/* Instantiate a public key crypto key from an X.509 Certificate * * Copyright (C) 2012 Red Hat, Inc. All Rights Reserved. * Written by David Howells (dhowells@redhat.com) * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public Licence * as published by the Free Software Foundation; either version * 2 of the Licence, or (at your option) any later version. */ #define pr_fmt(fmt) "X.509: "fmt #include #include #include #include #include #include #include #include "asymmetric_keys.h" #include "x509_parser.h" static bool use_builtin_keys; static struct asymmetric_key_id *ca_keyid; #ifndef MODULE static struct { struct asymmetric_key_id id; unsigned char data[10]; } cakey; static int __init ca_keys_setup(char *str) { if (!str) /* default system keyring */ return 1; if (strncmp(str, "id:", 3) == 0) { struct asymmetric_key_id *p = &cakey.id; size_t hexlen = (strlen(str) - 3) / 2; int ret; if (hexlen == 0 || hexlen > sizeof(cakey.data)) { pr_err("Missing or invalid ca_keys id\n"); return 1; } ret = __asymmetric_key_hex_to_key_id(str + 3, p, hexlen); if (ret < 0) pr_err("Unparsable ca_keys id hex string\n"); else ca_keyid = p; /* owner key 'id:xxxxxx' */ } else if (strcmp(str, "builtin") == 0) { use_builtin_keys = true; } return 1; } __setup("ca_keys=", ca_keys_setup); #endif /* * Set up the signature parameters in an X.509 certificate. This involves * digesting the signed data and extracting the signature. */ int x509_get_sig_params(struct x509_certificate *cert) { struct public_key_signature *sig = cert->sig; struct crypto_shash *tfm; struct shash_desc *desc; size_t desc_size; int ret; pr_devel("==>%s()\n", __func__); if (!cert->pub->pkey_algo) cert->unsupported_key = true; if (!sig->pkey_algo) cert->unsupported_sig = true; /* We check the hash if we can - even if we can't then verify it */ if (!sig->hash_algo) { cert->unsupported_sig = true; return 0; } sig->s = kmemdup(cert->raw_sig, cert->raw_sig_size, GFP_KERNEL); if (!sig->s) return -ENOMEM; sig->s_size = cert->raw_sig_size; /* Allocate the hashing algorithm we're going to need and find out how * big the hash operational data will be. */ tfm = crypto_alloc_shash(sig->hash_algo, 0, 0); if (IS_ERR(tfm)) { if (PTR_ERR(tfm) == -ENOENT) { cert->unsupported_sig = true; return 0; } return PTR_ERR(tfm); } desc_size = crypto_shash_descsize(tfm) + sizeof(*desc); sig->digest_size = crypto_shash_digestsize(tfm); ret = -ENOMEM; sig->digest = kmalloc(sig->digest_size, GFP_KERNEL); if (!sig->digest) goto error; desc = kzalloc(desc_size, GFP_KERNEL); if (!desc) goto error; desc->tfm = tfm; desc->flags = CRYPTO_TFM_REQ_MAY_SLEEP; ret = crypto_shash_init(desc); if (ret < 0) goto error_2; might_sleep(); ret = crypto_shash_finup(desc, cert->tbs, cert->tbs_size, sig->digest); error_2: kfree(desc); error: crypto_free_shash(tfm); pr_devel("<==%s() = %d\n", __func__, ret); return ret; } /* * Check for self-signedness in an X.509 cert and if found, check the signature * immediately if we can. */ int x509_check_for_self_signed(struct x509_certificate *cert) { int ret = 0; pr_devel("==>%s()\n", __func__); if (cert->raw_subject_size != cert->raw_issuer_size || memcmp(cert->raw_subject, cert->raw_issuer, cert->raw_issuer_size) != 0) goto not_self_signed; if (cert->sig->auth_ids[0] || cert->sig->auth_ids[1]) { /* If the AKID is present it may have one or two parts. If * both are supplied, both must match. */ bool a = asymmetric_key_id_same(cert->skid, cert->sig->auth_ids[1]); bool b = asymmetric_key_id_same(cert->id, cert->sig->auth_ids[0]); if (!a && !b) goto not_self_signed; ret = -EKEYREJECTED; if (((a && !b) || (b && !a)) && cert->sig->auth_ids[0] && cert->sig->auth_ids[1]) goto out; } ret = -EKEYREJECTED; if (cert->pub->pkey_algo != cert->sig->pkey_algo) goto out; ret = public_key_verify_signature(cert->pub, cert->sig); if (ret < 0) { if (ret == -ENOPKG) { cert->unsupported_sig = true; ret = 0; } goto out; } pr_devel("Cert Self-signature verified"); cert->self_signed = true; out: pr_devel("<==%s() = %d\n", __func__, ret); return ret; not_self_signed: pr_devel("<==%s() = 0 [not]\n", __func__); return 0; } /* * Check the new certificate against the ones in the trust keyring. If one of * those is the signing key and validates the new certificate, then mark the * new certificate as being trusted. * * Return 0 if the new certificate was successfully validated, 1 if we couldn't * find a matching parent certificate in the trusted list and an error if there * is a matching certificate but the signature check fails. */ static int x509_validate_trust(struct x509_certificate *cert, struct key *trust_keyring) { struct public_key_signature *sig = cert->sig; struct key *key; int ret = 1; if (!sig->auth_ids[0] && !sig->auth_ids[1]) return 1; if (!trust_keyring) return -EOPNOTSUPP; if (ca_keyid && !asymmetric_key_id_partial(sig->auth_ids[1], ca_keyid)) return -EPERM; if (cert->unsupported_sig) return -ENOPKG; key = find_asymmetric_key(trust_keyring, sig->auth_ids[0], sig->auth_ids[1], false); if (IS_ERR(key)) return PTR_ERR(key); if (!use_builtin_keys || test_bit(KEY_FLAG_BUILTIN, &key->flags)) { ret = public_key_verify_signature( key->payload.data[asym_crypto], cert->sig); if (ret == -ENOPKG) cert->unsupported_sig = true; } key_put(key); return ret; } /* * Attempt to parse a data blob for a key as an X509 certificate. */ static int x509_key_preparse(struct key_preparsed_payload *prep) { struct asymmetric_key_ids *kids; struct x509_certificate *cert; const char *q; size_t srlen, sulen; char *desc = NULL, *p; int ret; cert = x509_cert_parse(prep->data, prep->datalen); if (IS_ERR(cert)) return PTR_ERR(cert); pr_devel("Cert Issuer: %s\n", cert->issuer); pr_devel("Cert Subject: %s\n", cert->subject); if (cert->unsupported_key) { ret = -ENOPKG; goto error_free_cert; } pr_devel("Cert Key Algo: %s\n", cert->pub->pkey_algo); pr_devel("Cert Valid period: %lld-%lld\n", cert->valid_from, cert->valid_to); cert->pub->id_type = "X509"; /* See if we can derive the trustability of this certificate. * * When it comes to self-signed certificates, we cannot evaluate * trustedness except by the fact that we obtained it from a trusted * location. So we just rely on x509_validate_trust() failing in this * case. * * Note that there's a possibility of a self-signed cert matching a * cert that we have (most likely a duplicate that we already trust) - * in which case it will be marked trusted. */ if (cert->unsupported_sig || cert->self_signed) { public_key_signature_free(cert->sig); cert->sig = NULL; } else { pr_devel("Cert Signature: %s + %s\n", cert->sig->pkey_algo, cert->sig->hash_algo); ret = x509_validate_trust(cert, get_system_trusted_keyring()); if (ret) ret = x509_validate_trust(cert, get_ima_mok_keyring()); if (ret == -EKEYREJECTED) goto error_free_cert; if (!ret) prep->trusted = true; } /* Propose a description */ sulen = strlen(cert->subject); if (cert->raw_skid) { srlen = cert->raw_skid_size; q = cert->raw_skid; } else { srlen = cert->raw_serial_size; q = cert->raw_serial; } ret = -ENOMEM; desc = kmalloc(sulen + 2 + srlen * 2 + 1, GFP_KERNEL); if (!desc) goto error_free_cert; p = memcpy(desc, cert->subject, sulen); p += sulen; *p++ = ':'; *p++ = ' '; p = bin2hex(p, q, srlen); *p = 0; kids = kmalloc(sizeof(struct asymmetric_key_ids), GFP_KERNEL); if (!kids) goto error_free_desc; kids->id[0] = cert->id; kids->id[1] = cert->skid; /* We're pinning the module by being linked against it */ __module_get(public_key_subtype.owner); prep->payload.data[asym_subtype] = &public_key_subtype; prep->payload.data[asym_key_ids] = kids; prep->payload.data[asym_crypto] = cert->pub; prep->payload.data[asym_auth] = cert->sig; prep->description = desc; prep->quotalen = 100; /* We've finished with the certificate */ cert->pub = NULL; cert->id = NULL; cert->skid = NULL; cert->sig = NULL; desc = NULL; ret = 0; error_free_desc: kfree(desc); error_free_cert: x509_free_certificate(cert); return ret; } static struct asymmetric_key_parser x509_key_parser = { .owner = THIS_MODULE, .name = "x509", .parse = x509_key_preparse, }; /* * Module stuff */ static int __init x509_key_init(void) { return register_asymmetric_key_parser(&x509_key_parser); } static void __exit x509_key_exit(void) { unregister_asymmetric_key_parser(&x509_key_parser); } module_init(x509_key_init); module_exit(x509_key_exit); MODULE_DESCRIPTION("X.509 certificate parser"); MODULE_LICENSE("GPL");