/* * linux/arch/arm/mm/fault-armv.c * * Copyright (C) 1995 Linus Torvalds * Modifications for ARM processor (c) 1995-2002 Russell King * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include #include #include #include #include #include #include #include #include #include #include static unsigned long shared_pte_mask = L_PTE_CACHEABLE; /* * We take the easy way out of this problem - we make the * PTE uncacheable. However, we leave the write buffer on. * * Note that the pte lock held when calling update_mmu_cache must also * guard the pte (somewhere else in the same mm) that we modify here. * Therefore those configurations which might call adjust_pte (those * without CONFIG_CPU_CACHE_VIPT) cannot support split page_table_lock. */ static int adjust_pte(struct vm_area_struct *vma, unsigned long address) { pgd_t *pgd; pmd_t *pmd; pte_t *pte, entry; int ret = 0; pgd = pgd_offset(vma->vm_mm, address); if (pgd_none(*pgd)) goto no_pgd; if (pgd_bad(*pgd)) goto bad_pgd; pmd = pmd_offset(pgd, address); if (pmd_none(*pmd)) goto no_pmd; if (pmd_bad(*pmd)) goto bad_pmd; pte = pte_offset_map(pmd, address); entry = *pte; /* * If this page isn't present, or is already setup to * fault (ie, is old), we can safely ignore any issues. */ if (pte_present(entry) && pte_val(entry) & shared_pte_mask) { flush_cache_page(vma, address, pte_pfn(entry)); pte_val(entry) &= ~shared_pte_mask; set_pte(pte, entry); flush_tlb_page(vma, address); ret = 1; } pte_unmap(pte); return ret; bad_pgd: pgd_ERROR(*pgd); pgd_clear(pgd); no_pgd: return 0; bad_pmd: pmd_ERROR(*pmd); pmd_clear(pmd); no_pmd: return 0; } static void make_coherent(struct address_space *mapping, struct vm_area_struct *vma, unsigned long addr, unsigned long pfn) { struct mm_struct *mm = vma->vm_mm; struct vm_area_struct *mpnt; struct prio_tree_iter iter; unsigned long offset; pgoff_t pgoff; int aliases = 0; pgoff = vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT); /* * If we have any shared mappings that are in the same mm * space, then we need to handle them specially to maintain * cache coherency. */ flush_dcache_mmap_lock(mapping); vma_prio_tree_foreach(mpnt, &iter, &mapping->i_mmap, pgoff, pgoff) { /* * If this VMA is not in our MM, we can ignore it. * Note that we intentionally mask out the VMA * that we are fixing up. */ if (mpnt->vm_mm != mm || mpnt == vma) continue; if (!(mpnt->vm_flags & VM_MAYSHARE)) continue; offset = (pgoff - mpnt->vm_pgoff) << PAGE_SHIFT; aliases += adjust_pte(mpnt, mpnt->vm_start + offset); } flush_dcache_mmap_unlock(mapping); if (aliases) adjust_pte(vma, addr); else flush_cache_page(vma, addr, pfn); } void __flush_dcache_page(struct address_space *mapping, struct page *page); /* * Take care of architecture specific things when placing a new PTE into * a page table, or changing an existing PTE. Basically, there are two * things that we need to take care of: * * 1. If PG_dcache_dirty is set for the page, we need to ensure * that any cache entries for the kernels virtual memory * range are written back to the page. * 2. If we have multiple shared mappings of the same space in * an object, we need to deal with the cache aliasing issues. * * Note that the pte lock will be held. */ void update_mmu_cache(struct vm_area_struct *vma, unsigned long addr, pte_t pte) { unsigned long pfn = pte_pfn(pte); struct address_space *mapping; struct page *page; if (!pfn_valid(pfn)) return; page = pfn_to_page(pfn); mapping = page_mapping(page); if (mapping) { int dirty = test_and_clear_bit(PG_dcache_dirty, &page->flags); if (dirty) __flush_dcache_page(mapping, page); if (cache_is_vivt()) make_coherent(mapping, vma, addr, pfn); } } /* * Check whether the write buffer has physical address aliasing * issues. If it has, we need to avoid them for the case where * we have several shared mappings of the same object in user * space. */ static int __init check_writebuffer(unsigned long *p1, unsigned long *p2) { register unsigned long zero = 0, one = 1, val; local_irq_disable(); mb(); *p1 = one; mb(); *p2 = zero; mb(); val = *p1; mb(); local_irq_enable(); return val != zero; } void __init check_writebuffer_bugs(void) { struct page *page; const char *reason; unsigned long v = 1; printk(KERN_INFO "CPU: Testing write buffer coherency: "); page = alloc_page(GFP_KERNEL); if (page) { unsigned long *p1, *p2; pgprot_t prot = __pgprot(L_PTE_PRESENT|L_PTE_YOUNG| L_PTE_DIRTY|L_PTE_WRITE| L_PTE_BUFFERABLE); p1 = vmap(&page, 1, VM_IOREMAP, prot); p2 = vmap(&page, 1, VM_IOREMAP, prot); if (p1 && p2) { v = check_writebuffer(p1, p2); reason = "enabling work-around"; } else { reason = "unable to map memory\n"; } vunmap(p1); vunmap(p2); put_page(page); } else { reason = "unable to grab page\n"; } if (v) { printk("failed, %s\n", reason); shared_pte_mask |= L_PTE_BUFFERABLE; } else { printk("ok\n"); } }