/* * Copyright (C) 2004 PathScale, Inc * Copyright (C) 2004 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com) * Licensed under the GPL */ #include #include #include #include #include #include "as-layout.h" #include "kern_util.h" #include "os.h" #include "process.h" #include "sysdep/barrier.h" #include "sysdep/sigcontext.h" #include "user.h" /* Copied from linux/compiler-gcc.h since we can't include it directly */ #define barrier() __asm__ __volatile__("": : :"memory") void (*sig_info[NSIG])(int, struct uml_pt_regs *) = { [SIGTRAP] = relay_signal, [SIGFPE] = relay_signal, [SIGILL] = relay_signal, [SIGWINCH] = winch, [SIGBUS] = bus_handler, [SIGSEGV] = segv_handler, [SIGIO] = sigio_handler, [SIGVTALRM] = timer_handler }; static void sig_handler_common(int sig, struct sigcontext *sc) { struct uml_pt_regs r; int save_errno = errno; r.is_user = 0; if (sig == SIGSEGV) { /* For segfaults, we want the data from the sigcontext. */ copy_sc(&r, sc); GET_FAULTINFO_FROM_SC(r.faultinfo, sc); } /* enable signals if sig isn't IRQ signal */ if ((sig != SIGIO) && (sig != SIGWINCH) && (sig != SIGVTALRM)) unblock_signals(); (*sig_info[sig])(sig, &r); errno = save_errno; } /* * These are the asynchronous signals. SIGPROF is excluded because we want to * be able to profile all of UML, not just the non-critical sections. If * profiling is not thread-safe, then that is not my problem. We can disable * profiling when SMP is enabled in that case. */ #define SIGIO_BIT 0 #define SIGIO_MASK (1 << SIGIO_BIT) #define SIGVTALRM_BIT 1 #define SIGVTALRM_MASK (1 << SIGVTALRM_BIT) static int signals_enabled; static unsigned int signals_pending; void sig_handler(int sig, struct sigcontext *sc) { int enabled; enabled = signals_enabled; if (!enabled && (sig == SIGIO)) { signals_pending |= SIGIO_MASK; return; } block_signals(); sig_handler_common(sig, sc); set_signals(enabled); } static void real_alarm_handler(struct sigcontext *sc) { struct uml_pt_regs regs; if (sc != NULL) copy_sc(®s, sc); regs.is_user = 0; unblock_signals(); timer_handler(SIGVTALRM, ®s); } void alarm_handler(int sig, struct sigcontext *sc) { int enabled; enabled = signals_enabled; if (!signals_enabled) { signals_pending |= SIGVTALRM_MASK; return; } block_signals(); real_alarm_handler(sc); set_signals(enabled); } void timer_init(void) { set_handler(SIGVTALRM, (__sighandler_t) alarm_handler, SA_ONSTACK | SA_RESTART, SIGUSR1, SIGIO, SIGWINCH, -1); } void set_sigstack(void *sig_stack, int size) { stack_t stack = ((stack_t) { .ss_flags = 0, .ss_sp = (__ptr_t) sig_stack, .ss_size = size - sizeof(void *) }); if (sigaltstack(&stack, NULL) != 0) panic("enabling signal stack failed, errno = %d\n", errno); } static void (*handlers[_NSIG])(int sig, struct sigcontext *sc); void handle_signal(int sig, struct sigcontext *sc) { unsigned long pending = 1UL << sig; do { int nested, bail; /* * pending comes back with one bit set for each * interrupt that arrived while setting up the stack, * plus a bit for this interrupt, plus the zero bit is * set if this is a nested interrupt. * If bail is true, then we interrupted another * handler setting up the stack. In this case, we * have to return, and the upper handler will deal * with this interrupt. */ bail = to_irq_stack(&pending); if (bail) return; nested = pending & 1; pending &= ~1; while ((sig = ffs(pending)) != 0){ sig--; pending &= ~(1 << sig); (*handlers[sig])(sig, sc); } /* * Again, pending comes back with a mask of signals * that arrived while tearing down the stack. If this * is non-zero, we just go back, set up the stack * again, and handle the new interrupts. */ if (!nested) pending = from_irq_stack(nested); } while (pending); } extern void hard_handler(int sig); void set_handler(int sig, void (*handler)(int), int flags, ...) { struct sigaction action; va_list ap; sigset_t sig_mask; int mask; handlers[sig] = (void (*)(int, struct sigcontext *)) handler; action.sa_handler = hard_handler; sigemptyset(&action.sa_mask); va_start(ap, flags); while ((mask = va_arg(ap, int)) != -1) sigaddset(&action.sa_mask, mask); va_end(ap); if (sig == SIGSEGV) flags |= SA_NODEFER; action.sa_flags = flags; action.sa_restorer = NULL; if (sigaction(sig, &action, NULL) < 0) panic("sigaction failed - errno = %d\n", errno); sigemptyset(&sig_mask); sigaddset(&sig_mask, sig); if (sigprocmask(SIG_UNBLOCK, &sig_mask, NULL) < 0) panic("sigprocmask failed - errno = %d\n", errno); } int change_sig(int signal, int on) { sigset_t sigset; sigemptyset(&sigset); sigaddset(&sigset, signal); if (sigprocmask(on ? SIG_UNBLOCK : SIG_BLOCK, &sigset, NULL) < 0) return -errno; return 0; } void block_signals(void) { signals_enabled = 0; /* * This must return with signals disabled, so this barrier * ensures that writes are flushed out before the return. * This might matter if gcc figures out how to inline this and * decides to shuffle this code into the caller. */ barrier(); } void unblock_signals(void) { int save_pending; if (signals_enabled == 1) return; /* * We loop because the IRQ handler returns with interrupts off. So, * interrupts may have arrived and we need to re-enable them and * recheck signals_pending. */ while (1) { /* * Save and reset save_pending after enabling signals. This * way, signals_pending won't be changed while we're reading it. */ signals_enabled = 1; /* * Setting signals_enabled and reading signals_pending must * happen in this order. */ barrier(); save_pending = signals_pending; if (save_pending == 0) return; signals_pending = 0; /* * We have pending interrupts, so disable signals, as the * handlers expect them off when they are called. They will * be enabled again above. */ signals_enabled = 0; /* * Deal with SIGIO first because the alarm handler might * schedule, leaving the pending SIGIO stranded until we come * back here. */ if (save_pending & SIGIO_MASK) sig_handler_common(SIGIO, NULL); if (save_pending & SIGVTALRM_MASK) real_alarm_handler(NULL); } } int get_signals(void) { return signals_enabled; } int set_signals(int enable) { int ret; if (signals_enabled == enable) return enable; ret = signals_enabled; if (enable) unblock_signals(); else block_signals(); return ret; }