/* * Freescale i.MX23/i.MX28 Data Co-Processor driver * * Copyright (C) 2013 Marek Vasut * * The code contained herein is licensed under the GNU General Public * License. You may obtain a copy of the GNU General Public License * Version 2 or later at the following locations: * * http://www.opensource.org/licenses/gpl-license.html * http://www.gnu.org/copyleft/gpl.html */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define DCP_MAX_CHANS 4 #define DCP_BUF_SZ PAGE_SIZE #define DCP_SHA_PAY_SZ 64 #define DCP_ALIGNMENT 64 /* * Null hashes to align with hw behavior on imx6sl and ull * these are flipped for consistency with hw output */ const uint8_t sha1_null_hash[] = "\x09\x07\xd8\xaf\x90\x18\x60\x95\xef\xbf" "\x55\x32\x0d\x4b\x6b\x5e\xee\xa3\x39\xda"; const uint8_t sha256_null_hash[] = "\x55\xb8\x52\x78\x1b\x99\x95\xa4" "\x4c\x93\x9b\x64\xe4\x41\xae\x27" "\x24\xb9\x6f\x99\xc8\xf4\xfb\x9a" "\x14\x1c\xfc\x98\x42\xc4\xb0\xe3"; /* DCP DMA descriptor. */ struct dcp_dma_desc { uint32_t next_cmd_addr; uint32_t control0; uint32_t control1; uint32_t source; uint32_t destination; uint32_t size; uint32_t payload; uint32_t status; }; /* Coherent aligned block for bounce buffering. */ struct dcp_coherent_block { uint8_t aes_in_buf[DCP_BUF_SZ]; uint8_t aes_out_buf[DCP_BUF_SZ]; uint8_t sha_in_buf[DCP_BUF_SZ]; uint8_t sha_out_buf[DCP_SHA_PAY_SZ]; uint8_t aes_key[2 * AES_KEYSIZE_128]; struct dcp_dma_desc desc[DCP_MAX_CHANS]; }; struct dcp { struct device *dev; void __iomem *base; uint32_t caps; struct dcp_coherent_block *coh; struct completion completion[DCP_MAX_CHANS]; spinlock_t lock[DCP_MAX_CHANS]; struct task_struct *thread[DCP_MAX_CHANS]; struct crypto_queue queue[DCP_MAX_CHANS]; #ifdef CONFIG_ARM struct clk *dcp_clk; #endif int enable_sha_workaround; }; enum dcp_chan { DCP_CHAN_HASH_SHA = 0, DCP_CHAN_CRYPTO = 2, }; struct dcp_async_ctx { /* Common context */ enum dcp_chan chan; uint32_t fill; /* SHA Hash-specific context */ struct mutex mutex; uint32_t alg; unsigned int hot:1; /* Crypto-specific context */ struct crypto_skcipher *fallback; unsigned int key_len; uint8_t key[AES_KEYSIZE_128]; }; struct dcp_aes_req_ctx { unsigned int enc:1; unsigned int ecb:1; }; struct dcp_sha_req_ctx { unsigned int init:1; unsigned int fini:1; }; struct dcp_export_state { struct dcp_sha_req_ctx req_ctx; struct dcp_async_ctx async_ctx; }; /* * There can even be only one instance of the MXS DCP due to the * design of Linux Crypto API. */ static struct dcp *global_sdcp; /* DCP register layout. */ #define MXS_DCP_CTRL 0x00 #define MXS_DCP_CTRL_GATHER_RESIDUAL_WRITES (1 << 23) #define MXS_DCP_CTRL_ENABLE_CONTEXT_CACHING (1 << 22) #define MXS_DCP_STAT 0x10 #define MXS_DCP_STAT_CLR 0x18 #define MXS_DCP_STAT_IRQ_MASK 0xf #define MXS_DCP_CHANNELCTRL 0x20 #define MXS_DCP_CHANNELCTRL_ENABLE_CHANNEL_MASK 0xff #define MXS_DCP_CAPABILITY1 0x40 #define MXS_DCP_CAPABILITY1_SHA256 (4 << 16) #define MXS_DCP_CAPABILITY1_SHA1 (1 << 16) #define MXS_DCP_CAPABILITY1_AES128 (1 << 0) #define MXS_DCP_CONTEXT 0x50 #define MXS_DCP_CH_N_CMDPTR(n) (0x100 + ((n) * 0x40)) #define MXS_DCP_CH_N_SEMA(n) (0x110 + ((n) * 0x40)) #define MXS_DCP_CH_N_STAT(n) (0x120 + ((n) * 0x40)) #define MXS_DCP_CH_N_STAT_CLR(n) (0x128 + ((n) * 0x40)) /* DMA descriptor bits. */ #define MXS_DCP_CONTROL0_HASH_TERM (1 << 13) #define MXS_DCP_CONTROL0_HASH_INIT (1 << 12) #define MXS_DCP_CONTROL0_PAYLOAD_KEY (1 << 11) #define MXS_DCP_CONTROL0_CIPHER_ENCRYPT (1 << 8) #define MXS_DCP_CONTROL0_CIPHER_INIT (1 << 9) #define MXS_DCP_CONTROL0_ENABLE_HASH (1 << 6) #define MXS_DCP_CONTROL0_ENABLE_CIPHER (1 << 5) #define MXS_DCP_CONTROL0_DECR_SEMAPHORE (1 << 1) #define MXS_DCP_CONTROL0_INTERRUPT (1 << 0) #define MXS_DCP_CONTROL1_HASH_SELECT_SHA256 (2 << 16) #define MXS_DCP_CONTROL1_HASH_SELECT_SHA1 (0 << 16) #define MXS_DCP_CONTROL1_CIPHER_MODE_CBC (1 << 4) #define MXS_DCP_CONTROL1_CIPHER_MODE_ECB (0 << 4) #define MXS_DCP_CONTROL1_CIPHER_SELECT_AES128 (0 << 0) static int mxs_dcp_start_dma(struct dcp_async_ctx *actx) { struct dcp *sdcp = global_sdcp; const int chan = actx->chan; uint32_t stat; unsigned long ret; struct dcp_dma_desc *desc = &sdcp->coh->desc[actx->chan]; dma_addr_t desc_phys = dma_map_single(sdcp->dev, desc, sizeof(*desc), DMA_TO_DEVICE); reinit_completion(&sdcp->completion[chan]); /* Clear status register. */ writel(0xffffffff, sdcp->base + MXS_DCP_CH_N_STAT_CLR(chan)); /* Load the DMA descriptor. */ writel(desc_phys, sdcp->base + MXS_DCP_CH_N_CMDPTR(chan)); /* Increment the semaphore to start the DMA transfer. */ writel(1, sdcp->base + MXS_DCP_CH_N_SEMA(chan)); ret = wait_for_completion_timeout(&sdcp->completion[chan], msecs_to_jiffies(1000)); if (!ret) { dev_err(sdcp->dev, "Channel %i timeout (DCP_STAT=0x%08x)\n", chan, readl(sdcp->base + MXS_DCP_STAT)); return -ETIMEDOUT; } stat = readl(sdcp->base + MXS_DCP_CH_N_STAT(chan)); if (stat & 0xff) { dev_err(sdcp->dev, "Channel %i error (CH_STAT=0x%08x)\n", chan, stat); return -EINVAL; } dma_unmap_single(sdcp->dev, desc_phys, sizeof(*desc), DMA_TO_DEVICE); return 0; } /* * Encryption (AES128) */ static int mxs_dcp_run_aes(struct dcp_async_ctx *actx, struct ablkcipher_request *req, int init) { struct dcp *sdcp = global_sdcp; struct dcp_dma_desc *desc = &sdcp->coh->desc[actx->chan]; struct dcp_aes_req_ctx *rctx = ablkcipher_request_ctx(req); int ret; dma_addr_t key_phys = dma_map_single(sdcp->dev, sdcp->coh->aes_key, 2 * AES_KEYSIZE_128, DMA_TO_DEVICE); dma_addr_t src_phys = dma_map_single(sdcp->dev, sdcp->coh->aes_in_buf, DCP_BUF_SZ, DMA_TO_DEVICE); dma_addr_t dst_phys = dma_map_single(sdcp->dev, sdcp->coh->aes_out_buf, DCP_BUF_SZ, DMA_FROM_DEVICE); if (actx->fill % AES_BLOCK_SIZE) { dev_err(sdcp->dev, "Invalid block size!\n"); ret = -EINVAL; goto aes_done_run; } /* Fill in the DMA descriptor. */ desc->control0 = MXS_DCP_CONTROL0_DECR_SEMAPHORE | MXS_DCP_CONTROL0_INTERRUPT | MXS_DCP_CONTROL0_ENABLE_CIPHER; /* Payload contains the key. */ desc->control0 |= MXS_DCP_CONTROL0_PAYLOAD_KEY; if (rctx->enc) desc->control0 |= MXS_DCP_CONTROL0_CIPHER_ENCRYPT; if (init) desc->control0 |= MXS_DCP_CONTROL0_CIPHER_INIT; desc->control1 = MXS_DCP_CONTROL1_CIPHER_SELECT_AES128; if (rctx->ecb) desc->control1 |= MXS_DCP_CONTROL1_CIPHER_MODE_ECB; else desc->control1 |= MXS_DCP_CONTROL1_CIPHER_MODE_CBC; desc->next_cmd_addr = 0; desc->source = src_phys; desc->destination = dst_phys; desc->size = actx->fill; desc->payload = key_phys; desc->status = 0; ret = mxs_dcp_start_dma(actx); aes_done_run: dma_unmap_single(sdcp->dev, key_phys, 2 * AES_KEYSIZE_128, DMA_TO_DEVICE); dma_unmap_single(sdcp->dev, src_phys, DCP_BUF_SZ, DMA_TO_DEVICE); dma_unmap_single(sdcp->dev, dst_phys, DCP_BUF_SZ, DMA_FROM_DEVICE); return ret; } static int mxs_dcp_aes_block_crypt(struct crypto_async_request *arq) { struct dcp *sdcp = global_sdcp; struct ablkcipher_request *req = ablkcipher_request_cast(arq); struct dcp_async_ctx *actx = crypto_tfm_ctx(arq->tfm); struct dcp_aes_req_ctx *rctx = ablkcipher_request_ctx(req); struct scatterlist *dst = req->dst; struct scatterlist *src = req->src; const int nents = sg_nents(req->src); const int out_off = DCP_BUF_SZ; uint8_t *in_buf = sdcp->coh->aes_in_buf; uint8_t *out_buf = sdcp->coh->aes_out_buf; uint8_t *out_tmp, *src_buf, *dst_buf = NULL; uint32_t dst_off = 0; uint32_t last_out_len = 0; uint8_t *key = sdcp->coh->aes_key; int ret = 0; int split = 0; unsigned int i, len, clen, rem = 0, tlen = 0; int init = 0; bool limit_hit = false; actx->fill = 0; /* * We are not supporting the case where there is no message to encrypt */ if (nents == 0) return -EINVAL; /* Copy the key from the temporary location. */ memcpy(key, actx->key, actx->key_len); if (!rctx->ecb) { /* Copy the CBC IV just past the key. */ memcpy(key + AES_KEYSIZE_128, req->info, AES_KEYSIZE_128); /* CBC needs the INIT set. */ init = 1; } else { memset(key + AES_KEYSIZE_128, 0, AES_KEYSIZE_128); } for_each_sg(req->src, src, nents, i) { src_buf = sg_virt(src); len = sg_dma_len(src); tlen += len; limit_hit = tlen > req->nbytes; if (limit_hit) len = req->nbytes - (tlen - len); do { if (actx->fill + len > out_off) clen = out_off - actx->fill; else clen = len; memcpy(in_buf + actx->fill, src_buf, clen); len -= clen; src_buf += clen; actx->fill += clen; /* * If we filled the buffer or this is the last SG, * submit the buffer. */ if (actx->fill == out_off || sg_is_last(src) || limit_hit) { ret = mxs_dcp_run_aes(actx, req, init); if (ret) return ret; init = 0; out_tmp = out_buf; last_out_len = actx->fill; while (dst && actx->fill) { if (!split) { dst_buf = sg_virt(dst); dst_off = 0; } rem = min(sg_dma_len(dst) - dst_off, actx->fill); memcpy(dst_buf + dst_off, out_tmp, rem); out_tmp += rem; dst_off += rem; actx->fill -= rem; if (dst_off == sg_dma_len(dst)) { dst = sg_next(dst); split = 0; } else { split = 1; } } } } while (len); if (limit_hit) break; } /* Copy the IV for CBC for chaining */ if (!rctx->ecb) { if (rctx->enc) memcpy(req->info, out_buf+(last_out_len-AES_BLOCK_SIZE), AES_BLOCK_SIZE); else memcpy(req->info, in_buf+(last_out_len-AES_BLOCK_SIZE), AES_BLOCK_SIZE); } return ret; } static int dcp_chan_thread_aes(void *data) { struct dcp *sdcp = global_sdcp; const int chan = DCP_CHAN_CRYPTO; struct crypto_async_request *backlog; struct crypto_async_request *arq; int ret; while (!kthread_should_stop()) { set_current_state(TASK_INTERRUPTIBLE); spin_lock(&sdcp->lock[chan]); backlog = crypto_get_backlog(&sdcp->queue[chan]); arq = crypto_dequeue_request(&sdcp->queue[chan]); spin_unlock(&sdcp->lock[chan]); if (!backlog && !arq) { schedule(); continue; } set_current_state(TASK_RUNNING); if (backlog) backlog->complete(backlog, -EINPROGRESS); if (arq) { ret = mxs_dcp_aes_block_crypt(arq); arq->complete(arq, ret); } } return 0; } static int mxs_dcp_block_fallback(struct ablkcipher_request *req, int enc) { struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(req); struct dcp_async_ctx *ctx = crypto_ablkcipher_ctx(tfm); SKCIPHER_REQUEST_ON_STACK(subreq, ctx->fallback); int ret; skcipher_request_set_tfm(subreq, ctx->fallback); skcipher_request_set_callback(subreq, req->base.flags, NULL, NULL); skcipher_request_set_crypt(subreq, req->src, req->dst, req->nbytes, req->info); if (enc) ret = crypto_skcipher_encrypt(subreq); else ret = crypto_skcipher_decrypt(subreq); skcipher_request_zero(subreq); return ret; } static int mxs_dcp_aes_enqueue(struct ablkcipher_request *req, int enc, int ecb) { struct dcp *sdcp = global_sdcp; struct crypto_async_request *arq = &req->base; struct dcp_async_ctx *actx = crypto_tfm_ctx(arq->tfm); struct dcp_aes_req_ctx *rctx = ablkcipher_request_ctx(req); int ret; if (unlikely(actx->key_len != AES_KEYSIZE_128)) return mxs_dcp_block_fallback(req, enc); rctx->enc = enc; rctx->ecb = ecb; actx->chan = DCP_CHAN_CRYPTO; spin_lock(&sdcp->lock[actx->chan]); ret = crypto_enqueue_request(&sdcp->queue[actx->chan], &req->base); spin_unlock(&sdcp->lock[actx->chan]); wake_up_process(sdcp->thread[actx->chan]); return -EINPROGRESS; } static int mxs_dcp_aes_ecb_decrypt(struct ablkcipher_request *req) { return mxs_dcp_aes_enqueue(req, 0, 1); } static int mxs_dcp_aes_ecb_encrypt(struct ablkcipher_request *req) { return mxs_dcp_aes_enqueue(req, 1, 1); } static int mxs_dcp_aes_cbc_decrypt(struct ablkcipher_request *req) { return mxs_dcp_aes_enqueue(req, 0, 0); } static int mxs_dcp_aes_cbc_encrypt(struct ablkcipher_request *req) { return mxs_dcp_aes_enqueue(req, 1, 0); } static int mxs_dcp_aes_setkey(struct crypto_ablkcipher *tfm, const u8 *key, unsigned int len) { struct dcp_async_ctx *actx = crypto_ablkcipher_ctx(tfm); unsigned int ret; /* * AES 128 is supposed by the hardware, store key into temporary * buffer and exit. We must use the temporary buffer here, since * there can still be an operation in progress. */ actx->key_len = len; if (len == AES_KEYSIZE_128) { memcpy(actx->key, key, len); return 0; } /* * If the requested AES key size is not supported by the hardware, * but is supported by in-kernel software implementation, we use * software fallback. */ crypto_skcipher_clear_flags(actx->fallback, CRYPTO_TFM_REQ_MASK); crypto_skcipher_set_flags(actx->fallback, tfm->base.crt_flags & CRYPTO_TFM_REQ_MASK); ret = crypto_skcipher_setkey(actx->fallback, key, len); if (!ret) return 0; tfm->base.crt_flags &= ~CRYPTO_TFM_RES_MASK; tfm->base.crt_flags |= crypto_skcipher_get_flags(actx->fallback) & CRYPTO_TFM_RES_MASK; return ret; } static int mxs_dcp_aes_fallback_init(struct crypto_tfm *tfm) { const char *name = crypto_tfm_alg_name(tfm); const uint32_t flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK; struct dcp_async_ctx *actx = crypto_tfm_ctx(tfm); struct crypto_skcipher *blk; blk = crypto_alloc_skcipher(name, 0, flags); if (IS_ERR(blk)) return PTR_ERR(blk); actx->fallback = blk; tfm->crt_ablkcipher.reqsize = sizeof(struct dcp_aes_req_ctx); return 0; } static void mxs_dcp_aes_fallback_exit(struct crypto_tfm *tfm) { struct dcp_async_ctx *actx = crypto_tfm_ctx(tfm); crypto_free_skcipher(actx->fallback); } /* * Hashing (SHA1/SHA256) */ static int mxs_dcp_run_sha(struct ahash_request *req) { struct dcp *sdcp = global_sdcp; int ret; struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); struct dcp_async_ctx *actx = crypto_ahash_ctx(tfm); struct dcp_sha_req_ctx *rctx = ahash_request_ctx(req); struct dcp_dma_desc *desc = &sdcp->coh->desc[actx->chan]; dma_addr_t digest_phys = 0; dma_addr_t buf_phys = dma_map_single(sdcp->dev, sdcp->coh->sha_in_buf, DCP_BUF_SZ, DMA_TO_DEVICE); /* Fill in the DMA descriptor. */ desc->control0 = MXS_DCP_CONTROL0_DECR_SEMAPHORE | MXS_DCP_CONTROL0_INTERRUPT | MXS_DCP_CONTROL0_ENABLE_HASH; if (rctx->init) desc->control0 |= MXS_DCP_CONTROL0_HASH_INIT; desc->control1 = actx->alg; desc->next_cmd_addr = 0; desc->source = buf_phys; desc->destination = 0; desc->size = actx->fill; desc->payload = 0; desc->status = 0; ==== BASE ==== ==== BASE ==== /* Set HASH_TERM bit for last transfer block. */ if (rctx->fini) { digest_phys = dma_map_single(sdcp->dev, sdcp->coh->sha_out_buf, DCP_SHA_PAY_SZ, DMA_FROM_DEVICE); desc->control0 |= MXS_DCP_CONTROL0_HASH_TERM; desc->payload = digest_phys; } ret = mxs_dcp_start_dma(actx); if (rctx->fini) dma_unmap_single(sdcp->dev, digest_phys, DCP_SHA_PAY_SZ, DMA_FROM_DEVICE); done_run: dma_unmap_single(sdcp->dev, buf_phys, DCP_BUF_SZ, DMA_TO_DEVICE); return ret; } static int dcp_sha_req_to_buf(struct crypto_async_request *arq) { struct dcp *sdcp = global_sdcp; struct ahash_request *req = ahash_request_cast(arq); struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); struct dcp_async_ctx *actx = crypto_ahash_ctx(tfm); struct dcp_sha_req_ctx *rctx = ahash_request_ctx(req); struct hash_alg_common *halg = crypto_hash_alg_common(tfm); const int nents = sg_nents(req->src); uint8_t *in_buf = sdcp->coh->sha_in_buf; uint8_t *out_buf = sdcp->coh->sha_out_buf; uint8_t *src_buf; struct scatterlist *src; unsigned int i, len, clen; int ret; int fin = rctx->fini; if (fin) rctx->fini = 0; for_each_sg(req->src, src, nents, i) { src_buf = sg_virt(src); len = sg_dma_len(src); do { if (actx->fill + len > DCP_BUF_SZ) clen = DCP_BUF_SZ - actx->fill; else clen = len; memcpy(in_buf + actx->fill, src_buf, clen); len -= clen; src_buf += clen; actx->fill += clen; /* * If we filled the buffer and still have some * more data, submit the buffer. */ if (len && actx->fill == DCP_BUF_SZ) { ret = mxs_dcp_run_sha(req); if (ret) return ret; actx->fill = 0; rctx->init = 0; } } while (len); } if (fin) { rctx->fini = 1; /* Submit whatever is left. */ if (!req->result) return -EINVAL; ret = mxs_dcp_run_sha(req); if (ret) return ret; actx->fill = 0; /* For some reason the result is flipped */ for (i = 0; i < halg->digestsize; i++) req->result[i] = out_buf[halg->digestsize - i - 1]; } return 0; } static int dcp_chan_thread_sha(void *data) { struct dcp *sdcp = global_sdcp; const int chan = DCP_CHAN_HASH_SHA; struct crypto_async_request *backlog; struct crypto_async_request *arq; struct dcp_sha_req_ctx *rctx; struct ahash_request *req; int ret, fini; while (!kthread_should_stop()) { set_current_state(TASK_INTERRUPTIBLE); spin_lock(&sdcp->lock[chan]); backlog = crypto_get_backlog(&sdcp->queue[chan]); arq = crypto_dequeue_request(&sdcp->queue[chan]); spin_unlock(&sdcp->lock[chan]); if (!backlog && !arq) { schedule(); continue; } set_current_state(TASK_RUNNING); if (backlog) backlog->complete(backlog, -EINPROGRESS); if (arq) { req = ahash_request_cast(arq); rctx = ahash_request_ctx(req); ret = dcp_sha_req_to_buf(arq); fini = rctx->fini; arq->complete(arq, ret); } } return 0; } static int dcp_sha_init(struct ahash_request *req) { struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); struct dcp_async_ctx *actx = crypto_ahash_ctx(tfm); struct hash_alg_common *halg = crypto_hash_alg_common(tfm); /* * Start hashing session. The code below only inits the * hashing session context, nothing more. */ memset(actx, 0, sizeof(*actx)); if (strcmp(halg->base.cra_name, "sha1") == 0) actx->alg = MXS_DCP_CONTROL1_HASH_SELECT_SHA1; else actx->alg = MXS_DCP_CONTROL1_HASH_SELECT_SHA256; actx->fill = 0; actx->hot = 0; actx->chan = DCP_CHAN_HASH_SHA; mutex_init(&actx->mutex); return 0; } static int dcp_sha_update_fx(struct ahash_request *req, int fini) { struct dcp *sdcp = global_sdcp; struct dcp_sha_req_ctx *rctx = ahash_request_ctx(req); struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); struct dcp_async_ctx *actx = crypto_ahash_ctx(tfm); int ret; /* * Ignore requests that have no data in them and are not * the trailing requests in the stream of requests. */ if (!req->nbytes && !fini) return 0; mutex_lock(&actx->mutex); rctx->fini = fini; if (!actx->hot) { actx->hot = 1; rctx->init = 1; } spin_lock(&sdcp->lock[actx->chan]); ret = crypto_enqueue_request(&sdcp->queue[actx->chan], &req->base); spin_unlock(&sdcp->lock[actx->chan]); wake_up_process(sdcp->thread[actx->chan]); mutex_unlock(&actx->mutex); return -EINPROGRESS; } static int dcp_sha_update(struct ahash_request *req) { return dcp_sha_update_fx(req, 0); } static int dcp_sha_final(struct ahash_request *req) { ahash_request_set_crypt(req, NULL, req->result, 0); req->nbytes = 0; return dcp_sha_update_fx(req, 1); } static int dcp_sha_finup(struct ahash_request *req) { return dcp_sha_update_fx(req, 1); } static int dcp_sha_export(struct ahash_request *req, void *out) { struct dcp_sha_req_ctx *rctx_state = ahash_request_ctx(req); struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); struct dcp_async_ctx *actx_state = crypto_ahash_ctx(tfm); struct dcp_export_state *export = out; memcpy(&export->req_ctx, rctx_state, sizeof(struct dcp_sha_req_ctx)); memcpy(&export->async_ctx, actx_state, sizeof(struct dcp_async_ctx)); return 0; } static int dcp_sha_import(struct ahash_request *req, const void *in) { struct dcp_sha_req_ctx *rctx = ahash_request_ctx(req); struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); struct dcp_async_ctx *actx = crypto_ahash_ctx(tfm); const struct dcp_export_state *export = in; memset(rctx, 0, sizeof(struct dcp_sha_req_ctx)); memset(actx, 0, sizeof(struct dcp_async_ctx)); memcpy(rctx, &export->req_ctx, sizeof(struct dcp_sha_req_ctx)); memcpy(actx, &export->async_ctx, sizeof(struct dcp_async_ctx)); return 0; } static int dcp_sha_digest(struct ahash_request *req) { int ret; ret = dcp_sha_init(req); if (ret) return ret; return dcp_sha_finup(req); } static int dcp_sha_cra_init(struct crypto_tfm *tfm) { crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm), sizeof(struct dcp_sha_req_ctx)); return 0; } static void dcp_sha_cra_exit(struct crypto_tfm *tfm) { } /* AES 128 ECB and AES 128 CBC */ static struct crypto_alg dcp_aes_algs[] = { { .cra_name = "ecb(aes)", .cra_driver_name = "ecb-aes-dcp", .cra_priority = 400, .cra_alignmask = 15, .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK, .cra_init = mxs_dcp_aes_fallback_init, .cra_exit = mxs_dcp_aes_fallback_exit, .cra_blocksize = AES_BLOCK_SIZE, .cra_ctxsize = sizeof(struct dcp_async_ctx), .cra_type = &crypto_ablkcipher_type, .cra_module = THIS_MODULE, .cra_u = { .ablkcipher = { .min_keysize = AES_MIN_KEY_SIZE, .max_keysize = AES_MAX_KEY_SIZE, .setkey = mxs_dcp_aes_setkey, .encrypt = mxs_dcp_aes_ecb_encrypt, .decrypt = mxs_dcp_aes_ecb_decrypt }, }, }, { .cra_name = "cbc(aes)", .cra_driver_name = "cbc-aes-dcp", .cra_priority = 400, .cra_alignmask = 15, .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK, .cra_init = mxs_dcp_aes_fallback_init, .cra_exit = mxs_dcp_aes_fallback_exit, .cra_blocksize = AES_BLOCK_SIZE, .cra_ctxsize = sizeof(struct dcp_async_ctx), .cra_type = &crypto_ablkcipher_type, .cra_module = THIS_MODULE, .cra_u = { .ablkcipher = { .min_keysize = AES_MIN_KEY_SIZE, .max_keysize = AES_MAX_KEY_SIZE, .setkey = mxs_dcp_aes_setkey, .encrypt = mxs_dcp_aes_cbc_encrypt, .decrypt = mxs_dcp_aes_cbc_decrypt, .ivsize = AES_BLOCK_SIZE, }, }, }, }; /* SHA1 */ static struct ahash_alg dcp_sha1_alg = { .init = dcp_sha_init, .update = dcp_sha_update, .final = dcp_sha_final, .finup = dcp_sha_finup, .digest = dcp_sha_digest, .export = dcp_sha_export, .import = dcp_sha_import, .halg = { .digestsize = SHA1_DIGEST_SIZE, .statesize = sizeof(struct dcp_export_state), .base = { .cra_name = "sha1", .cra_driver_name = "sha1-dcp", .cra_priority = 400, .cra_alignmask = 63, .cra_flags = CRYPTO_ALG_ASYNC, .cra_blocksize = SHA1_BLOCK_SIZE, .cra_ctxsize = sizeof(struct dcp_async_ctx), .cra_module = THIS_MODULE, .cra_init = dcp_sha_cra_init, .cra_exit = dcp_sha_cra_exit, }, }, }; /* SHA256 */ static struct ahash_alg dcp_sha256_alg = { .init = dcp_sha_init, .update = dcp_sha_update, .final = dcp_sha_final, .finup = dcp_sha_finup, .digest = dcp_sha_digest, .export = dcp_sha_export, .import = dcp_sha_import, .halg = { .digestsize = SHA256_DIGEST_SIZE, .statesize = sizeof(struct dcp_export_state), .base = { .cra_name = "sha256", .cra_driver_name = "sha256-dcp", .cra_priority = 400, .cra_alignmask = 63, .cra_flags = CRYPTO_ALG_ASYNC, .cra_blocksize = SHA256_BLOCK_SIZE, .cra_ctxsize = sizeof(struct dcp_async_ctx), .cra_module = THIS_MODULE, .cra_init = dcp_sha_cra_init, .cra_exit = dcp_sha_cra_exit, }, }, }; static irqreturn_t mxs_dcp_irq(int irq, void *context) { struct dcp *sdcp = context; uint32_t stat; int i; stat = readl(sdcp->base + MXS_DCP_STAT); stat &= MXS_DCP_STAT_IRQ_MASK; if (!stat) return IRQ_NONE; /* Clear the interrupts. */ writel(stat, sdcp->base + MXS_DCP_STAT_CLR); /* Complete the DMA requests that finished. */ for (i = 0; i < DCP_MAX_CHANS; i++) if (stat & (1 << i)) complete(&sdcp->completion[i]); return IRQ_HANDLED; } static int mxs_dcp_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct dcp *sdcp = NULL; int i, ret; struct resource *iores; int dcp_vmi_irq, dcp_irq; if (global_sdcp) { dev_err(dev, "Only one DCP instance allowed!\n"); return -ENODEV; } iores = platform_get_resource(pdev, IORESOURCE_MEM, 0); dcp_vmi_irq = platform_get_irq(pdev, 0); if (dcp_vmi_irq < 0) { dev_err(dev, "Failed to get IRQ: (%d)!\n", dcp_vmi_irq); return dcp_vmi_irq; } dcp_irq = platform_get_irq(pdev, 1); if (dcp_irq < 0) { dev_err(dev, "Failed to get IRQ: (%d)!\n", dcp_irq); return dcp_irq; } sdcp = devm_kzalloc(dev, sizeof(*sdcp), GFP_KERNEL); if (!sdcp) return -ENOMEM; sdcp->dev = dev; sdcp->base = devm_ioremap_resource(dev, iores); if (IS_ERR(sdcp->base)) return PTR_ERR(sdcp->base); #ifdef CONFIG_ARM sdcp->dcp_clk = devm_clk_get(dev, "dcp"); if (IS_ERR(sdcp->dcp_clk)) { ret = PTR_ERR(sdcp->dcp_clk); dev_err(dev, "can't identify DCP clk: %d\n", ret); return -ENODEV; } ret = clk_prepare(sdcp->dcp_clk); if (ret < 0) { dev_err(&pdev->dev, "can't prepare DCP clock: %d\n", ret); return -ENODEV; } ret = clk_enable(sdcp->dcp_clk); if (ret < 0) { dev_err(&pdev->dev, "can't enable DCP clock: %d\n", ret); return -ENODEV; } #endif ret = devm_request_irq(dev, dcp_vmi_irq, mxs_dcp_irq, 0, "dcp-vmi-irq", sdcp); if (ret) { dev_err(dev, "Failed to claim DCP VMI IRQ!\n"); return ret; } ret = devm_request_irq(dev, dcp_irq, mxs_dcp_irq, 0, "dcp-irq", sdcp); if (ret) { dev_err(dev, "Failed to claim DCP IRQ!\n"); return ret; } /* Allocate coherent helper block. */ sdcp->coh = devm_kzalloc(dev, sizeof(*sdcp->coh) + DCP_ALIGNMENT, GFP_KERNEL); if (!sdcp->coh) return -ENOMEM; /* Re-align the structure so it fits the DCP constraints. */ sdcp->coh = PTR_ALIGN(sdcp->coh, DCP_ALIGNMENT); /* Restart the DCP block. */ ret = stmp_reset_block(sdcp->base); if (ret) return ret; /* Initialize control register. */ writel(MXS_DCP_CTRL_GATHER_RESIDUAL_WRITES | MXS_DCP_CTRL_ENABLE_CONTEXT_CACHING | 0xf, sdcp->base + MXS_DCP_CTRL); /* Enable all DCP DMA channels. */ writel(MXS_DCP_CHANNELCTRL_ENABLE_CHANNEL_MASK, sdcp->base + MXS_DCP_CHANNELCTRL); /* * We do not enable context switching. Give the context buffer a * pointer to an illegal address so if context switching is * inadvertantly enabled, the DCP will return an error instead of * trashing good memory. The DCP DMA cannot access ROM, so any ROM * address will do. */ writel(0xffff0000, sdcp->base + MXS_DCP_CONTEXT); for (i = 0; i < DCP_MAX_CHANS; i++) writel(0xffffffff, sdcp->base + MXS_DCP_CH_N_STAT_CLR(i)); writel(0xffffffff, sdcp->base + MXS_DCP_STAT_CLR); global_sdcp = sdcp; platform_set_drvdata(pdev, sdcp); for (i = 0; i < DCP_MAX_CHANS; i++) { spin_lock_init(&sdcp->lock[i]); init_completion(&sdcp->completion[i]); crypto_init_queue(&sdcp->queue[i], 50); } /* * Enable driver alignment with hw behavior for sha generation */ sdcp->enable_sha_workaround = 1; /* Create the SHA and AES handler threads. */ sdcp->thread[DCP_CHAN_HASH_SHA] = kthread_run(dcp_chan_thread_sha, NULL, "mxs_dcp_chan/sha"); if (IS_ERR(sdcp->thread[DCP_CHAN_HASH_SHA])) { dev_err(dev, "Error starting SHA thread!\n"); return PTR_ERR(sdcp->thread[DCP_CHAN_HASH_SHA]); } sdcp->thread[DCP_CHAN_CRYPTO] = kthread_run(dcp_chan_thread_aes, NULL, "mxs_dcp_chan/aes"); if (IS_ERR(sdcp->thread[DCP_CHAN_CRYPTO])) { dev_err(dev, "Error starting SHA thread!\n"); ret = PTR_ERR(sdcp->thread[DCP_CHAN_CRYPTO]); goto err_destroy_sha_thread; } /* Register the various crypto algorithms. */ sdcp->caps = readl(sdcp->base + MXS_DCP_CAPABILITY1); if (sdcp->caps & MXS_DCP_CAPABILITY1_AES128) { ret = crypto_register_algs(dcp_aes_algs, ARRAY_SIZE(dcp_aes_algs)); if (ret) { /* Failed to register algorithm. */ dev_err(dev, "Failed to register AES crypto!\n"); goto err_destroy_aes_thread; } } if (sdcp->caps & MXS_DCP_CAPABILITY1_SHA1) { ret = crypto_register_ahash(&dcp_sha1_alg); if (ret) { dev_err(dev, "Failed to register %s hash!\n", dcp_sha1_alg.halg.base.cra_name); goto err_unregister_aes; } } if (sdcp->caps & MXS_DCP_CAPABILITY1_SHA256) { ret = crypto_register_ahash(&dcp_sha256_alg); if (ret) { dev_err(dev, "Failed to register %s hash!\n", dcp_sha256_alg.halg.base.cra_name); goto err_unregister_sha1; } } return 0; err_unregister_sha1: if (sdcp->caps & MXS_DCP_CAPABILITY1_SHA1) crypto_unregister_ahash(&dcp_sha1_alg); err_unregister_aes: if (sdcp->caps & MXS_DCP_CAPABILITY1_AES128) crypto_unregister_algs(dcp_aes_algs, ARRAY_SIZE(dcp_aes_algs)); err_destroy_aes_thread: kthread_stop(sdcp->thread[DCP_CHAN_CRYPTO]); err_destroy_sha_thread: kthread_stop(sdcp->thread[DCP_CHAN_HASH_SHA]); return ret; } static int mxs_dcp_remove(struct platform_device *pdev) { struct dcp *sdcp = platform_get_drvdata(pdev); if (sdcp->caps & MXS_DCP_CAPABILITY1_SHA256) crypto_unregister_ahash(&dcp_sha256_alg); if (sdcp->caps & MXS_DCP_CAPABILITY1_SHA1) crypto_unregister_ahash(&dcp_sha1_alg); if (sdcp->caps & MXS_DCP_CAPABILITY1_AES128) crypto_unregister_algs(dcp_aes_algs, ARRAY_SIZE(dcp_aes_algs)); kthread_stop(sdcp->thread[DCP_CHAN_HASH_SHA]); kthread_stop(sdcp->thread[DCP_CHAN_CRYPTO]); #ifdef CONFIG_ARM /* shut clocks off before finalizing shutdown */ clk_disable(sdcp->dcp_clk); #endif platform_set_drvdata(pdev, NULL); global_sdcp = NULL; return 0; } static const struct of_device_id mxs_dcp_dt_ids[] = { { .compatible = "fsl,imx23-dcp", .data = NULL, }, { .compatible = "fsl,imx28-dcp", .data = NULL, }, { .compatible = "fsl,imx6sl-dcp", .data = NULL, }, { /* sentinel */ } }; MODULE_DEVICE_TABLE(of, mxs_dcp_dt_ids); static struct platform_driver mxs_dcp_driver = { .probe = mxs_dcp_probe, .remove = mxs_dcp_remove, .driver = { .name = "mxs-dcp", .of_match_table = mxs_dcp_dt_ids, }, }; module_platform_driver(mxs_dcp_driver); MODULE_AUTHOR("Marek Vasut "); MODULE_DESCRIPTION("Freescale MXS DCP Driver"); MODULE_LICENSE("GPL"); MODULE_ALIAS("platform:mxs-dcp");