/* cx25840 audio functions * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include #include "cx25840-core.h" /* * Note: The PLL and SRC parameters are based on a reference frequency that * would ideally be: * * NTSC Color subcarrier freq * 8 = 4.5 MHz/286 * 455/2 * 8 = 28.63636363... MHz * * However, it's not the exact reference frequency that matters, only that the * firmware and modules that comprise the driver for a particular board all * use the same value (close to the ideal value). * * Comments below will note which reference frequency is assumed for various * parameters. They will usually be one of * * ref_freq = 28.636360 MHz * or * ref_freq = 28.636363 MHz */ static int cx25840_set_audclk_freq(struct i2c_client *client, u32 freq) { struct cx25840_state *state = to_state(i2c_get_clientdata(client)); if (state->aud_input != CX25840_AUDIO_SERIAL) { switch (freq) { case 32000: /* * VID_PLL Integer = 0x0f, VID_PLL Post Divider = 0x04 * AUX_PLL Integer = 0x06, AUX PLL Post Divider = 0x10 */ cx25840_write4(client, 0x108, 0x1006040f); /* * VID_PLL Fraction (register 0x10c) = 0x2be2fe * 28636360 * 0xf.15f17f0/4 = 108 MHz * 432 MHz pre-postdivide */ /* * AUX_PLL Fraction = 0x1bb39ee * 28636363 * 0x6.dd9cf70/0x10 = 32000 * 384 * 196.6 MHz pre-postdivide * FIXME < 200 MHz is out of specified valid range * FIXME 28636363 ref_freq doesn't match VID PLL ref */ cx25840_write4(client, 0x110, 0x01bb39ee); /* * SA_MCLK_SEL = 1 * SA_MCLK_DIV = 0x10 = 384/384 * AUX_PLL post dvivider */ cx25840_write(client, 0x127, 0x50); if (is_cx2583x(state)) break; /* src3/4/6_ctl */ /* 0x1.f77f = (4 * 28636360/8 * 2/455) / 32000 */ cx25840_write4(client, 0x900, 0x0801f77f); cx25840_write4(client, 0x904, 0x0801f77f); cx25840_write4(client, 0x90c, 0x0801f77f); break; case 44100: /* * VID_PLL Integer = 0x0f, VID_PLL Post Divider = 0x04 * AUX_PLL Integer = 0x09, AUX PLL Post Divider = 0x10 */ cx25840_write4(client, 0x108, 0x1009040f); /* * VID_PLL Fraction (register 0x10c) = 0x2be2fe * 28636360 * 0xf.15f17f0/4 = 108 MHz * 432 MHz pre-postdivide */ /* * AUX_PLL Fraction = 0x0ec6bd6 * 28636363 * 0x9.7635eb0/0x10 = 44100 * 384 * 271 MHz pre-postdivide * FIXME 28636363 ref_freq doesn't match VID PLL ref */ cx25840_write4(client, 0x110, 0x00ec6bd6); /* * SA_MCLK_SEL = 1 * SA_MCLK_DIV = 0x10 = 384/384 * AUX_PLL post dvivider */ cx25840_write(client, 0x127, 0x50); if (is_cx2583x(state)) break; /* src3/4/6_ctl */ /* 0x1.6d59 = (4 * 28636360/8 * 2/455) / 44100 */ cx25840_write4(client, 0x900, 0x08016d59); cx25840_write4(client, 0x904, 0x08016d59); cx25840_write4(client, 0x90c, 0x08016d59); break; case 48000: /* * VID_PLL Integer = 0x0f, VID_PLL Post Divider = 0x04 * AUX_PLL Integer = 0x0a, AUX PLL Post Divider = 0x10 */ cx25840_write4(client, 0x108, 0x100a040f); /* * VID_PLL Fraction (register 0x10c) = 0x2be2fe * 28636360 * 0xf.15f17f0/4 = 108 MHz * 432 MHz pre-postdivide */ /* * AUX_PLL Fraction = 0x098d6e5 * 28636363 * 0xa.4c6b728/0x10 = 48000 * 384 * 295 MHz pre-postdivide * FIXME 28636363 ref_freq doesn't match VID PLL ref */ cx25840_write4(client, 0x110, 0x0098d6e5); /* * SA_MCLK_SEL = 1 * SA_MCLK_DIV = 0x10 = 384/384 * AUX_PLL post dvivider */ cx25840_write(client, 0x127, 0x50); if (is_cx2583x(state)) break; /* src3/4/6_ctl */ /* 0x1.4faa = (4 * 28636360/8 * 2/455) / 48000 */ cx25840_write4(client, 0x900, 0x08014faa); cx25840_write4(client, 0x904, 0x08014faa); cx25840_write4(client, 0x90c, 0x08014faa); break; } } else { switch (freq) { case 32000: /* * VID_PLL Integer = 0x0f, VID_PLL Post Divider = 0x04 * AUX_PLL Integer = 0x08, AUX PLL Post Divider = 0x1e */ cx25840_write4(client, 0x108, 0x1e08040f); /* * VID_PLL Fraction (register 0x10c) = 0x2be2fe * 28636360 * 0xf.15f17f0/4 = 108 MHz * 432 MHz pre-postdivide */ /* * AUX_PLL Fraction = 0x12a0869 * 28636363 * 0x8.9504348/0x1e = 32000 * 256 * 246 MHz pre-postdivide * FIXME 28636363 ref_freq doesn't match VID PLL ref */ cx25840_write4(client, 0x110, 0x012a0869); /* * SA_MCLK_SEL = 1 * SA_MCLK_DIV = 0x14 = 256/384 * AUX_PLL post dvivider */ cx25840_write(client, 0x127, 0x54); if (is_cx2583x(state)) break; /* src1_ctl */ /* 0x1.0000 = 32000/32000 */ cx25840_write4(client, 0x8f8, 0x08010000); /* src3/4/6_ctl */ /* 0x2.0000 = 2 * (32000/32000) */ cx25840_write4(client, 0x900, 0x08020000); cx25840_write4(client, 0x904, 0x08020000); cx25840_write4(client, 0x90c, 0x08020000); break; case 44100: /* * VID_PLL Integer = 0x0f, VID_PLL Post Divider = 0x04 * AUX_PLL Integer = 0x09, AUX PLL Post Divider = 0x18 */ cx25840_write4(client, 0x108, 0x1809040f); /* * VID_PLL Fraction (register 0x10c) = 0x2be2fe * 28636360 * 0xf.15f17f0/4 = 108 MHz * 432 MHz pre-postdivide */ /* * AUX_PLL Fraction = 0x0ec6bd6 * 28636363 * 0x9.7635eb0/0x18 = 44100 * 256 * 271 MHz pre-postdivide * FIXME 28636363 ref_freq doesn't match VID PLL ref */ cx25840_write4(client, 0x110, 0x00ec6bd6); /* * SA_MCLK_SEL = 1 * SA_MCLK_DIV = 0x10 = 256/384 * AUX_PLL post dvivider */ cx25840_write(client, 0x127, 0x50); if (is_cx2583x(state)) break; /* src1_ctl */ /* 0x1.60cd = 44100/32000 */ cx25840_write4(client, 0x8f8, 0x080160cd); /* src3/4/6_ctl */ /* 0x1.7385 = 2 * (32000/44100) */ cx25840_write4(client, 0x900, 0x08017385); cx25840_write4(client, 0x904, 0x08017385); cx25840_write4(client, 0x90c, 0x08017385); break; case 48000: /* * VID_PLL Integer = 0x0f, VID_PLL Post Divider = 0x04 * AUX_PLL Integer = 0x0a, AUX PLL Post Divider = 0x18 */ cx25840_write4(client, 0x108, 0x180a040f); /* * VID_PLL Fraction (register 0x10c) = 0x2be2fe * 28636360 * 0xf.15f17f0/4 = 108 MHz * 432 MHz pre-postdivide */ /* * AUX_PLL Fraction = 0x098d6e5 * 28636363 * 0xa.4c6b728/0x18 = 48000 * 256 * 295 MHz pre-postdivide * FIXME 28636363 ref_freq doesn't match VID PLL ref */ cx25840_write4(client, 0x110, 0x0098d6e5); /* * SA_MCLK_SEL = 1 * SA_MCLK_DIV = 0x10 = 256/384 * AUX_PLL post dvivider */ cx25840_write(client, 0x127, 0x50); if (is_cx2583x(state)) break; /* src1_ctl */ /* 0x1.8000 = 48000/32000 */ cx25840_write4(client, 0x8f8, 0x08018000); /* src3/4/6_ctl */ /* 0x1.5555 = 2 * (32000/48000) */ cx25840_write4(client, 0x900, 0x08015555); cx25840_write4(client, 0x904, 0x08015555); cx25840_write4(client, 0x90c, 0x08015555); break; } } state->audclk_freq = freq; return 0; } static inline int cx25836_set_audclk_freq(struct i2c_client *client, u32 freq) { return cx25840_set_audclk_freq(client, freq); } static int cx23885_set_audclk_freq(struct i2c_client *client, u32 freq) { struct cx25840_state *state = to_state(i2c_get_clientdata(client)); if (state->aud_input != CX25840_AUDIO_SERIAL) { switch (freq) { case 32000: case 44100: case 48000: /* We don't have register values * so avoid destroying registers. */ /* FIXME return -EINVAL; */ break; } } else { switch (freq) { case 32000: case 44100: /* We don't have register values * so avoid destroying registers. */ /* FIXME return -EINVAL; */ break; case 48000: /* src1_ctl */ /* 0x1.867c = 48000 / (2 * 28636360/8 * 2/455) */ cx25840_write4(client, 0x8f8, 0x0801867c); /* src3/4/6_ctl */ /* 0x1.4faa = (4 * 28636360/8 * 2/455) / 48000 */ cx25840_write4(client, 0x900, 0x08014faa); cx25840_write4(client, 0x904, 0x08014faa); cx25840_write4(client, 0x90c, 0x08014faa); break; } } state->audclk_freq = freq; return 0; } static int cx231xx_set_audclk_freq(struct i2c_client *client, u32 freq) { struct cx25840_state *state = to_state(i2c_get_clientdata(client)); if (state->aud_input != CX25840_AUDIO_SERIAL) { switch (freq) { case 32000: /* src3/4/6_ctl */ /* 0x1.f77f = (4 * 28636360/8 * 2/455) / 32000 */ cx25840_write4(client, 0x900, 0x0801f77f); cx25840_write4(client, 0x904, 0x0801f77f); cx25840_write4(client, 0x90c, 0x0801f77f); break; case 44100: /* src3/4/6_ctl */ /* 0x1.6d59 = (4 * 28636360/8 * 2/455) / 44100 */ cx25840_write4(client, 0x900, 0x08016d59); cx25840_write4(client, 0x904, 0x08016d59); cx25840_write4(client, 0x90c, 0x08016d59); break; case 48000: /* src3/4/6_ctl */ /* 0x1.4faa = (4 * 28636360/8 * 2/455) / 48000 */ cx25840_write4(client, 0x900, 0x08014faa); cx25840_write4(client, 0x904, 0x08014faa); cx25840_write4(client, 0x90c, 0x08014faa); break; } } else { switch (freq) { /* FIXME These cases make different assumptions about audclk */ case 32000: /* src1_ctl */ /* 0x1.0000 = 32000/32000 */ cx25840_write4(client, 0x8f8, 0x08010000); /* src3/4/6_ctl */ /* 0x2.0000 = 2 * (32000/32000) */ cx25840_write4(client, 0x900, 0x08020000); cx25840_write4(client, 0x904, 0x08020000); cx25840_write4(client, 0x90c, 0x08020000); break; case 44100: /* src1_ctl */ /* 0x1.60cd = 44100/32000 */ cx25840_write4(client, 0x8f8, 0x080160cd); /* src3/4/6_ctl */ /* 0x1.7385 = 2 * (32000/44100) */ cx25840_write4(client, 0x900, 0x08017385); cx25840_write4(client, 0x904, 0x08017385); cx25840_write4(client, 0x90c, 0x08017385); break; case 48000: /* src1_ctl */ /* 0x1.867c = 48000 / (2 * 28636360/8 * 2/455) */ cx25840_write4(client, 0x8f8, 0x0801867c); /* src3/4/6_ctl */ /* 0x1.4faa = (4 * 28636360/8 * 2/455) / 48000 */ cx25840_write4(client, 0x900, 0x08014faa); cx25840_write4(client, 0x904, 0x08014faa); cx25840_write4(client, 0x90c, 0x08014faa); break; } } state->audclk_freq = freq; return 0; } static int set_audclk_freq(struct i2c_client *client, u32 freq) { struct cx25840_state *state = to_state(i2c_get_clientdata(client)); if (freq != 32000 && freq != 44100 && freq != 48000) return -EINVAL; if (is_cx231xx(state)) return cx231xx_set_audclk_freq(client, freq); if (is_cx2388x(state)) return cx23885_set_audclk_freq(client, freq); if (is_cx2583x(state)) return cx25836_set_audclk_freq(client, freq); return cx25840_set_audclk_freq(client, freq); } void cx25840_audio_set_path(struct i2c_client *client) { struct cx25840_state *state = to_state(i2c_get_clientdata(client)); if (!is_cx2583x(state)) { /* assert soft reset */ cx25840_and_or(client, 0x810, ~0x1, 0x01); /* stop microcontroller */ cx25840_and_or(client, 0x803, ~0x10, 0); /* Mute everything to prevent the PFFT! */ cx25840_write(client, 0x8d3, 0x1f); if (state->aud_input == CX25840_AUDIO_SERIAL) { /* Set Path1 to Serial Audio Input */ cx25840_write4(client, 0x8d0, 0x01011012); /* The microcontroller should not be started for the * non-tuner inputs: autodetection is specific for * TV audio. */ } else { /* Set Path1 to Analog Demod Main Channel */ cx25840_write4(client, 0x8d0, 0x1f063870); } } set_audclk_freq(client, state->audclk_freq); if (!is_cx2583x(state)) { if (state->aud_input != CX25840_AUDIO_SERIAL) { /* When the microcontroller detects the * audio format, it will unmute the lines */ cx25840_and_or(client, 0x803, ~0x10, 0x10); } /* deassert soft reset */ cx25840_and_or(client, 0x810, ~0x1, 0x00); /* Ensure the controller is running when we exit */ if (is_cx2388x(state) || is_cx231xx(state)) cx25840_and_or(client, 0x803, ~0x10, 0x10); } } static void set_volume(struct i2c_client *client, int volume) { int vol; /* Convert the volume to msp3400 values (0-127) */ vol = volume >> 9; /* now scale it up to cx25840 values * -114dB to -96dB maps to 0 * this should be 19, but in my testing that was 4dB too loud */ if (vol <= 23) { vol = 0; } else { vol -= 23; } /* PATH1_VOLUME */ cx25840_write(client, 0x8d4, 228 - (vol * 2)); } static void set_balance(struct i2c_client *client, int balance) { int bal = balance >> 8; if (bal > 0x80) { /* PATH1_BAL_LEFT */ cx25840_and_or(client, 0x8d5, 0x7f, 0x80); /* PATH1_BAL_LEVEL */ cx25840_and_or(client, 0x8d5, ~0x7f, bal & 0x7f); } else { /* PATH1_BAL_LEFT */ cx25840_and_or(client, 0x8d5, 0x7f, 0x00); /* PATH1_BAL_LEVEL */ cx25840_and_or(client, 0x8d5, ~0x7f, 0x80 - bal); } } int cx25840_s_clock_freq(struct v4l2_subdev *sd, u32 freq) { struct i2c_client *client = v4l2_get_subdevdata(sd); struct cx25840_state *state = to_state(sd); int retval; if (!is_cx2583x(state)) cx25840_and_or(client, 0x810, ~0x1, 1); if (state->aud_input != CX25840_AUDIO_SERIAL) { cx25840_and_or(client, 0x803, ~0x10, 0); cx25840_write(client, 0x8d3, 0x1f); } retval = set_audclk_freq(client, freq); if (state->aud_input != CX25840_AUDIO_SERIAL) cx25840_and_or(client, 0x803, ~0x10, 0x10); if (!is_cx2583x(state)) cx25840_and_or(client, 0x810, ~0x1, 0); return retval; } static int cx25840_audio_s_ctrl(struct v4l2_ctrl *ctrl) { struct v4l2_subdev *sd = to_sd(ctrl); struct cx25840_state *state = to_state(sd); struct i2c_client *client = v4l2_get_subdevdata(sd); switch (ctrl->id) { case V4L2_CID_AUDIO_VOLUME: if (state->mute->val) set_volume(client, 0); else set_volume(client, state->volume->val); break; case V4L2_CID_AUDIO_BASS: /* PATH1_EQ_BASS_VOL */ cx25840_and_or(client, 0x8d9, ~0x3f, 48 - (ctrl->val * 48 / 0xffff)); break; case V4L2_CID_AUDIO_TREBLE: /* PATH1_EQ_TREBLE_VOL */ cx25840_and_or(client, 0x8db, ~0x3f, 48 - (ctrl->val * 48 / 0xffff)); break; case V4L2_CID_AUDIO_BALANCE: set_balance(client, ctrl->val); break; default: return -EINVAL; } return 0; } const struct v4l2_ctrl_ops cx25840_audio_ctrl_ops = { .s_ctrl = cx25840_audio_s_ctrl, };