/* * Cryptographic API. * * s390 implementation of the AES Cipher Algorithm. * * s390 Version: * Copyright (C) 2005 IBM Deutschland GmbH, IBM Corporation * Author(s): Jan Glauber (jang@de.ibm.com) * * Derived from "crypto/aes.c" * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the Free * Software Foundation; either version 2 of the License, or (at your option) * any later version. * */ #include #include #include #include "crypt_s390.h" #define AES_MIN_KEY_SIZE 16 #define AES_MAX_KEY_SIZE 32 /* data block size for all key lengths */ #define AES_BLOCK_SIZE 16 int has_aes_128 = 0; int has_aes_192 = 0; int has_aes_256 = 0; struct s390_aes_ctx { u8 iv[AES_BLOCK_SIZE]; u8 key[AES_MAX_KEY_SIZE]; int key_len; }; static int aes_set_key(void *ctx, const u8 *in_key, unsigned int key_len, u32 *flags) { struct s390_aes_ctx *sctx = ctx; switch (key_len) { case 16: if (!has_aes_128) goto fail; break; case 24: if (!has_aes_192) goto fail; break; case 32: if (!has_aes_256) goto fail; break; default: /* invalid key length */ goto fail; break; } sctx->key_len = key_len; memcpy(sctx->key, in_key, key_len); return 0; fail: *flags |= CRYPTO_TFM_RES_BAD_KEY_LEN; return -EINVAL; } static void aes_encrypt(void *ctx, u8 *out, const u8 *in) { const struct s390_aes_ctx *sctx = ctx; switch (sctx->key_len) { case 16: crypt_s390_km(KM_AES_128_ENCRYPT, &sctx->key, out, in, AES_BLOCK_SIZE); break; case 24: crypt_s390_km(KM_AES_192_ENCRYPT, &sctx->key, out, in, AES_BLOCK_SIZE); break; case 32: crypt_s390_km(KM_AES_256_ENCRYPT, &sctx->key, out, in, AES_BLOCK_SIZE); break; } } static void aes_decrypt(void *ctx, u8 *out, const u8 *in) { const struct s390_aes_ctx *sctx = ctx; switch (sctx->key_len) { case 16: crypt_s390_km(KM_AES_128_DECRYPT, &sctx->key, out, in, AES_BLOCK_SIZE); break; case 24: crypt_s390_km(KM_AES_192_DECRYPT, &sctx->key, out, in, AES_BLOCK_SIZE); break; case 32: crypt_s390_km(KM_AES_256_DECRYPT, &sctx->key, out, in, AES_BLOCK_SIZE); break; } } static unsigned int aes_encrypt_ecb(const struct cipher_desc *desc, u8 *out, const u8 *in, unsigned int nbytes) { struct s390_aes_ctx *sctx = crypto_tfm_ctx(desc->tfm); int ret; /* only use complete blocks */ nbytes &= ~(AES_BLOCK_SIZE - 1); switch (sctx->key_len) { case 16: ret = crypt_s390_km(KM_AES_128_ENCRYPT, &sctx->key, out, in, nbytes); BUG_ON((ret < 0) || (ret != nbytes)); break; case 24: ret = crypt_s390_km(KM_AES_192_ENCRYPT, &sctx->key, out, in, nbytes); BUG_ON((ret < 0) || (ret != nbytes)); break; case 32: ret = crypt_s390_km(KM_AES_256_ENCRYPT, &sctx->key, out, in, nbytes); BUG_ON((ret < 0) || (ret != nbytes)); break; } return nbytes; } static unsigned int aes_decrypt_ecb(const struct cipher_desc *desc, u8 *out, const u8 *in, unsigned int nbytes) { struct s390_aes_ctx *sctx = crypto_tfm_ctx(desc->tfm); int ret; /* only use complete blocks */ nbytes &= ~(AES_BLOCK_SIZE - 1); switch (sctx->key_len) { case 16: ret = crypt_s390_km(KM_AES_128_DECRYPT, &sctx->key, out, in, nbytes); BUG_ON((ret < 0) || (ret != nbytes)); break; case 24: ret = crypt_s390_km(KM_AES_192_DECRYPT, &sctx->key, out, in, nbytes); BUG_ON((ret < 0) || (ret != nbytes)); break; case 32: ret = crypt_s390_km(KM_AES_256_DECRYPT, &sctx->key, out, in, nbytes); BUG_ON((ret < 0) || (ret != nbytes)); break; } return nbytes; } static unsigned int aes_encrypt_cbc(const struct cipher_desc *desc, u8 *out, const u8 *in, unsigned int nbytes) { struct s390_aes_ctx *sctx = crypto_tfm_ctx(desc->tfm); int ret; /* only use complete blocks */ nbytes &= ~(AES_BLOCK_SIZE - 1); memcpy(&sctx->iv, desc->info, AES_BLOCK_SIZE); switch (sctx->key_len) { case 16: ret = crypt_s390_kmc(KMC_AES_128_ENCRYPT, &sctx->iv, out, in, nbytes); BUG_ON((ret < 0) || (ret != nbytes)); break; case 24: ret = crypt_s390_kmc(KMC_AES_192_ENCRYPT, &sctx->iv, out, in, nbytes); BUG_ON((ret < 0) || (ret != nbytes)); break; case 32: ret = crypt_s390_kmc(KMC_AES_256_ENCRYPT, &sctx->iv, out, in, nbytes); BUG_ON((ret < 0) || (ret != nbytes)); break; } memcpy(desc->info, &sctx->iv, AES_BLOCK_SIZE); return nbytes; } static unsigned int aes_decrypt_cbc(const struct cipher_desc *desc, u8 *out, const u8 *in, unsigned int nbytes) { struct s390_aes_ctx *sctx = crypto_tfm_ctx(desc->tfm); int ret; /* only use complete blocks */ nbytes &= ~(AES_BLOCK_SIZE - 1); memcpy(&sctx->iv, desc->info, AES_BLOCK_SIZE); switch (sctx->key_len) { case 16: ret = crypt_s390_kmc(KMC_AES_128_DECRYPT, &sctx->iv, out, in, nbytes); BUG_ON((ret < 0) || (ret != nbytes)); break; case 24: ret = crypt_s390_kmc(KMC_AES_192_DECRYPT, &sctx->iv, out, in, nbytes); BUG_ON((ret < 0) || (ret != nbytes)); break; case 32: ret = crypt_s390_kmc(KMC_AES_256_DECRYPT, &sctx->iv, out, in, nbytes); BUG_ON((ret < 0) || (ret != nbytes)); break; } return nbytes; } static struct crypto_alg aes_alg = { .cra_name = "aes", .cra_flags = CRYPTO_ALG_TYPE_CIPHER, .cra_blocksize = AES_BLOCK_SIZE, .cra_ctxsize = sizeof(struct s390_aes_ctx), .cra_module = THIS_MODULE, .cra_list = LIST_HEAD_INIT(aes_alg.cra_list), .cra_u = { .cipher = { .cia_min_keysize = AES_MIN_KEY_SIZE, .cia_max_keysize = AES_MAX_KEY_SIZE, .cia_setkey = aes_set_key, .cia_encrypt = aes_encrypt, .cia_decrypt = aes_decrypt, .cia_encrypt_ecb = aes_encrypt_ecb, .cia_decrypt_ecb = aes_decrypt_ecb, .cia_encrypt_cbc = aes_encrypt_cbc, .cia_decrypt_cbc = aes_decrypt_cbc, } } }; static int __init aes_init(void) { int ret; if (crypt_s390_func_available(KM_AES_128_ENCRYPT)) has_aes_128 = 1; if (crypt_s390_func_available(KM_AES_192_ENCRYPT)) has_aes_192 = 1; if (crypt_s390_func_available(KM_AES_256_ENCRYPT)) has_aes_256 = 1; if (!has_aes_128 && !has_aes_192 && !has_aes_256) return -ENOSYS; ret = crypto_register_alg(&aes_alg); if (ret != 0) printk(KERN_INFO "crypt_s390: aes_s390 couldn't be loaded.\n"); return ret; } static void __exit aes_fini(void) { crypto_unregister_alg(&aes_alg); } module_init(aes_init); module_exit(aes_fini); MODULE_ALIAS("aes"); MODULE_DESCRIPTION("Rijndael (AES) Cipher Algorithm"); MODULE_LICENSE("GPL");