/* * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. * * Copyright (C) 2004 by Ralf Baechle */ #include #include #include #include #include "op_impl.h" #define RM9K_COUNTER1_EVENT(event) ((event) << 0) #define RM9K_COUNTER1_SUPERVISOR (1ULL << 7) #define RM9K_COUNTER1_KERNEL (1ULL << 8) #define RM9K_COUNTER1_USER (1ULL << 9) #define RM9K_COUNTER1_ENABLE (1ULL << 10) #define RM9K_COUNTER1_OVERFLOW (1ULL << 15) #define RM9K_COUNTER2_EVENT(event) ((event) << 16) #define RM9K_COUNTER2_SUPERVISOR (1ULL << 23) #define RM9K_COUNTER2_KERNEL (1ULL << 24) #define RM9K_COUNTER2_USER (1ULL << 25) #define RM9K_COUNTER2_ENABLE (1ULL << 26) #define RM9K_COUNTER2_OVERFLOW (1ULL << 31) extern unsigned int rm9000_perfcount_irq; static struct rm9k_register_config { unsigned int control; unsigned int reset_counter1; unsigned int reset_counter2; } reg; /* Compute all of the registers in preparation for enabling profiling. */ static void rm9000_reg_setup(struct op_counter_config *ctr) { unsigned int control = 0; /* Compute the performance counter control word. */ /* For now count kernel and user mode */ if (ctr[0].enabled) control |= RM9K_COUNTER1_EVENT(ctr[0].event) | RM9K_COUNTER1_KERNEL | RM9K_COUNTER1_USER | RM9K_COUNTER1_ENABLE; if (ctr[1].enabled) control |= RM9K_COUNTER2_EVENT(ctr[1].event) | RM9K_COUNTER2_KERNEL | RM9K_COUNTER2_USER | RM9K_COUNTER2_ENABLE; reg.control = control; reg.reset_counter1 = 0x80000000 - ctr[0].count; reg.reset_counter2 = 0x80000000 - ctr[1].count; } /* Program all of the registers in preparation for enabling profiling. */ static void rm9000_cpu_setup (void *args) { uint64_t perfcount; perfcount = ((uint64_t) reg.reset_counter2 << 32) | reg.reset_counter1; write_c0_perfcount(perfcount); } static void rm9000_cpu_start(void *args) { /* Start all counters on current CPU */ write_c0_perfcontrol(reg.control); } static void rm9000_cpu_stop(void *args) { /* Stop all counters on current CPU */ write_c0_perfcontrol(0); } static irqreturn_t rm9000_perfcount_handler(int irq, void * dev_id, struct pt_regs *regs) { unsigned int control = read_c0_perfcontrol(); uint32_t counter1, counter2; uint64_t counters; /* * RM9000 combines two 32-bit performance counters into a single * 64-bit coprocessor zero register. To avoid a race updating the * registers we need to stop the counters while we're messing with * them ... */ write_c0_perfcontrol(0); counters = read_c0_perfcount(); counter1 = counters; counter2 = counters >> 32; if (control & RM9K_COUNTER1_OVERFLOW) { oprofile_add_sample(regs, 0); counter1 = reg.reset_counter1; } if (control & RM9K_COUNTER2_OVERFLOW) { oprofile_add_sample(regs, 1); counter2 = reg.reset_counter2; } counters = ((uint64_t)counter2 << 32) | counter1; write_c0_perfcount(counters); write_c0_perfcontrol(reg.control); return IRQ_HANDLED; } static int __init rm9000_init(void) { return request_irq(rm9000_perfcount_irq, rm9000_perfcount_handler, 0, "Perfcounter", NULL); } static void rm9000_exit(void) { free_irq(rm9000_perfcount_irq, NULL); } struct op_mips_model op_model_rm9000 = { .reg_setup = rm9000_reg_setup, .cpu_setup = rm9000_cpu_setup, .init = rm9000_init, .exit = rm9000_exit, .cpu_start = rm9000_cpu_start, .cpu_stop = rm9000_cpu_stop, .cpu_type = "mips/rm9000", .num_counters = 2 };