/* * Copyright 2017 Cisco Systems, Inc. and/or its affiliates. All rights reserved. * * This program is free software; you may redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; version 2 of the License. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include #include #include #include /* All timings are in microseconds */ /* start bit timings */ #define CEC_TIM_START_BIT_LOW 3700 #define CEC_TIM_START_BIT_LOW_MIN 3500 #define CEC_TIM_START_BIT_LOW_MAX 3900 #define CEC_TIM_START_BIT_TOTAL 4500 #define CEC_TIM_START_BIT_TOTAL_MIN 4300 #define CEC_TIM_START_BIT_TOTAL_MAX 4700 /* data bit timings */ #define CEC_TIM_DATA_BIT_0_LOW 1500 #define CEC_TIM_DATA_BIT_0_LOW_MIN 1300 #define CEC_TIM_DATA_BIT_0_LOW_MAX 1700 #define CEC_TIM_DATA_BIT_1_LOW 600 #define CEC_TIM_DATA_BIT_1_LOW_MIN 400 #define CEC_TIM_DATA_BIT_1_LOW_MAX 800 #define CEC_TIM_DATA_BIT_TOTAL 2400 #define CEC_TIM_DATA_BIT_TOTAL_MIN 2050 #define CEC_TIM_DATA_BIT_TOTAL_MAX 2750 /* earliest safe time to sample the bit state */ #define CEC_TIM_DATA_BIT_SAMPLE 850 /* earliest time the bit is back to 1 (T7 + 50) */ #define CEC_TIM_DATA_BIT_HIGH 1750 /* when idle, sample once per millisecond */ #define CEC_TIM_IDLE_SAMPLE 1000 /* when processing the start bit, sample twice per millisecond */ #define CEC_TIM_START_BIT_SAMPLE 500 /* when polling for a state change, sample once every 50 micoseconds */ #define CEC_TIM_SAMPLE 50 #define CEC_TIM_LOW_DRIVE_ERROR (1.5 * CEC_TIM_DATA_BIT_TOTAL) struct cec_state { const char * const name; unsigned int usecs; }; static const struct cec_state states[CEC_PIN_STATES] = { { "Off", 0 }, { "Idle", CEC_TIM_IDLE_SAMPLE }, { "Tx Wait", CEC_TIM_SAMPLE }, { "Tx Wait for High", CEC_TIM_IDLE_SAMPLE }, { "Tx Start Bit Low", CEC_TIM_START_BIT_LOW }, { "Tx Start Bit High", CEC_TIM_START_BIT_TOTAL - CEC_TIM_START_BIT_LOW }, { "Tx Data 0 Low", CEC_TIM_DATA_BIT_0_LOW }, { "Tx Data 0 High", CEC_TIM_DATA_BIT_TOTAL - CEC_TIM_DATA_BIT_0_LOW }, { "Tx Data 1 Low", CEC_TIM_DATA_BIT_1_LOW }, { "Tx Data 1 High", CEC_TIM_DATA_BIT_TOTAL - CEC_TIM_DATA_BIT_1_LOW }, { "Tx Data 1 Pre Sample", CEC_TIM_DATA_BIT_SAMPLE - CEC_TIM_DATA_BIT_1_LOW }, { "Tx Data 1 Post Sample", CEC_TIM_DATA_BIT_TOTAL - CEC_TIM_DATA_BIT_SAMPLE }, { "Rx Start Bit Low", CEC_TIM_SAMPLE }, { "Rx Start Bit High", CEC_TIM_SAMPLE }, { "Rx Data Sample", CEC_TIM_DATA_BIT_SAMPLE }, { "Rx Data Post Sample", CEC_TIM_DATA_BIT_HIGH - CEC_TIM_DATA_BIT_SAMPLE }, { "Rx Data High", CEC_TIM_SAMPLE }, { "Rx Ack Low", CEC_TIM_DATA_BIT_0_LOW }, { "Rx Ack Low Post", CEC_TIM_DATA_BIT_HIGH - CEC_TIM_DATA_BIT_0_LOW }, { "Rx Ack High Post", CEC_TIM_DATA_BIT_HIGH }, { "Rx Ack Finish", CEC_TIM_DATA_BIT_TOTAL_MIN - CEC_TIM_DATA_BIT_HIGH }, { "Rx Low Drive", CEC_TIM_LOW_DRIVE_ERROR }, { "Rx Irq", 0 }, }; static void cec_pin_update(struct cec_pin *pin, bool v, bool force) { if (!force && v == pin->adap->cec_pin_is_high) return; pin->adap->cec_pin_is_high = v; if (atomic_read(&pin->work_pin_events) < CEC_NUM_PIN_EVENTS) { pin->work_pin_is_high[pin->work_pin_events_wr] = v; pin->work_pin_ts[pin->work_pin_events_wr] = ktime_get(); pin->work_pin_events_wr = (pin->work_pin_events_wr + 1) % CEC_NUM_PIN_EVENTS; atomic_inc(&pin->work_pin_events); } wake_up_interruptible(&pin->kthread_waitq); } static bool cec_pin_read(struct cec_pin *pin) { bool v = pin->ops->read(pin->adap); cec_pin_update(pin, v, false); return v; } static void cec_pin_low(struct cec_pin *pin) { pin->ops->low(pin->adap); cec_pin_update(pin, false, false); } static bool cec_pin_high(struct cec_pin *pin) { pin->ops->high(pin->adap); return cec_pin_read(pin); } static void cec_pin_to_idle(struct cec_pin *pin) { /* * Reset all status fields, release the bus and * go to idle state. */ pin->rx_bit = pin->tx_bit = 0; pin->rx_msg.len = 0; memset(pin->rx_msg.msg, 0, sizeof(pin->rx_msg.msg)); pin->state = CEC_ST_IDLE; pin->ts = 0; } /* * Handle Transmit-related states * * Basic state changes when transmitting: * * Idle -> Tx Wait (waiting for the end of signal free time) -> * Tx Start Bit Low -> Tx Start Bit High -> * * Regular data bits + EOM: * Tx Data 0 Low -> Tx Data 0 High -> * or: * Tx Data 1 Low -> Tx Data 1 High -> * * First 4 data bits or Ack bit: * Tx Data 0 Low -> Tx Data 0 High -> * or: * Tx Data 1 Low -> Tx Data 1 High -> Tx Data 1 Pre Sample -> * Tx Data 1 Post Sample -> * * After the last Ack go to Idle. * * If it detects a Low Drive condition then: * Tx Wait For High -> Idle * * If it loses arbitration, then it switches to state Rx Data Post Sample. */ static void cec_pin_tx_states(struct cec_pin *pin, ktime_t ts) { bool v; bool is_ack_bit, ack; switch (pin->state) { case CEC_ST_TX_WAIT_FOR_HIGH: if (cec_pin_read(pin)) cec_pin_to_idle(pin); break; case CEC_ST_TX_START_BIT_LOW: pin->state = CEC_ST_TX_START_BIT_HIGH; /* Generate start bit */ cec_pin_high(pin); break; case CEC_ST_TX_DATA_BIT_1_HIGH_POST_SAMPLE: /* If the read value is 1, then all is OK */ if (!cec_pin_read(pin)) { /* * It's 0, so someone detected an error and pulled the * line low for 1.5 times the nominal bit period. */ pin->tx_msg.len = 0; pin->work_tx_ts = ts; pin->work_tx_status = CEC_TX_STATUS_LOW_DRIVE; pin->state = CEC_ST_TX_WAIT_FOR_HIGH; wake_up_interruptible(&pin->kthread_waitq); break; } if (pin->tx_nacked) { cec_pin_to_idle(pin); pin->tx_msg.len = 0; pin->work_tx_ts = ts; pin->work_tx_status = CEC_TX_STATUS_NACK; wake_up_interruptible(&pin->kthread_waitq); break; } /* fall through */ case CEC_ST_TX_DATA_BIT_0_HIGH: case CEC_ST_TX_DATA_BIT_1_HIGH: pin->tx_bit++; /* fall through */ case CEC_ST_TX_START_BIT_HIGH: if (pin->tx_bit / 10 >= pin->tx_msg.len) { cec_pin_to_idle(pin); pin->tx_msg.len = 0; pin->work_tx_ts = ts; pin->work_tx_status = CEC_TX_STATUS_OK; wake_up_interruptible(&pin->kthread_waitq); break; } switch (pin->tx_bit % 10) { default: v = pin->tx_msg.msg[pin->tx_bit / 10] & (1 << (7 - (pin->tx_bit % 10))); pin->state = v ? CEC_ST_TX_DATA_BIT_1_LOW : CEC_ST_TX_DATA_BIT_0_LOW; break; case 8: v = pin->tx_bit / 10 == pin->tx_msg.len - 1; pin->state = v ? CEC_ST_TX_DATA_BIT_1_LOW : CEC_ST_TX_DATA_BIT_0_LOW; break; case 9: pin->state = CEC_ST_TX_DATA_BIT_1_LOW; break; } cec_pin_low(pin); break; case CEC_ST_TX_DATA_BIT_0_LOW: case CEC_ST_TX_DATA_BIT_1_LOW: v = pin->state == CEC_ST_TX_DATA_BIT_1_LOW; pin->state = v ? CEC_ST_TX_DATA_BIT_1_HIGH : CEC_ST_TX_DATA_BIT_0_HIGH; is_ack_bit = pin->tx_bit % 10 == 9; if (v && (pin->tx_bit < 4 || is_ack_bit)) pin->state = CEC_ST_TX_DATA_BIT_1_HIGH_PRE_SAMPLE; cec_pin_high(pin); break; case CEC_ST_TX_DATA_BIT_1_HIGH_PRE_SAMPLE: /* Read the CEC value at the sample time */ v = cec_pin_read(pin); is_ack_bit = pin->tx_bit % 10 == 9; /* * If v == 0 and we're within the first 4 bits * of the initiator, then someone else started * transmitting and we lost the arbitration * (i.e. the logical address of the other * transmitter has more leading 0 bits in the * initiator). */ if (!v && !is_ack_bit) { pin->tx_msg.len = 0; pin->work_tx_ts = ts; pin->work_tx_status = CEC_TX_STATUS_ARB_LOST; wake_up_interruptible(&pin->kthread_waitq); pin->rx_bit = pin->tx_bit; pin->tx_bit = 0; memset(pin->rx_msg.msg, 0, sizeof(pin->rx_msg.msg)); pin->rx_msg.msg[0] = pin->tx_msg.msg[0]; pin->rx_msg.msg[0] &= ~(1 << (7 - pin->rx_bit)); pin->rx_msg.len = 0; pin->state = CEC_ST_RX_DATA_POST_SAMPLE; pin->rx_bit++; break; } pin->state = CEC_ST_TX_DATA_BIT_1_HIGH_POST_SAMPLE; if (!is_ack_bit) break; /* Was the message ACKed? */ ack = cec_msg_is_broadcast(&pin->tx_msg) ? v : !v; if (!ack) { /* * Note: the CEC spec is ambiguous regarding * what action to take when a NACK appears * before the last byte of the payload was * transmitted: either stop transmitting * immediately, or wait until the last byte * was transmitted. * * Most CEC implementations appear to stop * immediately, and that's what we do here * as well. */ pin->tx_nacked = true; } break; default: break; } } /* * Handle Receive-related states * * Basic state changes when receiving: * * Rx Start Bit Low -> Rx Start Bit High -> * Regular data bits + EOM: * Rx Data Sample -> Rx Data Post Sample -> Rx Data High -> * Ack bit 0: * Rx Ack Low -> Rx Ack Low Post -> Rx Data High -> * Ack bit 1: * Rx Ack High Post -> Rx Data High -> * Ack bit 0 && EOM: * Rx Ack Low -> Rx Ack Low Post -> Rx Ack Finish -> Idle */ static void cec_pin_rx_states(struct cec_pin *pin, ktime_t ts) { s32 delta; bool v; bool ack; bool bcast, for_us; u8 dest; switch (pin->state) { /* Receive states */ case CEC_ST_RX_START_BIT_LOW: v = cec_pin_read(pin); if (!v) break; pin->state = CEC_ST_RX_START_BIT_HIGH; delta = ktime_us_delta(ts, pin->ts); pin->ts = ts; /* Start bit low is too short, go back to idle */ if (delta < CEC_TIM_START_BIT_LOW_MIN - CEC_TIM_IDLE_SAMPLE) { cec_pin_to_idle(pin); } break; case CEC_ST_RX_START_BIT_HIGH: v = cec_pin_read(pin); delta = ktime_us_delta(ts, pin->ts); if (v && delta > CEC_TIM_START_BIT_TOTAL_MAX - CEC_TIM_START_BIT_LOW_MIN) { cec_pin_to_idle(pin); break; } if (v) break; pin->state = CEC_ST_RX_DATA_SAMPLE; pin->ts = ts; pin->rx_eom = false; break; case CEC_ST_RX_DATA_SAMPLE: v = cec_pin_read(pin); pin->state = CEC_ST_RX_DATA_POST_SAMPLE; switch (pin->rx_bit % 10) { default: if (pin->rx_bit / 10 < CEC_MAX_MSG_SIZE) pin->rx_msg.msg[pin->rx_bit / 10] |= v << (7 - (pin->rx_bit % 10)); break; case 8: pin->rx_eom = v; pin->rx_msg.len = pin->rx_bit / 10 + 1; break; case 9: break; } pin->rx_bit++; break; case CEC_ST_RX_DATA_POST_SAMPLE: pin->state = CEC_ST_RX_DATA_HIGH; break; case CEC_ST_RX_DATA_HIGH: v = cec_pin_read(pin); delta = ktime_us_delta(ts, pin->ts); if (v && delta > CEC_TIM_DATA_BIT_TOTAL_MAX) { cec_pin_to_idle(pin); break; } if (v) break; /* * Go to low drive state when the total bit time is * too short. */ if (delta < CEC_TIM_DATA_BIT_TOTAL_MIN) { cec_pin_low(pin); pin->state = CEC_ST_LOW_DRIVE; break; } pin->ts = ts; if (pin->rx_bit % 10 != 9) { pin->state = CEC_ST_RX_DATA_SAMPLE; break; } dest = cec_msg_destination(&pin->rx_msg); bcast = dest == CEC_LOG_ADDR_BROADCAST; /* for_us == broadcast or directed to us */ for_us = bcast || (pin->la_mask & (1 << dest)); /* ACK bit value */ ack = bcast ? 1 : !for_us; if (ack) { /* No need to write to the bus, just wait */ pin->state = CEC_ST_RX_ACK_HIGH_POST; break; } cec_pin_low(pin); pin->state = CEC_ST_RX_ACK_LOW; break; case CEC_ST_RX_ACK_LOW: cec_pin_high(pin); pin->state = CEC_ST_RX_ACK_LOW_POST; break; case CEC_ST_RX_ACK_LOW_POST: case CEC_ST_RX_ACK_HIGH_POST: v = cec_pin_read(pin); if (v && pin->rx_eom) { pin->work_rx_msg = pin->rx_msg; pin->work_rx_msg.rx_ts = ts; wake_up_interruptible(&pin->kthread_waitq); pin->ts = ts; pin->state = CEC_ST_RX_ACK_FINISH; break; } pin->rx_bit++; pin->state = CEC_ST_RX_DATA_HIGH; break; case CEC_ST_RX_ACK_FINISH: cec_pin_to_idle(pin); break; default: break; } } /* * Main timer function * */ static enum hrtimer_restart cec_pin_timer(struct hrtimer *timer) { struct cec_pin *pin = container_of(timer, struct cec_pin, timer); struct cec_adapter *adap = pin->adap; ktime_t ts; s32 delta; ts = ktime_get(); if (pin->timer_ts) { delta = ktime_us_delta(ts, pin->timer_ts); pin->timer_cnt++; if (delta > 100 && pin->state != CEC_ST_IDLE) { /* Keep track of timer overruns */ pin->timer_sum_overrun += delta; pin->timer_100ms_overruns++; if (delta > 300) pin->timer_300ms_overruns++; if (delta > pin->timer_max_overrun) pin->timer_max_overrun = delta; } } if (adap->monitor_pin_cnt) cec_pin_read(pin); if (pin->wait_usecs) { /* * If we are monitoring the pin, then we have to * sample at regular intervals. */ if (pin->wait_usecs > 150) { pin->wait_usecs -= 100; pin->timer_ts = ktime_add_us(ts, 100); hrtimer_forward_now(timer, 100000); return HRTIMER_RESTART; } if (pin->wait_usecs > 100) { pin->wait_usecs /= 2; pin->timer_ts = ktime_add_us(ts, pin->wait_usecs); hrtimer_forward_now(timer, pin->wait_usecs * 1000); return HRTIMER_RESTART; } pin->timer_ts = ktime_add_us(ts, pin->wait_usecs); hrtimer_forward_now(timer, pin->wait_usecs * 1000); pin->wait_usecs = 0; return HRTIMER_RESTART; } switch (pin->state) { /* Transmit states */ case CEC_ST_TX_WAIT_FOR_HIGH: case CEC_ST_TX_START_BIT_LOW: case CEC_ST_TX_DATA_BIT_1_HIGH_POST_SAMPLE: case CEC_ST_TX_DATA_BIT_0_HIGH: case CEC_ST_TX_DATA_BIT_1_HIGH: case CEC_ST_TX_START_BIT_HIGH: case CEC_ST_TX_DATA_BIT_0_LOW: case CEC_ST_TX_DATA_BIT_1_LOW: case CEC_ST_TX_DATA_BIT_1_HIGH_PRE_SAMPLE: cec_pin_tx_states(pin, ts); break; /* Receive states */ case CEC_ST_RX_START_BIT_LOW: case CEC_ST_RX_START_BIT_HIGH: case CEC_ST_RX_DATA_SAMPLE: case CEC_ST_RX_DATA_POST_SAMPLE: case CEC_ST_RX_DATA_HIGH: case CEC_ST_RX_ACK_LOW: case CEC_ST_RX_ACK_LOW_POST: case CEC_ST_RX_ACK_HIGH_POST: case CEC_ST_RX_ACK_FINISH: cec_pin_rx_states(pin, ts); break; case CEC_ST_IDLE: case CEC_ST_TX_WAIT: if (!cec_pin_high(pin)) { /* Start bit, switch to receive state */ pin->ts = ts; pin->state = CEC_ST_RX_START_BIT_LOW; break; } if (pin->ts == 0) pin->ts = ts; if (pin->tx_msg.len) { /* * Check if the bus has been free for long enough * so we can kick off the pending transmit. */ delta = ktime_us_delta(ts, pin->ts); if (delta / CEC_TIM_DATA_BIT_TOTAL > pin->tx_signal_free_time) { pin->tx_nacked = false; pin->state = CEC_ST_TX_START_BIT_LOW; /* Generate start bit */ cec_pin_low(pin); break; } if (delta / CEC_TIM_DATA_BIT_TOTAL > pin->tx_signal_free_time - 1) pin->state = CEC_ST_TX_WAIT; break; } if (pin->state != CEC_ST_IDLE || pin->ops->enable_irq == NULL || pin->enable_irq_failed || adap->is_configuring || adap->is_configured || adap->monitor_all_cnt) break; /* Switch to interrupt mode */ atomic_set(&pin->work_irq_change, CEC_PIN_IRQ_ENABLE); pin->state = CEC_ST_RX_IRQ; wake_up_interruptible(&pin->kthread_waitq); return HRTIMER_NORESTART; case CEC_ST_LOW_DRIVE: cec_pin_to_idle(pin); break; default: break; } if (!adap->monitor_pin_cnt || states[pin->state].usecs <= 150) { pin->wait_usecs = 0; pin->timer_ts = ktime_add_us(ts, states[pin->state].usecs); hrtimer_forward_now(timer, states[pin->state].usecs * 1000); return HRTIMER_RESTART; } pin->wait_usecs = states[pin->state].usecs - 100; pin->timer_ts = ktime_add_us(ts, 100); hrtimer_forward_now(timer, 100000); return HRTIMER_RESTART; } static int cec_pin_thread_func(void *_adap) { struct cec_adapter *adap = _adap; struct cec_pin *pin = adap->pin; for (;;) { wait_event_interruptible(pin->kthread_waitq, kthread_should_stop() || pin->work_rx_msg.len || pin->work_tx_status || atomic_read(&pin->work_irq_change) || atomic_read(&pin->work_pin_events)); if (pin->work_rx_msg.len) { cec_received_msg_ts(adap, &pin->work_rx_msg, pin->work_rx_msg.rx_ts); pin->work_rx_msg.len = 0; } if (pin->work_tx_status) { unsigned int tx_status = pin->work_tx_status; pin->work_tx_status = 0; cec_transmit_attempt_done_ts(adap, tx_status, pin->work_tx_ts); } while (atomic_read(&pin->work_pin_events)) { unsigned int idx = pin->work_pin_events_rd; cec_queue_pin_cec_event(adap, pin->work_pin_is_high[idx], pin->work_pin_ts[idx]); pin->work_pin_events_rd = (idx + 1) % CEC_NUM_PIN_EVENTS; atomic_dec(&pin->work_pin_events); } switch (atomic_xchg(&pin->work_irq_change, CEC_PIN_IRQ_UNCHANGED)) { case CEC_PIN_IRQ_DISABLE: pin->ops->disable_irq(adap); cec_pin_high(pin); cec_pin_to_idle(pin); hrtimer_start(&pin->timer, 0, HRTIMER_MODE_REL); break; case CEC_PIN_IRQ_ENABLE: pin->enable_irq_failed = !pin->ops->enable_irq(adap); if (pin->enable_irq_failed) { cec_pin_to_idle(pin); hrtimer_start(&pin->timer, 0, HRTIMER_MODE_REL); } break; default: break; } if (kthread_should_stop()) break; } return 0; } static int cec_pin_adap_enable(struct cec_adapter *adap, bool enable) { struct cec_pin *pin = adap->pin; pin->enabled = enable; if (enable) { atomic_set(&pin->work_pin_events, 0); pin->work_pin_events_rd = pin->work_pin_events_wr = 0; cec_pin_read(pin); cec_pin_to_idle(pin); pin->tx_msg.len = 0; pin->timer_ts = 0; atomic_set(&pin->work_irq_change, CEC_PIN_IRQ_UNCHANGED); pin->kthread = kthread_run(cec_pin_thread_func, adap, "cec-pin"); if (IS_ERR(pin->kthread)) { pr_err("cec-pin: kernel_thread() failed\n"); return PTR_ERR(pin->kthread); } hrtimer_start(&pin->timer, 0, HRTIMER_MODE_REL); } else { if (pin->ops->disable_irq) pin->ops->disable_irq(adap); hrtimer_cancel(&pin->timer); kthread_stop(pin->kthread); cec_pin_read(pin); cec_pin_to_idle(pin); pin->state = CEC_ST_OFF; } return 0; } static int cec_pin_adap_log_addr(struct cec_adapter *adap, u8 log_addr) { struct cec_pin *pin = adap->pin; if (log_addr == CEC_LOG_ADDR_INVALID) pin->la_mask = 0; else pin->la_mask |= (1 << log_addr); return 0; } static int cec_pin_adap_transmit(struct cec_adapter *adap, u8 attempts, u32 signal_free_time, struct cec_msg *msg) { struct cec_pin *pin = adap->pin; pin->tx_signal_free_time = signal_free_time; pin->tx_msg = *msg; pin->work_tx_status = 0; pin->tx_bit = 0; if (pin->state == CEC_ST_RX_IRQ) { atomic_set(&pin->work_irq_change, CEC_PIN_IRQ_UNCHANGED); pin->ops->disable_irq(adap); cec_pin_high(pin); cec_pin_to_idle(pin); hrtimer_start(&pin->timer, 0, HRTIMER_MODE_REL); } return 0; } static void cec_pin_adap_status(struct cec_adapter *adap, struct seq_file *file) { struct cec_pin *pin = adap->pin; seq_printf(file, "state: %s\n", states[pin->state].name); seq_printf(file, "tx_bit: %d\n", pin->tx_bit); seq_printf(file, "rx_bit: %d\n", pin->rx_bit); seq_printf(file, "cec pin: %d\n", pin->ops->read(adap)); seq_printf(file, "irq failed: %d\n", pin->enable_irq_failed); if (pin->timer_100ms_overruns) { seq_printf(file, "timer overruns > 100ms: %u of %u\n", pin->timer_100ms_overruns, pin->timer_cnt); seq_printf(file, "timer overruns > 300ms: %u of %u\n", pin->timer_300ms_overruns, pin->timer_cnt); seq_printf(file, "max timer overrun: %u usecs\n", pin->timer_max_overrun); seq_printf(file, "avg timer overrun: %u usecs\n", pin->timer_sum_overrun / pin->timer_100ms_overruns); } pin->timer_cnt = 0; pin->timer_100ms_overruns = 0; pin->timer_300ms_overruns = 0; pin->timer_max_overrun = 0; pin->timer_sum_overrun = 0; if (pin->ops->status) pin->ops->status(adap, file); } static int cec_pin_adap_monitor_all_enable(struct cec_adapter *adap, bool enable) { struct cec_pin *pin = adap->pin; pin->monitor_all = enable; return 0; } static void cec_pin_adap_free(struct cec_adapter *adap) { struct cec_pin *pin = adap->pin; if (pin->ops->free) pin->ops->free(adap); adap->pin = NULL; kfree(pin); } void cec_pin_changed(struct cec_adapter *adap, bool value) { struct cec_pin *pin = adap->pin; cec_pin_update(pin, value, false); if (!value && (adap->is_configuring || adap->is_configured || adap->monitor_all_cnt)) atomic_set(&pin->work_irq_change, CEC_PIN_IRQ_DISABLE); } EXPORT_SYMBOL_GPL(cec_pin_changed); static const struct cec_adap_ops cec_pin_adap_ops = { .adap_enable = cec_pin_adap_enable, .adap_monitor_all_enable = cec_pin_adap_monitor_all_enable, .adap_log_addr = cec_pin_adap_log_addr, .adap_transmit = cec_pin_adap_transmit, .adap_status = cec_pin_adap_status, .adap_free = cec_pin_adap_free, }; struct cec_adapter *cec_pin_allocate_adapter(const struct cec_pin_ops *pin_ops, void *priv, const char *name, u32 caps) { struct cec_adapter *adap; struct cec_pin *pin = kzalloc(sizeof(*pin), GFP_KERNEL); if (pin == NULL) return ERR_PTR(-ENOMEM); pin->ops = pin_ops; hrtimer_init(&pin->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); pin->timer.function = cec_pin_timer; init_waitqueue_head(&pin->kthread_waitq); adap = cec_allocate_adapter(&cec_pin_adap_ops, priv, name, caps | CEC_CAP_MONITOR_ALL | CEC_CAP_MONITOR_PIN, CEC_MAX_LOG_ADDRS); if (PTR_ERR_OR_ZERO(adap)) { kfree(pin); return adap; } adap->pin = pin; pin->adap = adap; cec_pin_update(pin, cec_pin_high(pin), true); return adap; } EXPORT_SYMBOL_GPL(cec_pin_allocate_adapter);