/* sched.c - SPU scheduler. * * Copyright (C) IBM 2005 * Author: Mark Nutter * * SPU scheduler, based on Linux thread priority. For now use * a simple "cooperative" yield model with no preemption. SPU * scheduling will eventually be preemptive: When a thread with * a higher static priority gets ready to run, then an active SPU * context will be preempted and returned to the waitq. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2, or (at your option) * any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #undef DEBUG #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "spufs.h" #define SPU_MIN_TIMESLICE (100 * HZ / 1000) #define SPU_BITMAP_SIZE (((MAX_PRIO+BITS_PER_LONG)/BITS_PER_LONG)+1) struct spu_prio_array { atomic_t nr_blocked; unsigned long bitmap[SPU_BITMAP_SIZE]; wait_queue_head_t waitq[MAX_PRIO]; }; /* spu_runqueue - This is the main runqueue data structure for SPUs. */ struct spu_runqueue { struct semaphore sem; unsigned long nr_active; unsigned long nr_idle; unsigned long nr_switches; struct list_head active_list; struct list_head idle_list; struct spu_prio_array prio; }; static struct spu_runqueue *spu_runqueues = NULL; static inline struct spu_runqueue *spu_rq(void) { /* Future: make this a per-NODE array, * and use cpu_to_node(smp_processor_id()) */ return spu_runqueues; } static inline struct spu *del_idle(struct spu_runqueue *rq) { struct spu *spu; BUG_ON(rq->nr_idle <= 0); BUG_ON(list_empty(&rq->idle_list)); /* Future: Move SPU out of low-power SRI state. */ spu = list_entry(rq->idle_list.next, struct spu, sched_list); list_del_init(&spu->sched_list); rq->nr_idle--; return spu; } static inline void del_active(struct spu_runqueue *rq, struct spu *spu) { BUG_ON(rq->nr_active <= 0); BUG_ON(list_empty(&rq->active_list)); list_del_init(&spu->sched_list); rq->nr_active--; } static inline void add_idle(struct spu_runqueue *rq, struct spu *spu) { /* Future: Put SPU into low-power SRI state. */ list_add_tail(&spu->sched_list, &rq->idle_list); rq->nr_idle++; } static inline void add_active(struct spu_runqueue *rq, struct spu *spu) { rq->nr_active++; rq->nr_switches++; list_add_tail(&spu->sched_list, &rq->active_list); } static void prio_wakeup(struct spu_runqueue *rq) { if (atomic_read(&rq->prio.nr_blocked) && rq->nr_idle) { int best = sched_find_first_bit(rq->prio.bitmap); if (best < MAX_PRIO) { wait_queue_head_t *wq = &rq->prio.waitq[best]; wake_up_interruptible_nr(wq, 1); } } } static void prio_wait(struct spu_runqueue *rq, struct spu_context *ctx, u64 flags) { int prio = current->prio; wait_queue_head_t *wq = &rq->prio.waitq[prio]; DEFINE_WAIT(wait); __set_bit(prio, rq->prio.bitmap); atomic_inc(&rq->prio.nr_blocked); prepare_to_wait_exclusive(wq, &wait, TASK_INTERRUPTIBLE); if (!signal_pending(current)) { up(&rq->sem); up_write(&ctx->state_sema); pr_debug("%s: pid=%d prio=%d\n", __FUNCTION__, current->pid, current->prio); schedule(); down_write(&ctx->state_sema); down(&rq->sem); } finish_wait(wq, &wait); atomic_dec(&rq->prio.nr_blocked); if (!waitqueue_active(wq)) __clear_bit(prio, rq->prio.bitmap); } static inline int is_best_prio(struct spu_runqueue *rq) { int best_prio; best_prio = sched_find_first_bit(rq->prio.bitmap); return (current->prio < best_prio) ? 1 : 0; } static inline void mm_needs_global_tlbie(struct mm_struct *mm) { /* Global TLBIE broadcast required with SPEs. */ #if (NR_CPUS > 1) __cpus_setall(&mm->cpu_vm_mask, NR_CPUS); #else __cpus_setall(&mm->cpu_vm_mask, NR_CPUS+1); /* is this ok? */ #endif } static inline void bind_context(struct spu *spu, struct spu_context *ctx) { pr_debug("%s: pid=%d SPU=%d\n", __FUNCTION__, current->pid, spu->number); spu->ctx = ctx; spu->flags = 0; ctx->flags = 0; ctx->spu = spu; ctx->ops = &spu_hw_ops; spu->pid = current->pid; spu->prio = current->prio; spu->mm = ctx->owner; mm_needs_global_tlbie(spu->mm); spu->ibox_callback = spufs_ibox_callback; spu->wbox_callback = spufs_wbox_callback; spu->stop_callback = spufs_stop_callback; spu->mfc_callback = spufs_mfc_callback; mb(); spu_unmap_mappings(ctx); spu_restore(&ctx->csa, spu); spu->timestamp = jiffies; } static inline void unbind_context(struct spu *spu, struct spu_context *ctx) { pr_debug("%s: unbind pid=%d SPU=%d\n", __FUNCTION__, spu->pid, spu->number); spu_unmap_mappings(ctx); spu_save(&ctx->csa, spu); spu->timestamp = jiffies; ctx->state = SPU_STATE_SAVED; spu->ibox_callback = NULL; spu->wbox_callback = NULL; spu->stop_callback = NULL; spu->mfc_callback = NULL; spu->mm = NULL; spu->pid = 0; spu->prio = MAX_PRIO; ctx->ops = &spu_backing_ops; ctx->spu = NULL; ctx->flags = 0; spu->flags = 0; spu->ctx = NULL; } static void spu_reaper(void *data) { struct spu_context *ctx = data; struct spu *spu; down_write(&ctx->state_sema); spu = ctx->spu; if (spu && test_bit(SPU_CONTEXT_PREEMPT, &ctx->flags)) { if (atomic_read(&spu->rq->prio.nr_blocked)) { pr_debug("%s: spu=%d\n", __func__, spu->number); ctx->ops->runcntl_stop(ctx); spu_deactivate(ctx); wake_up_all(&ctx->stop_wq); } else { clear_bit(SPU_CONTEXT_PREEMPT, &ctx->flags); } } up_write(&ctx->state_sema); put_spu_context(ctx); } static void schedule_spu_reaper(struct spu_runqueue *rq, struct spu *spu) { struct spu_context *ctx = get_spu_context(spu->ctx); unsigned long now = jiffies; unsigned long expire = spu->timestamp + SPU_MIN_TIMESLICE; set_bit(SPU_CONTEXT_PREEMPT, &ctx->flags); INIT_WORK(&ctx->reap_work, spu_reaper, ctx); if (time_after(now, expire)) schedule_work(&ctx->reap_work); else schedule_delayed_work(&ctx->reap_work, expire - now); } static void check_preempt_active(struct spu_runqueue *rq) { struct list_head *p; struct spu *worst = NULL; list_for_each(p, &rq->active_list) { struct spu *spu = list_entry(p, struct spu, sched_list); struct spu_context *ctx = spu->ctx; if (!test_bit(SPU_CONTEXT_PREEMPT, &ctx->flags)) { if (!worst || (spu->prio > worst->prio)) { worst = spu; } } } if (worst && (current->prio < worst->prio)) schedule_spu_reaper(rq, worst); } static struct spu *get_idle_spu(struct spu_context *ctx, u64 flags) { struct spu_runqueue *rq; struct spu *spu = NULL; rq = spu_rq(); down(&rq->sem); for (;;) { if (rq->nr_idle > 0) { if (is_best_prio(rq)) { /* Fall through. */ spu = del_idle(rq); break; } else { prio_wakeup(rq); up(&rq->sem); yield(); if (signal_pending(current)) { return NULL; } rq = spu_rq(); down(&rq->sem); continue; } } else { check_preempt_active(rq); prio_wait(rq, ctx, flags); if (signal_pending(current)) { prio_wakeup(rq); spu = NULL; break; } continue; } } up(&rq->sem); return spu; } static void put_idle_spu(struct spu *spu) { struct spu_runqueue *rq = spu->rq; down(&rq->sem); add_idle(rq, spu); prio_wakeup(rq); up(&rq->sem); } static int get_active_spu(struct spu *spu) { struct spu_runqueue *rq = spu->rq; struct list_head *p; struct spu *tmp; int rc = 0; down(&rq->sem); list_for_each(p, &rq->active_list) { tmp = list_entry(p, struct spu, sched_list); if (tmp == spu) { del_active(rq, spu); rc = 1; break; } } up(&rq->sem); return rc; } static void put_active_spu(struct spu *spu) { struct spu_runqueue *rq = spu->rq; down(&rq->sem); add_active(rq, spu); up(&rq->sem); } /* Lock order: * spu_activate() & spu_deactivate() require the * caller to have down_write(&ctx->state_sema). * * The rq->sem is breifly held (inside or outside a * given ctx lock) for list management, but is never * held during save/restore. */ int spu_activate(struct spu_context *ctx, u64 flags) { struct spu *spu; if (ctx->spu) return 0; spu = get_idle_spu(ctx, flags); if (!spu) return (signal_pending(current)) ? -ERESTARTSYS : -EAGAIN; bind_context(spu, ctx); /* * We're likely to wait for interrupts on the same * CPU that we are now on, so send them here. */ spu_cpu_affinity_set(spu, raw_smp_processor_id()); put_active_spu(spu); return 0; } void spu_deactivate(struct spu_context *ctx) { struct spu *spu; int needs_idle; spu = ctx->spu; if (!spu) return; needs_idle = get_active_spu(spu); unbind_context(spu, ctx); if (needs_idle) put_idle_spu(spu); } void spu_yield(struct spu_context *ctx) { struct spu *spu; int need_yield = 0; down_write(&ctx->state_sema); spu = ctx->spu; if (spu && (sched_find_first_bit(spu->rq->prio.bitmap) < MAX_PRIO)) { pr_debug("%s: yielding SPU %d\n", __FUNCTION__, spu->number); spu_deactivate(ctx); ctx->state = SPU_STATE_SAVED; need_yield = 1; } else if (spu) { spu->prio = MAX_PRIO; } up_write(&ctx->state_sema); if (unlikely(need_yield)) yield(); } int __init spu_sched_init(void) { struct spu_runqueue *rq; struct spu *spu; int i; rq = spu_runqueues = kmalloc(sizeof(struct spu_runqueue), GFP_KERNEL); if (!rq) { printk(KERN_WARNING "%s: Unable to allocate runqueues.\n", __FUNCTION__); return 1; } memset(rq, 0, sizeof(struct spu_runqueue)); init_MUTEX(&rq->sem); INIT_LIST_HEAD(&rq->active_list); INIT_LIST_HEAD(&rq->idle_list); rq->nr_active = 0; rq->nr_idle = 0; rq->nr_switches = 0; atomic_set(&rq->prio.nr_blocked, 0); for (i = 0; i < MAX_PRIO; i++) { init_waitqueue_head(&rq->prio.waitq[i]); __clear_bit(i, rq->prio.bitmap); } __set_bit(MAX_PRIO, rq->prio.bitmap); for (;;) { spu = spu_alloc(); if (!spu) break; pr_debug("%s: adding SPU[%d]\n", __FUNCTION__, spu->number); add_idle(rq, spu); spu->rq = rq; spu->timestamp = jiffies; } if (!rq->nr_idle) { printk(KERN_WARNING "%s: No available SPUs.\n", __FUNCTION__); kfree(rq); return 1; } return 0; } void __exit spu_sched_exit(void) { struct spu_runqueue *rq = spu_rq(); struct spu *spu; if (!rq) { printk(KERN_WARNING "%s: no runqueues!\n", __FUNCTION__); return; } while (rq->nr_idle > 0) { spu = del_idle(rq); if (!spu) break; spu_free(spu); } kfree(rq); }