#include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define IPI_SCHEDULE 1 #define IPI_CALL 2 #define IPI_FLUSH_TLB 4 #define FLUSH_ALL (void*)0xffffffff /* Vector of locks used for various atomic operations */ spinlock_t cris_atomic_locks[] = { [0 ... LOCK_COUNT - 1] = SPIN_LOCK_UNLOCKED}; /* CPU masks */ cpumask_t cpu_online_map = CPU_MASK_NONE; cpumask_t phys_cpu_present_map = CPU_MASK_NONE; EXPORT_SYMBOL(phys_cpu_present_map); /* Variables used during SMP boot */ volatile int cpu_now_booting = 0; volatile struct thread_info *smp_init_current_idle_thread; /* Variables used during IPI */ static DEFINE_SPINLOCK(call_lock); static DEFINE_SPINLOCK(tlbstate_lock); struct call_data_struct { void (*func) (void *info); void *info; int wait; }; static struct call_data_struct * call_data; static struct mm_struct* flush_mm; static struct vm_area_struct* flush_vma; static unsigned long flush_addr; extern int setup_irq(int, struct irqaction *); /* Mode registers */ static unsigned long irq_regs[NR_CPUS] = { regi_irq, regi_irq2 }; static irqreturn_t crisv32_ipi_interrupt(int irq, void *dev_id, struct pt_regs *regs); static int send_ipi(int vector, int wait, cpumask_t cpu_mask); static struct irqaction irq_ipi = { crisv32_ipi_interrupt, SA_INTERRUPT, CPU_MASK_NONE, "ipi", NULL, NULL}; extern void cris_mmu_init(void); extern void cris_timer_init(void); /* SMP initialization */ void __init smp_prepare_cpus(unsigned int max_cpus) { int i; /* From now on we can expect IPIs so set them up */ setup_irq(IPI_INTR_VECT, &irq_ipi); /* Mark all possible CPUs as present */ for (i = 0; i < max_cpus; i++) cpu_set(i, phys_cpu_present_map); } void __devinit smp_prepare_boot_cpu(void) { /* PGD pointer has moved after per_cpu initialization so * update the MMU. */ pgd_t **pgd; pgd = (pgd_t**)&per_cpu(current_pgd, smp_processor_id()); SUPP_BANK_SEL(1); SUPP_REG_WR(RW_MM_TLB_PGD, pgd); SUPP_BANK_SEL(2); SUPP_REG_WR(RW_MM_TLB_PGD, pgd); cpu_set(0, cpu_online_map); cpu_set(0, phys_cpu_present_map); } void __init smp_cpus_done(unsigned int max_cpus) { } /* Bring one cpu online.*/ static int __init smp_boot_one_cpu(int cpuid) { unsigned timeout; struct task_struct *idle; idle = fork_idle(cpuid); if (IS_ERR(idle)) panic("SMP: fork failed for CPU:%d", cpuid); task_thread_info(idle)->cpu = cpuid; /* Information to the CPU that is about to boot */ smp_init_current_idle_thread = task_thread_info(idle); cpu_now_booting = cpuid; /* Wait for CPU to come online */ for (timeout = 0; timeout < 10000; timeout++) { if(cpu_online(cpuid)) { cpu_now_booting = 0; smp_init_current_idle_thread = NULL; return 0; /* CPU online */ } udelay(100); barrier(); } put_task_struct(idle); idle = NULL; printk(KERN_CRIT "SMP: CPU:%d is stuck.\n", cpuid); return -1; } /* Secondary CPUs starts uing C here. Here we need to setup CPU * specific stuff such as the local timer and the MMU. */ void __init smp_callin(void) { extern void cpu_idle(void); int cpu = cpu_now_booting; reg_intr_vect_rw_mask vect_mask = {0}; /* Initialise the idle task for this CPU */ atomic_inc(&init_mm.mm_count); current->active_mm = &init_mm; /* Set up MMU */ cris_mmu_init(); __flush_tlb_all(); /* Setup local timer. */ cris_timer_init(); /* Enable IRQ and idle */ REG_WR(intr_vect, irq_regs[cpu], rw_mask, vect_mask); unmask_irq(IPI_INTR_VECT); unmask_irq(TIMER_INTR_VECT); preempt_disable(); local_irq_enable(); cpu_set(cpu, cpu_online_map); cpu_idle(); } /* Stop execution on this CPU.*/ void stop_this_cpu(void* dummy) { local_irq_disable(); asm volatile("halt"); } /* Other calls */ void smp_send_stop(void) { smp_call_function(stop_this_cpu, NULL, 1, 0); } int setup_profiling_timer(unsigned int multiplier) { return -EINVAL; } /* cache_decay_ticks is used by the scheduler to decide if a process * is "hot" on one CPU. A higher value means a higher penalty to move * a process to another CPU. Our cache is rather small so we report * 1 tick. */ unsigned long cache_decay_ticks = 1; int __devinit __cpu_up(unsigned int cpu) { smp_boot_one_cpu(cpu); return cpu_online(cpu) ? 0 : -ENOSYS; } void smp_send_reschedule(int cpu) { cpumask_t cpu_mask = CPU_MASK_NONE; cpu_set(cpu, cpu_mask); send_ipi(IPI_SCHEDULE, 0, cpu_mask); } /* TLB flushing * * Flush needs to be done on the local CPU and on any other CPU that * may have the same mapping. The mm->cpu_vm_mask is used to keep track * of which CPUs that a specific process has been executed on. */ void flush_tlb_common(struct mm_struct* mm, struct vm_area_struct* vma, unsigned long addr) { unsigned long flags; cpumask_t cpu_mask; spin_lock_irqsave(&tlbstate_lock, flags); cpu_mask = (mm == FLUSH_ALL ? CPU_MASK_ALL : mm->cpu_vm_mask); cpu_clear(smp_processor_id(), cpu_mask); flush_mm = mm; flush_vma = vma; flush_addr = addr; send_ipi(IPI_FLUSH_TLB, 1, cpu_mask); spin_unlock_irqrestore(&tlbstate_lock, flags); } void flush_tlb_all(void) { __flush_tlb_all(); flush_tlb_common(FLUSH_ALL, FLUSH_ALL, 0); } void flush_tlb_mm(struct mm_struct *mm) { __flush_tlb_mm(mm); flush_tlb_common(mm, FLUSH_ALL, 0); /* No more mappings in other CPUs */ cpus_clear(mm->cpu_vm_mask); cpu_set(smp_processor_id(), mm->cpu_vm_mask); } void flush_tlb_page(struct vm_area_struct *vma, unsigned long addr) { __flush_tlb_page(vma, addr); flush_tlb_common(vma->vm_mm, vma, addr); } /* Inter processor interrupts * * The IPIs are used for: * * Force a schedule on a CPU * * FLush TLB on other CPUs * * Call a function on other CPUs */ int send_ipi(int vector, int wait, cpumask_t cpu_mask) { int i = 0; reg_intr_vect_rw_ipi ipi = REG_RD(intr_vect, irq_regs[i], rw_ipi); int ret = 0; /* Calculate CPUs to send to. */ cpus_and(cpu_mask, cpu_mask, cpu_online_map); /* Send the IPI. */ for_each_cpu_mask(i, cpu_mask) { ipi.vector |= vector; REG_WR(intr_vect, irq_regs[i], rw_ipi, ipi); } /* Wait for IPI to finish on other CPUS */ if (wait) { for_each_cpu_mask(i, cpu_mask) { int j; for (j = 0 ; j < 1000; j++) { ipi = REG_RD(intr_vect, irq_regs[i], rw_ipi); if (!ipi.vector) break; udelay(100); } /* Timeout? */ if (ipi.vector) { printk("SMP call timeout from %d to %d\n", smp_processor_id(), i); ret = -ETIMEDOUT; dump_stack(); } } } return ret; } /* * You must not call this function with disabled interrupts or from a * hardware interrupt handler or from a bottom half handler. */ int smp_call_function(void (*func)(void *info), void *info, int nonatomic, int wait) { cpumask_t cpu_mask = CPU_MASK_ALL; struct call_data_struct data; int ret; cpu_clear(smp_processor_id(), cpu_mask); WARN_ON(irqs_disabled()); data.func = func; data.info = info; data.wait = wait; spin_lock(&call_lock); call_data = &data; ret = send_ipi(IPI_CALL, wait, cpu_mask); spin_unlock(&call_lock); return ret; } irqreturn_t crisv32_ipi_interrupt(int irq, void *dev_id, struct pt_regs *regs) { void (*func) (void *info) = call_data->func; void *info = call_data->info; reg_intr_vect_rw_ipi ipi; ipi = REG_RD(intr_vect, irq_regs[smp_processor_id()], rw_ipi); if (ipi.vector & IPI_CALL) { func(info); } if (ipi.vector & IPI_FLUSH_TLB) { if (flush_mm == FLUSH_ALL) __flush_tlb_all(); else if (flush_vma == FLUSH_ALL) __flush_tlb_mm(flush_mm); else __flush_tlb_page(flush_vma, flush_addr); } ipi.vector = 0; REG_WR(intr_vect, irq_regs[smp_processor_id()], rw_ipi, ipi); return IRQ_HANDLED; }