// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2017 ARM Ltd. * Author: Marc Zyngier */ #include #include #include #include #include #include #include /* * The LSB of the random hyp VA tag or 0 if no randomization is used. */ static u8 tag_lsb; /* * The random hyp VA tag value with the region bit if hyp randomization is used */ static u64 tag_val; static u64 va_mask; static void compute_layout(void) { phys_addr_t idmap_addr = __pa_symbol(__hyp_idmap_text_start); u64 hyp_va_msb; int kva_msb; /* Where is my RAM region? */ hyp_va_msb = idmap_addr & BIT(vabits_actual - 1); hyp_va_msb ^= BIT(vabits_actual - 1); kva_msb = fls64((u64)phys_to_virt(memblock_start_of_DRAM()) ^ (u64)(high_memory - 1)); if (kva_msb == (vabits_actual - 1)) { /* * No space in the address, let's compute the mask so * that it covers (vabits_actual - 1) bits, and the region * bit. The tag stays set to zero. */ va_mask = BIT(vabits_actual - 1) - 1; va_mask |= hyp_va_msb; } else { /* * We do have some free bits to insert a random tag. * Hyp VAs are now created from kernel linear map VAs * using the following formula (with V == vabits_actual): * * 63 ... V | V-1 | V-2 .. tag_lsb | tag_lsb - 1 .. 0 * --------------------------------------------------------- * | 0000000 | hyp_va_msb | random tag | kern linear VA | */ tag_lsb = kva_msb; va_mask = GENMASK_ULL(tag_lsb - 1, 0); tag_val = get_random_long() & GENMASK_ULL(vabits_actual - 2, tag_lsb); tag_val |= hyp_va_msb; tag_val >>= tag_lsb; } } static u32 compute_instruction(int n, u32 rd, u32 rn) { u32 insn = AARCH64_BREAK_FAULT; switch (n) { case 0: insn = aarch64_insn_gen_logical_immediate(AARCH64_INSN_LOGIC_AND, AARCH64_INSN_VARIANT_64BIT, rn, rd, va_mask); break; case 1: /* ROR is a variant of EXTR with Rm = Rn */ insn = aarch64_insn_gen_extr(AARCH64_INSN_VARIANT_64BIT, rn, rn, rd, tag_lsb); break; case 2: insn = aarch64_insn_gen_add_sub_imm(rd, rn, tag_val & GENMASK(11, 0), AARCH64_INSN_VARIANT_64BIT, AARCH64_INSN_ADSB_ADD); break; case 3: insn = aarch64_insn_gen_add_sub_imm(rd, rn, tag_val & GENMASK(23, 12), AARCH64_INSN_VARIANT_64BIT, AARCH64_INSN_ADSB_ADD); break; case 4: /* ROR is a variant of EXTR with Rm = Rn */ insn = aarch64_insn_gen_extr(AARCH64_INSN_VARIANT_64BIT, rn, rn, rd, 64 - tag_lsb); break; } return insn; } void __init kvm_update_va_mask(struct alt_instr *alt, __le32 *origptr, __le32 *updptr, int nr_inst) { int i; BUG_ON(nr_inst != 5); if (!has_vhe() && !va_mask) compute_layout(); for (i = 0; i < nr_inst; i++) { u32 rd, rn, insn, oinsn; /* * VHE doesn't need any address translation, let's NOP * everything. * * Alternatively, if we don't have any spare bits in * the address, NOP everything after masking that * kernel VA. */ if (has_vhe() || (!tag_lsb && i > 0)) { updptr[i] = cpu_to_le32(aarch64_insn_gen_nop()); continue; } oinsn = le32_to_cpu(origptr[i]); rd = aarch64_insn_decode_register(AARCH64_INSN_REGTYPE_RD, oinsn); rn = aarch64_insn_decode_register(AARCH64_INSN_REGTYPE_RN, oinsn); insn = compute_instruction(i, rd, rn); BUG_ON(insn == AARCH64_BREAK_FAULT); updptr[i] = cpu_to_le32(insn); } } void *__kvm_bp_vect_base; int __kvm_harden_el2_vector_slot; void kvm_patch_vector_branch(struct alt_instr *alt, __le32 *origptr, __le32 *updptr, int nr_inst) { u64 addr; u32 insn; BUG_ON(nr_inst != 5); if (has_vhe() || !cpus_have_const_cap(ARM64_HARDEN_EL2_VECTORS)) { WARN_ON_ONCE(cpus_have_const_cap(ARM64_HARDEN_EL2_VECTORS)); return; } if (!va_mask) compute_layout(); /* * Compute HYP VA by using the same computation as kern_hyp_va() */ addr = (uintptr_t)kvm_ksym_ref(__kvm_hyp_vector); addr &= va_mask; addr |= tag_val << tag_lsb; /* Use PC[10:7] to branch to the same vector in KVM */ addr |= ((u64)origptr & GENMASK_ULL(10, 7)); /* * Branch over the preamble in order to avoid the initial store on * the stack (which we already perform in the hardening vectors). */ addr += KVM_VECTOR_PREAMBLE; /* stp x0, x1, [sp, #-16]! */ insn = aarch64_insn_gen_load_store_pair(AARCH64_INSN_REG_0, AARCH64_INSN_REG_1, AARCH64_INSN_REG_SP, -16, AARCH64_INSN_VARIANT_64BIT, AARCH64_INSN_LDST_STORE_PAIR_PRE_INDEX); *updptr++ = cpu_to_le32(insn); /* movz x0, #(addr & 0xffff) */ insn = aarch64_insn_gen_movewide(AARCH64_INSN_REG_0, (u16)addr, 0, AARCH64_INSN_VARIANT_64BIT, AARCH64_INSN_MOVEWIDE_ZERO); *updptr++ = cpu_to_le32(insn); /* movk x0, #((addr >> 16) & 0xffff), lsl #16 */ insn = aarch64_insn_gen_movewide(AARCH64_INSN_REG_0, (u16)(addr >> 16), 16, AARCH64_INSN_VARIANT_64BIT, AARCH64_INSN_MOVEWIDE_KEEP); *updptr++ = cpu_to_le32(insn); /* movk x0, #((addr >> 32) & 0xffff), lsl #32 */ insn = aarch64_insn_gen_movewide(AARCH64_INSN_REG_0, (u16)(addr >> 32), 32, AARCH64_INSN_VARIANT_64BIT, AARCH64_INSN_MOVEWIDE_KEEP); *updptr++ = cpu_to_le32(insn); /* br x0 */ insn = aarch64_insn_gen_branch_reg(AARCH64_INSN_REG_0, AARCH64_INSN_BRANCH_NOLINK); *updptr++ = cpu_to_le32(insn); }