; return ret; } static int ve_init_opp_table(struct device *cpu_dev) { int cluster; int idx, ret = 0, max_opp; struct ve_spc_opp *opps; cluster = topology_physical_package_id(cpu_dev->id); cluster = cluster < 0 ? 0 : cluster; max_opp = info->num_opps[cluster]; opps = info->opps[cluster]; for (idx = 0; idx < max_opp; idx++, opps++) { ret = dev_pm_opp_add(cpu_dev, opps->freq * 1000, opps->u_volt); if (ret) { dev_warn(cpu_dev, "failed to add opp %lu %lu\n", opps->freq, opps->u_volt); return ret; } } return ret; } int __init ve_spc_init(void __iomem *baseaddr, u32 a15_clusid, int irq) { int ret; info = kzalloc(sizeof(*info), GFP_KERNEL); if (!info) { pr_err(SPCLOG "unable to allocate mem\n"); return -ENOMEM; } info->baseaddr = baseaddr; info->a15_clusid = a15_clusid; if (irq <= 0) { pr_err(SPCLOG "Invalid IRQ %d\n", irq); kfree(info); return -EINVAL; } init_completion(&info->done); readl_relaxed(info->baseaddr + PWC_STATUS); ret = request_irq(irq, ve_spc_irq_handler, IRQF_TRIGGER_HIGH | IRQF_ONESHOT, "vexpress-spc", info); if (ret) { pr_err(SPCLOG "IRQ %d request failed\n", irq); kfree(info); return -ENODEV; } sema_init(&info->sem, 1); /* * Multi-cluster systems may need this data when non-coherent, during * cluster power-up/power-down. Make sure driver info reaches main * memory. */ sync_cache_w(info); sync_cache_w(&info); return 0; } struct clk_spc { struct clk_hw hw; int cluster; }; #define to_clk_spc(spc) container_of(spc, struct clk_spc, hw) static unsigned long spc_recalc_rate(struct clk_hw *hw, unsigned long parent_rate) { struct clk_spc *spc = to_clk_spc(hw); u32 freq; if (ve_spc_get_performance(spc->cluster, &freq)) return -EIO; return freq * 1000; } static long spc_round_rate(struct clk_hw *hw, unsigned long drate, unsigned long *parent_rate) { struct clk_spc *spc = to_clk_spc(hw); return ve_spc_round_performance(spc->cluster, drate); } static int spc_set_rate(struct clk_hw *hw, unsigned long rate, unsigned long parent_rate) { struct clk_spc *spc = to_clk_spc(hw); return ve_spc_set_performance(spc->cluster, rate / 1000); } static struct clk_ops clk_spc_ops = { .recalc_rate = spc_recalc_rate, .round_rate = spc_round_rate, .set_rate = spc_set_rate, }; static struct clk *ve_spc_clk_register(struct device *cpu_dev) { struct clk_init_data init; struct clk_spc *spc; spc = kzalloc(sizeof(*spc), GFP_KERNEL); if (!spc) { pr_err("could not allocate spc clk\n"); return ERR_PTR(-ENOMEM); } spc->hw.init = &init; spc->cluster = topology_physical_package_id(cpu_dev->id); spc->cluster = spc->cluster < 0 ? 0 : spc->cluster; init.name = dev_name(cpu_dev); init.ops = &clk_spc_ops; init.flags = CLK_GET_RATE_NOCACHE; init.num_parents = 0; return devm_clk_register(cpu_dev, &spc->hw); } static int __init ve_spc_clk_init(void) { int cpu, cluster; struct clk *clk; bool init_opp_table[MAX_CLUSTERS] = { false }; if (!info) return 0; /* Continue only if SPC is initialised */ if (ve_spc_populate_opps(0) || ve_spc_populate_opps(1)) { pr_err("failed to build OPP table\n"); return -ENODEV; } for_each_possible_cpu(cpu) { struct device *cpu_dev = get_cpu_device(cpu); if (!cpu_dev) { pr_warn("failed to get cpu%d device\n", cpu); continue; } clk = ve_spc_clk_register(cpu_dev); if (IS_ERR(clk)) { pr_warn("failed to register cpu%d clock\n", cpu); continue; } if (clk_register_clkdev(clk, NULL, dev_name(cpu_dev))) { pr_warn("failed to register cpu%d clock lookup\n", cpu); continue; } cluster = topology_physical_package_id(cpu_dev->id); if (init_opp_table[cluster]) continue; if (ve_init_opp_table(cpu_dev)) pr_warn("failed to initialise cpu%d opp table\n", cpu); else if (dev_pm_opp_set_sharing_cpus(cpu_dev, topology_core_cpumask(cpu_dev->id))) pr_warn("failed to mark OPPs shared for cpu%d\n", cpu); else init_opp_table[cluster] = true; } platform_device_register_simple("vexpress-spc-cpufreq", -1, NULL, 0); return 0; } device_initcall(ve_spc_clk_init);