/* * Procedures for maintaining information about logical memory blocks. * * Peter Bergner, IBM Corp. June 2001. * Copyright (C) 2001 Peter Bergner. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. */ #include #include #include #include #include #include #include #include #ifdef CONFIG_PPC32 #include "mmu_decl.h" /* for __max_low_memory */ #endif #undef DEBUG #ifdef DEBUG #include #define DBG(fmt...) udbg_printf(fmt) #else #define DBG(fmt...) #endif #define LMB_ALLOC_ANYWHERE 0 struct lmb lmb; void lmb_dump_all(void) { #ifdef DEBUG unsigned long i; DBG("lmb_dump_all:\n"); DBG(" memory.cnt = 0x%lx\n", lmb.memory.cnt); DBG(" memory.size = 0x%lx\n", lmb.memory.size); for (i=0; i < lmb.memory.cnt ;i++) { DBG(" memory.region[0x%x].base = 0x%lx\n", i, lmb.memory.region[i].base); DBG(" .size = 0x%lx\n", lmb.memory.region[i].size); } DBG("\n reserved.cnt = 0x%lx\n", lmb.reserved.cnt); DBG(" reserved.size = 0x%lx\n", lmb.reserved.size); for (i=0; i < lmb.reserved.cnt ;i++) { DBG(" reserved.region[0x%x].base = 0x%lx\n", i, lmb.reserved.region[i].base); DBG(" .size = 0x%lx\n", lmb.reserved.region[i].size); } #endif /* DEBUG */ } static unsigned long __init lmb_addrs_overlap(unsigned long base1, unsigned long size1, unsigned long base2, unsigned long size2) { return ((base1 < (base2+size2)) && (base2 < (base1+size1))); } static long __init lmb_addrs_adjacent(unsigned long base1, unsigned long size1, unsigned long base2, unsigned long size2) { if (base2 == base1 + size1) return 1; else if (base1 == base2 + size2) return -1; return 0; } static long __init lmb_regions_adjacent(struct lmb_region *rgn, unsigned long r1, unsigned long r2) { unsigned long base1 = rgn->region[r1].base; unsigned long size1 = rgn->region[r1].size; unsigned long base2 = rgn->region[r2].base; unsigned long size2 = rgn->region[r2].size; return lmb_addrs_adjacent(base1, size1, base2, size2); } /* Assumption: base addr of region 1 < base addr of region 2 */ static void __init lmb_coalesce_regions(struct lmb_region *rgn, unsigned long r1, unsigned long r2) { unsigned long i; rgn->region[r1].size += rgn->region[r2].size; for (i=r2; i < rgn->cnt-1; i++) { rgn->region[i].base = rgn->region[i+1].base; rgn->region[i].size = rgn->region[i+1].size; } rgn->cnt--; } /* This routine called with relocation disabled. */ void __init lmb_init(void) { /* Create a dummy zero size LMB which will get coalesced away later. * This simplifies the lmb_add() code below... */ lmb.memory.region[0].base = 0; lmb.memory.region[0].size = 0; lmb.memory.cnt = 1; /* Ditto. */ lmb.reserved.region[0].base = 0; lmb.reserved.region[0].size = 0; lmb.reserved.cnt = 1; } /* This routine may be called with relocation disabled. */ void __init lmb_analyze(void) { int i; lmb.memory.size = 0; for (i = 0; i < lmb.memory.cnt; i++) lmb.memory.size += lmb.memory.region[i].size; } /* This routine called with relocation disabled. */ static long __init lmb_add_region(struct lmb_region *rgn, unsigned long base, unsigned long size) { unsigned long i, coalesced = 0; long adjacent; /* First try and coalesce this LMB with another. */ for (i=0; i < rgn->cnt; i++) { unsigned long rgnbase = rgn->region[i].base; unsigned long rgnsize = rgn->region[i].size; adjacent = lmb_addrs_adjacent(base,size,rgnbase,rgnsize); if ( adjacent > 0 ) { rgn->region[i].base -= size; rgn->region[i].size += size; coalesced++; break; } else if ( adjacent < 0 ) { rgn->region[i].size += size; coalesced++; break; } } if ((i < rgn->cnt-1) && lmb_regions_adjacent(rgn, i, i+1) ) { lmb_coalesce_regions(rgn, i, i+1); coalesced++; } if (coalesced) return coalesced; if (rgn->cnt >= MAX_LMB_REGIONS) return -1; /* Couldn't coalesce the LMB, so add it to the sorted table. */ for (i = rgn->cnt-1; i >= 0; i--) { if (base < rgn->region[i].base) { rgn->region[i+1].base = rgn->region[i].base; rgn->region[i+1].size = rgn->region[i].size; } else { rgn->region[i+1].base = base; rgn->region[i+1].size = size; break; } } rgn->cnt++; return 0; } /* This routine may be called with relocation disabled. */ long __init lmb_add(unsigned long base, unsigned long size) { struct lmb_region *_rgn = &(lmb.memory); /* On pSeries LPAR systems, the first LMB is our RMO region. */ if (base == 0) lmb.rmo_size = size; return lmb_add_region(_rgn, base, size); } long __init lmb_reserve(unsigned long base, unsigned long size) { struct lmb_region *_rgn = &(lmb.reserved); BUG_ON(0 == size); return lmb_add_region(_rgn, base, size); } long __init lmb_overlaps_region(struct lmb_region *rgn, unsigned long base, unsigned long size) { unsigned long i; for (i=0; i < rgn->cnt; i++) { unsigned long rgnbase = rgn->region[i].base; unsigned long rgnsize = rgn->region[i].size; if ( lmb_addrs_overlap(base,size,rgnbase,rgnsize) ) { break; } } return (i < rgn->cnt) ? i : -1; } unsigned long __init lmb_alloc(unsigned long size, unsigned long align) { return lmb_alloc_base(size, align, LMB_ALLOC_ANYWHERE); } unsigned long __init lmb_alloc_base(unsigned long size, unsigned long align, unsigned long max_addr) { unsigned long alloc; alloc = __lmb_alloc_base(size, align, max_addr); if (alloc == 0) panic("ERROR: Failed to allocate 0x%lx bytes below 0x%lx.\n", size, max_addr); return alloc; } unsigned long __init __lmb_alloc_base(unsigned long size, unsigned long align, unsigned long max_addr) { long i, j; unsigned long base = 0; BUG_ON(0 == size); #ifdef CONFIG_PPC32 /* On 32-bit, make sure we allocate lowmem */ if (max_addr == LMB_ALLOC_ANYWHERE) max_addr = __max_low_memory; #endif for (i = lmb.memory.cnt-1; i >= 0; i--) { unsigned long lmbbase = lmb.memory.region[i].base; unsigned long lmbsize = lmb.memory.region[i].size; if (max_addr == LMB_ALLOC_ANYWHERE) base = _ALIGN_DOWN(lmbbase + lmbsize - size, align); else if (lmbbase < max_addr) { base = min(lmbbase + lmbsize, max_addr); base = _ALIGN_DOWN(base - size, align); } else continue; while ((lmbbase <= base) && ((j = lmb_overlaps_region(&lmb.reserved, base, size)) >= 0) ) base = _ALIGN_DOWN(lmb.reserved.region[j].base - size, align); if ((base != 0) && (lmbbase <= base)) break; } if (i < 0) return 0; lmb_add_region(&lmb.reserved, base, size); return base; } /* You must call lmb_analyze() before this. */ unsigned long __init lmb_phys_mem_size(void) { return lmb.memory.size; } unsigned long __init lmb_end_of_DRAM(void) { int idx = lmb.memory.cnt - 1; return (lmb.memory.region[idx].base + lmb.memory.region[idx].size); } /* * Truncate the lmb list to memory_limit if it's set * You must call lmb_analyze() after this. */ void __init lmb_enforce_memory_limit(unsigned long memory_limit) { unsigned long i, limit; if (! memory_limit) return; limit = memory_limit; for (i = 0; i < lmb.memory.cnt; i++) { if (limit > lmb.memory.region[i].size) { limit -= lmb.memory.region[i].size; continue; } lmb.memory.region[i].size = limit; lmb.memory.cnt = i + 1; break; } }