/* * Dynamic DMA mapping support. * * On i386 there is no hardware dynamic DMA address translation, * so consistent alloc/free are merely page allocation/freeing. * The rest of the dynamic DMA mapping interface is implemented * in asm/pci.h. */ #include #include #include #include #include #include struct dma_coherent_mem { void *virt_base; u32 device_base; int size; int flags; unsigned long *bitmap; }; void *dma_alloc_coherent(struct device *dev, size_t size, dma_addr_t *dma_handle, gfp_t gfp) { void *ret; struct dma_coherent_mem *mem = dev ? dev->dma_mem : NULL; int order = get_order(size); /* ignore region specifiers */ gfp &= ~(__GFP_DMA | __GFP_HIGHMEM); if (mem) { int page = bitmap_find_free_region(mem->bitmap, mem->size, order); if (page >= 0) { *dma_handle = mem->device_base + (page << PAGE_SHIFT); ret = mem->virt_base + (page << PAGE_SHIFT); memset(ret, 0, size); return ret; } if (mem->flags & DMA_MEMORY_EXCLUSIVE) return NULL; } if (dev == NULL || (dev->coherent_dma_mask < 0xffffffff)) gfp |= GFP_DMA; ret = (void *)__get_free_pages(gfp, order); if (ret != NULL) { memset(ret, 0, size); *dma_handle = virt_to_phys(ret); } return ret; } EXPORT_SYMBOL(dma_alloc_coherent); void dma_free_coherent(struct device *dev, size_t size, void *vaddr, dma_addr_t dma_handle) { struct dma_coherent_mem *mem = dev ? dev->dma_mem : NULL; int order = get_order(size); if (mem && vaddr >= mem->virt_base && vaddr < (mem->virt_base + (mem->size << PAGE_SHIFT))) { int page = (vaddr - mem->virt_base) >> PAGE_SHIFT; bitmap_release_region(mem->bitmap, page, order); } else free_pages((unsigned long)vaddr, order); } EXPORT_SYMBOL(dma_free_coherent); int dma_declare_coherent_memory(struct device *dev, dma_addr_t bus_addr, dma_addr_t device_addr, size_t size, int flags) { void __iomem *mem_base; int pages = size >> PAGE_SHIFT; int bitmap_size = (pages + 31)/32; if ((flags & (DMA_MEMORY_MAP | DMA_MEMORY_IO)) == 0) goto out; if (!size) goto out; if (dev->dma_mem) goto out; /* FIXME: this routine just ignores DMA_MEMORY_INCLUDES_CHILDREN */ mem_base = ioremap(bus_addr, size); if (!mem_base) goto out; dev->dma_mem = kmalloc(sizeof(struct dma_coherent_mem), GFP_KERNEL); if (!dev->dma_mem) goto out; memset(dev->dma_mem, 0, sizeof(struct dma_coherent_mem)); dev->dma_mem->bitmap = kmalloc(bitmap_size, GFP_KERNEL); if (!dev->dma_mem->bitmap) goto free1_out; memset(dev->dma_mem->bitmap, 0, bitmap_size); dev->dma_mem->virt_base = mem_base; dev->dma_mem->device_base = device_addr; dev->dma_mem->size = pages; dev->dma_mem->flags = flags; if (flags & DMA_MEMORY_MAP) return DMA_MEMORY_MAP; return DMA_MEMORY_IO; free1_out: kfree(dev->dma_mem->bitmap); out: return 0; } EXPORT_SYMBOL(dma_declare_coherent_memory); void dma_release_declared_memory(struct device *dev) { struct dma_coherent_mem *mem = dev->dma_mem; if(!mem) return; dev->dma_mem = NULL; iounmap(mem->virt_base); kfree(mem->bitmap); kfree(mem); } EXPORT_SYMBOL(dma_release_declared_memory); void *dma_mark_declared_memory_occupied(struct device *dev, dma_addr_t device_addr, size_t size) { struct dma_coherent_mem *mem = dev->dma_mem; int pages = (size + (device_addr & ~PAGE_MASK) + PAGE_SIZE - 1) >> PAGE_SHIFT; int pos, err; if (!mem) return ERR_PTR(-EINVAL); pos = (device_addr - mem->device_base) >> PAGE_SHIFT; err = bitmap_allocate_region(mem->bitmap, pos, get_order(pages)); if (err != 0) return ERR_PTR(err); return mem->virt_base + (pos << PAGE_SHIFT); } EXPORT_SYMBOL(dma_mark_declared_memory_occupied);