/* * Lockless get_user_pages_fast for sparc, cribbed from powerpc * * Copyright (C) 2008 Nick Piggin * Copyright (C) 2008 Novell Inc. */ #include #include #include #include #include #include /* * The performance critical leaf functions are made noinline otherwise gcc * inlines everything into a single function which results in too much * register pressure. */ static noinline int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end, int write, struct page **pages, int *nr) { unsigned long mask, result; pte_t *ptep; if (tlb_type == hypervisor) { result = _PAGE_PRESENT_4V|_PAGE_P_4V; if (write) result |= _PAGE_WRITE_4V; } else { result = _PAGE_PRESENT_4U|_PAGE_P_4U; if (write) result |= _PAGE_WRITE_4U; } mask = result | _PAGE_SPECIAL; ptep = pte_offset_kernel(&pmd, addr); do { struct page *page, *head; pte_t pte = *ptep; if ((pte_val(pte) & mask) != result) return 0; VM_BUG_ON(!pfn_valid(pte_pfn(pte))); /* The hugepage case is simplified on sparc64 because * we encode the sub-page pfn offsets into the * hugepage PTEs. We could optimize this in the future * use page_cache_add_speculative() for the hugepage case. */ page = pte_page(pte); head = compound_head(page); if (!page_cache_get_speculative(head)) return 0; if (unlikely(pte_val(pte) != pte_val(*ptep))) { put_page(head); return 0; } if (head != page) get_huge_page_tail(page); pages[*nr] = page; (*nr)++; } while (ptep++, addr += PAGE_SIZE, addr != end); return 1; } static int gup_pmd_range(pud_t pud, unsigned long addr, unsigned long end, int write, struct page **pages, int *nr) { unsigned long next; pmd_t *pmdp; pmdp = pmd_offset(&pud, addr); do { pmd_t pmd = *pmdp; next = pmd_addr_end(addr, end); if (pmd_none(pmd)) return 0; if (!gup_pte_range(pmd, addr, next, write, pages, nr)) return 0; } while (pmdp++, addr = next, addr != end); return 1; } static int gup_pud_range(pgd_t pgd, unsigned long addr, unsigned long end, int write, struct page **pages, int *nr) { unsigned long next; pud_t *pudp; pudp = pud_offset(&pgd, addr); do { pud_t pud = *pudp; next = pud_addr_end(addr, end); if (pud_none(pud)) return 0; if (!gup_pmd_range(pud, addr, next, write, pages, nr)) return 0; } while (pudp++, addr = next, addr != end); return 1; } int get_user_pages_fast(unsigned long start, int nr_pages, int write, struct page **pages) { struct mm_struct *mm = current->mm; unsigned long addr, len, end; unsigned long next; pgd_t *pgdp; int nr = 0; start &= PAGE_MASK; addr = start; len = (unsigned long) nr_pages << PAGE_SHIFT; end = start + len; /* * XXX: batch / limit 'nr', to avoid large irq off latency * needs some instrumenting to determine the common sizes used by * important workloads (eg. DB2), and whether limiting the batch size * will decrease performance. * * It seems like we're in the clear for the moment. Direct-IO is * the main guy that batches up lots of get_user_pages, and even * they are limited to 64-at-a-time which is not so many. */ /* * This doesn't prevent pagetable teardown, but does prevent * the pagetables from being freed on sparc. * * So long as we atomically load page table pointers versus teardown, * we can follow the address down to the the page and take a ref on it. */ local_irq_disable(); pgdp = pgd_offset(mm, addr); do { pgd_t pgd = *pgdp; next = pgd_addr_end(addr, end); if (pgd_none(pgd)) goto slow; if (!gup_pud_range(pgd, addr, next, write, pages, &nr)) goto slow; } while (pgdp++, addr = next, addr != end); local_irq_enable(); VM_BUG_ON(nr != (end - start) >> PAGE_SHIFT); return nr; { int ret; slow: local_irq_enable(); /* Try to get the remaining pages with get_user_pages */ start += nr << PAGE_SHIFT; pages += nr; down_read(&mm->mmap_sem); ret = get_user_pages(current, mm, start, (end - start) >> PAGE_SHIFT, write, 0, pages, NULL); up_read(&mm->mmap_sem); /* Have to be a bit careful with return values */ if (nr > 0) { if (ret < 0) ret = nr; else ret += nr; } return ret; } }