/* * mt9v011 -Micron 1/4-Inch VGA Digital Image Sensor * * Copyright (c) 2009 Mauro Carvalho Chehab (mchehab@redhat.com) * This code is placed under the terms of the GNU General Public License v2 */ #include #include #include #include #include #include #include #include MODULE_DESCRIPTION("Micron mt9v011 sensor driver"); MODULE_AUTHOR("Mauro Carvalho Chehab "); MODULE_LICENSE("GPL"); static int debug; module_param(debug, int, 0); MODULE_PARM_DESC(debug, "Debug level (0-2)"); #define R00_MT9V011_CHIP_VERSION 0x00 #define R01_MT9V011_ROWSTART 0x01 #define R02_MT9V011_COLSTART 0x02 #define R03_MT9V011_HEIGHT 0x03 #define R04_MT9V011_WIDTH 0x04 #define R05_MT9V011_HBLANK 0x05 #define R06_MT9V011_VBLANK 0x06 #define R07_MT9V011_OUT_CTRL 0x07 #define R09_MT9V011_SHUTTER_WIDTH 0x09 #define R0A_MT9V011_CLK_SPEED 0x0a #define R0B_MT9V011_RESTART 0x0b #define R0C_MT9V011_SHUTTER_DELAY 0x0c #define R0D_MT9V011_RESET 0x0d #define R1E_MT9V011_DIGITAL_ZOOM 0x1e #define R20_MT9V011_READ_MODE 0x20 #define R2B_MT9V011_GREEN_1_GAIN 0x2b #define R2C_MT9V011_BLUE_GAIN 0x2c #define R2D_MT9V011_RED_GAIN 0x2d #define R2E_MT9V011_GREEN_2_GAIN 0x2e #define R35_MT9V011_GLOBAL_GAIN 0x35 #define RF1_MT9V011_CHIP_ENABLE 0xf1 #define MT9V011_VERSION 0x8232 #define MT9V011_REV_B_VERSION 0x8243 /* supported controls */ static struct v4l2_queryctrl mt9v011_qctrl[] = { { .id = V4L2_CID_GAIN, .type = V4L2_CTRL_TYPE_INTEGER, .name = "Gain", .minimum = 0, .maximum = (1 << 12) - 1 - 0x0020, .step = 1, .default_value = 0x0020, .flags = 0, }, { .id = V4L2_CID_EXPOSURE, .type = V4L2_CTRL_TYPE_INTEGER, .name = "Exposure", .minimum = 0, .maximum = 2047, .step = 1, .default_value = 0x01fc, .flags = 0, }, { .id = V4L2_CID_RED_BALANCE, .type = V4L2_CTRL_TYPE_INTEGER, .name = "Red Balance", .minimum = -1 << 9, .maximum = (1 << 9) - 1, .step = 1, .default_value = 0, .flags = 0, }, { .id = V4L2_CID_BLUE_BALANCE, .type = V4L2_CTRL_TYPE_INTEGER, .name = "Blue Balance", .minimum = -1 << 9, .maximum = (1 << 9) - 1, .step = 1, .default_value = 0, .flags = 0, }, { .id = V4L2_CID_HFLIP, .type = V4L2_CTRL_TYPE_BOOLEAN, .name = "Mirror", .minimum = 0, .maximum = 1, .step = 1, .default_value = 0, .flags = 0, }, { .id = V4L2_CID_VFLIP, .type = V4L2_CTRL_TYPE_BOOLEAN, .name = "Vflip", .minimum = 0, .maximum = 1, .step = 1, .default_value = 0, .flags = 0, }, { } }; struct mt9v011 { struct v4l2_subdev sd; unsigned width, height; unsigned xtal; unsigned hflip:1; unsigned vflip:1; u16 global_gain, exposure; s16 red_bal, blue_bal; }; static inline struct mt9v011 *to_mt9v011(struct v4l2_subdev *sd) { return container_of(sd, struct mt9v011, sd); } static int mt9v011_read(struct v4l2_subdev *sd, unsigned char addr) { struct i2c_client *c = v4l2_get_subdevdata(sd); __be16 buffer; int rc, val; rc = i2c_master_send(c, &addr, 1); if (rc != 1) v4l2_dbg(0, debug, sd, "i2c i/o error: rc == %d (should be 1)\n", rc); msleep(10); rc = i2c_master_recv(c, (char *)&buffer, 2); if (rc != 2) v4l2_dbg(0, debug, sd, "i2c i/o error: rc == %d (should be 2)\n", rc); val = be16_to_cpu(buffer); v4l2_dbg(2, debug, sd, "mt9v011: read 0x%02x = 0x%04x\n", addr, val); return val; } static void mt9v011_write(struct v4l2_subdev *sd, unsigned char addr, u16 value) { struct i2c_client *c = v4l2_get_subdevdata(sd); unsigned char buffer[3]; int rc; buffer[0] = addr; buffer[1] = value >> 8; buffer[2] = value & 0xff; v4l2_dbg(2, debug, sd, "mt9v011: writing 0x%02x 0x%04x\n", buffer[0], value); rc = i2c_master_send(c, buffer, 3); if (rc != 3) v4l2_dbg(0, debug, sd, "i2c i/o error: rc == %d (should be 3)\n", rc); } struct i2c_reg_value { unsigned char reg; u16 value; }; /* * Values used at the original driver * Some values are marked as Reserved at the datasheet */ static const struct i2c_reg_value mt9v011_init_default[] = { { R0D_MT9V011_RESET, 0x0001 }, { R0D_MT9V011_RESET, 0x0000 }, { R0C_MT9V011_SHUTTER_DELAY, 0x0000 }, { R09_MT9V011_SHUTTER_WIDTH, 0x1fc }, { R0A_MT9V011_CLK_SPEED, 0x0000 }, { R1E_MT9V011_DIGITAL_ZOOM, 0x0000 }, { R07_MT9V011_OUT_CTRL, 0x0002 }, /* chip enable */ }; static u16 calc_mt9v011_gain(s16 lineargain) { u16 digitalgain = 0; u16 analogmult = 0; u16 analoginit = 0; if (lineargain < 0) lineargain = 0; /* recommended minimum */ lineargain += 0x0020; if (lineargain > 2047) lineargain = 2047; if (lineargain > 1023) { digitalgain = 3; analogmult = 3; analoginit = lineargain / 16; } else if (lineargain > 511) { digitalgain = 1; analogmult = 3; analoginit = lineargain / 8; } else if (lineargain > 255) { analogmult = 3; analoginit = lineargain / 4; } else if (lineargain > 127) { analogmult = 1; analoginit = lineargain / 2; } else analoginit = lineargain; return analoginit + (analogmult << 7) + (digitalgain << 9); } static void set_balance(struct v4l2_subdev *sd) { struct mt9v011 *core = to_mt9v011(sd); u16 green_gain, blue_gain, red_gain; u16 exposure; s16 bal; exposure = core->exposure; green_gain = calc_mt9v011_gain(core->global_gain); bal = core->global_gain; bal += (core->blue_bal * core->global_gain / (1 << 7)); blue_gain = calc_mt9v011_gain(bal); bal = core->global_gain; bal += (core->red_bal * core->global_gain / (1 << 7)); red_gain = calc_mt9v011_gain(bal); mt9v011_write(sd, R2B_MT9V011_GREEN_1_GAIN, green_gain); mt9v011_write(sd, R2E_MT9V011_GREEN_2_GAIN, green_gain); mt9v011_write(sd, R2C_MT9V011_BLUE_GAIN, blue_gain); mt9v011_write(sd, R2D_MT9V011_RED_GAIN, red_gain); mt9v011_write(sd, R09_MT9V011_SHUTTER_WIDTH, exposure); } static void calc_fps(struct v4l2_subdev *sd, u32 *numerator, u32 *denominator) { struct mt9v011 *core = to_mt9v011(sd); unsigned height, width, hblank, vblank, speed; unsigned row_time, t_time; u64 frames_per_ms; unsigned tmp; height = mt9v011_read(sd, R03_MT9V011_HEIGHT); width = mt9v011_read(sd, R04_MT9V011_WIDTH); hblank = mt9v011_read(sd, R05_MT9V011_HBLANK); vblank = mt9v011_read(sd, R06_MT9V011_VBLANK); speed = mt9v011_read(sd, R0A_MT9V011_CLK_SPEED); row_time = (width + 113 + hblank) * (speed + 2); t_time = row_time * (height + vblank + 1); frames_per_ms = core->xtal * 1000l; do_div(frames_per_ms, t_time); tmp = frames_per_ms; v4l2_dbg(1, debug, sd, "Programmed to %u.%03u fps (%d pixel clcks)\n", tmp / 1000, tmp % 1000, t_time); if (numerator && denominator) { *numerator = 1000; *denominator = (u32)frames_per_ms; } } static u16 calc_speed(struct v4l2_subdev *sd, u32 numerator, u32 denominator) { struct mt9v011 *core = to_mt9v011(sd); unsigned height, width, hblank, vblank; unsigned row_time, line_time; u64 t_time, speed; /* Avoid bogus calculus */ if (!numerator || !denominator) return 0; height = mt9v011_read(sd, R03_MT9V011_HEIGHT); width = mt9v011_read(sd, R04_MT9V011_WIDTH); hblank = mt9v011_read(sd, R05_MT9V011_HBLANK); vblank = mt9v011_read(sd, R06_MT9V011_VBLANK); row_time = width + 113 + hblank; line_time = height + vblank + 1; t_time = core->xtal * ((u64)numerator); /* round to the closest value */ t_time += denominator / 2; do_div(t_time, denominator); speed = t_time; do_div(speed, row_time * line_time); /* Avoid having a negative value for speed */ if (speed < 2) speed = 0; else speed -= 2; /* Avoid speed overflow */ if (speed > 15) return 15; return (u16)speed; } static void set_res(struct v4l2_subdev *sd) { struct mt9v011 *core = to_mt9v011(sd); unsigned vstart, hstart; /* * The mt9v011 doesn't have scaling. So, in order to select the desired * resolution, we're cropping at the middle of the sensor. * hblank and vblank should be adjusted, in order to warrant that * we'll preserve the line timings for 30 fps, no matter what resolution * is selected. * NOTE: datasheet says that width (and height) should be filled with * width-1. However, this doesn't work, since one pixel per line will * be missing. */ hstart = 20 + (640 - core->width) / 2; mt9v011_write(sd, R02_MT9V011_COLSTART, hstart); mt9v011_write(sd, R04_MT9V011_WIDTH, core->width); mt9v011_write(sd, R05_MT9V011_HBLANK, 771 - core->width); vstart = 8 + (480 - core->height) / 2; mt9v011_write(sd, R01_MT9V011_ROWSTART, vstart); mt9v011_write(sd, R03_MT9V011_HEIGHT, core->height); mt9v011_write(sd, R06_MT9V011_VBLANK, 508 - core->height); calc_fps(sd, NULL, NULL); }; static void set_read_mode(struct v4l2_subdev *sd) { struct mt9v011 *core = to_mt9v011(sd); unsigned mode = 0x1000; if (core->hflip) mode |= 0x4000; if (core->vflip) mode |= 0x8000; mt9v011_write(sd, R20_MT9V011_READ_MODE, mode); } static int mt9v011_reset(struct v4l2_subdev *sd, u32 val) { int i; for (i = 0; i < ARRAY_SIZE(mt9v011_init_default); i++) mt9v011_write(sd, mt9v011_init_default[i].reg, mt9v011_init_default[i].value); set_balance(sd); set_res(sd); set_read_mode(sd); return 0; }; static int mt9v011_g_ctrl(struct v4l2_subdev *sd, struct v4l2_control *ctrl) { struct mt9v011 *core = to_mt9v011(sd); v4l2_dbg(1, debug, sd, "g_ctrl called\n"); switch (ctrl->id) { case V4L2_CID_GAIN: ctrl->value = core->global_gain; return 0; case V4L2_CID_EXPOSURE: ctrl->value = core->exposure; return 0; case V4L2_CID_RED_BALANCE: ctrl->value = core->red_bal; return 0; case V4L2_CID_BLUE_BALANCE: ctrl->value = core->blue_bal; return 0; case V4L2_CID_HFLIP: ctrl->value = core->hflip ? 1 : 0; return 0; case V4L2_CID_VFLIP: ctrl->value = core->vflip ? 1 : 0; return 0; } return -EINVAL; } static int mt9v011_queryctrl(struct v4l2_subdev *sd, struct v4l2_queryctrl *qc) { int i; v4l2_dbg(1, debug, sd, "queryctrl called\n"); for (i = 0; i < ARRAY_SIZE(mt9v011_qctrl); i++) if (qc->id && qc->id == mt9v011_qctrl[i].id) { memcpy(qc, &(mt9v011_qctrl[i]), sizeof(*qc)); return 0; } return -EINVAL; } static int mt9v011_s_ctrl(struct v4l2_subdev *sd, struct v4l2_control *ctrl) { struct mt9v011 *core = to_mt9v011(sd); u8 i, n; n = ARRAY_SIZE(mt9v011_qctrl); for (i = 0; i < n; i++) { if (ctrl->id != mt9v011_qctrl[i].id) continue; if (ctrl->value < mt9v011_qctrl[i].minimum || ctrl->value > mt9v011_qctrl[i].maximum) return -ERANGE; v4l2_dbg(1, debug, sd, "s_ctrl: id=%d, value=%d\n", ctrl->id, ctrl->value); break; } switch (ctrl->id) { case V4L2_CID_GAIN: core->global_gain = ctrl->value; break; case V4L2_CID_EXPOSURE: core->exposure = ctrl->value; break; case V4L2_CID_RED_BALANCE: core->red_bal = ctrl->value; break; case V4L2_CID_BLUE_BALANCE: core->blue_bal = ctrl->value; break; case V4L2_CID_HFLIP: core->hflip = ctrl->value; set_read_mode(sd); return 0; case V4L2_CID_VFLIP: core->vflip = ctrl->value; set_read_mode(sd); return 0; default: return -EINVAL; } set_balance(sd); return 0; } static int mt9v011_enum_mbus_fmt(struct v4l2_subdev *sd, unsigned index, enum v4l2_mbus_pixelcode *code) { if (index > 0) return -EINVAL; *code = V4L2_MBUS_FMT_SGRBG8_1X8; return 0; } static int mt9v011_try_mbus_fmt(struct v4l2_subdev *sd, struct v4l2_mbus_framefmt *fmt) { if (fmt->code != V4L2_MBUS_FMT_SGRBG8_1X8) return -EINVAL; v4l_bound_align_image(&fmt->width, 48, 639, 1, &fmt->height, 32, 480, 1, 0); fmt->field = V4L2_FIELD_NONE; fmt->colorspace = V4L2_COLORSPACE_SRGB; return 0; } static int mt9v011_g_parm(struct v4l2_subdev *sd, struct v4l2_streamparm *parms) { struct v4l2_captureparm *cp = &parms->parm.capture; if (parms->type != V4L2_BUF_TYPE_VIDEO_CAPTURE) return -EINVAL; memset(cp, 0, sizeof(struct v4l2_captureparm)); cp->capability = V4L2_CAP_TIMEPERFRAME; calc_fps(sd, &cp->timeperframe.numerator, &cp->timeperframe.denominator); return 0; } static int mt9v011_s_parm(struct v4l2_subdev *sd, struct v4l2_streamparm *parms) { struct v4l2_captureparm *cp = &parms->parm.capture; struct v4l2_fract *tpf = &cp->timeperframe; u16 speed; if (parms->type != V4L2_BUF_TYPE_VIDEO_CAPTURE) return -EINVAL; if (cp->extendedmode != 0) return -EINVAL; speed = calc_speed(sd, tpf->numerator, tpf->denominator); mt9v011_write(sd, R0A_MT9V011_CLK_SPEED, speed); v4l2_dbg(1, debug, sd, "Setting speed to %d\n", speed); /* Recalculate and update fps info */ calc_fps(sd, &tpf->numerator, &tpf->denominator); return 0; } static int mt9v011_s_mbus_fmt(struct v4l2_subdev *sd, struct v4l2_mbus_framefmt *fmt) { struct mt9v011 *core = to_mt9v011(sd); int rc; rc = mt9v011_try_mbus_fmt(sd, fmt); if (rc < 0) return -EINVAL; core->width = fmt->width; core->height = fmt->height; set_res(sd); return 0; } #ifdef CONFIG_VIDEO_ADV_DEBUG static int mt9v011_g_register(struct v4l2_subdev *sd, struct v4l2_dbg_register *reg) { struct i2c_client *client = v4l2_get_subdevdata(sd); if (!v4l2_chip_match_i2c_client(client, ®->match)) return -EINVAL; if (!capable(CAP_SYS_ADMIN)) return -EPERM; reg->val = mt9v011_read(sd, reg->reg & 0xff); reg->size = 2; return 0; } static int mt9v011_s_register(struct v4l2_subdev *sd, struct v4l2_dbg_register *reg) { struct i2c_client *client = v4l2_get_subdevdata(sd); if (!v4l2_chip_match_i2c_client(client, ®->match)) return -EINVAL; if (!capable(CAP_SYS_ADMIN)) return -EPERM; mt9v011_write(sd, reg->reg & 0xff, reg->val & 0xffff); return 0; } #endif static int mt9v011_g_chip_ident(struct v4l2_subdev *sd, struct v4l2_dbg_chip_ident *chip) { u16 version; struct i2c_client *client = v4l2_get_subdevdata(sd); version = mt9v011_read(sd, R00_MT9V011_CHIP_VERSION); return v4l2_chip_ident_i2c_client(client, chip, V4L2_IDENT_MT9V011, version); } static const struct v4l2_subdev_core_ops mt9v011_core_ops = { .queryctrl = mt9v011_queryctrl, .g_ctrl = mt9v011_g_ctrl, .s_ctrl = mt9v011_s_ctrl, .reset = mt9v011_reset, .g_chip_ident = mt9v011_g_chip_ident, #ifdef CONFIG_VIDEO_ADV_DEBUG .g_register = mt9v011_g_register, .s_register = mt9v011_s_register, #endif }; static const struct v4l2_subdev_video_ops mt9v011_video_ops = { .enum_mbus_fmt = mt9v011_enum_mbus_fmt, .try_mbus_fmt = mt9v011_try_mbus_fmt, .s_mbus_fmt = mt9v011_s_mbus_fmt, .g_parm = mt9v011_g_parm, .s_parm = mt9v011_s_parm, }; static const struct v4l2_subdev_ops mt9v011_ops = { .core = &mt9v011_core_ops, .video = &mt9v011_video_ops, }; /**************************************************************************** I2C Client & Driver ****************************************************************************/ static int mt9v011_probe(struct i2c_client *c, const struct i2c_device_id *id) { u16 version; struct mt9v011 *core; struct v4l2_subdev *sd; /* Check if the adapter supports the needed features */ if (!i2c_check_functionality(c->adapter, I2C_FUNC_SMBUS_READ_BYTE | I2C_FUNC_SMBUS_WRITE_BYTE_DATA)) return -EIO; core = kzalloc(sizeof(struct mt9v011), GFP_KERNEL); if (!core) return -ENOMEM; sd = &core->sd; v4l2_i2c_subdev_init(sd, c, &mt9v011_ops); /* Check if the sensor is really a MT9V011 */ version = mt9v011_read(sd, R00_MT9V011_CHIP_VERSION); if ((version != MT9V011_VERSION) && (version != MT9V011_REV_B_VERSION)) { v4l2_info(sd, "*** unknown micron chip detected (0x%04x).\n", version); kfree(core); return -EINVAL; } core->global_gain = 0x0024; core->exposure = 0x01fc; core->width = 640; core->height = 480; core->xtal = 27000000; /* Hz */ if (c->dev.platform_data) { struct mt9v011_platform_data *pdata = c->dev.platform_data; core->xtal = pdata->xtal; v4l2_dbg(1, debug, sd, "xtal set to %d.%03d MHz\n", core->xtal / 1000000, (core->xtal / 1000) % 1000); } v4l_info(c, "chip found @ 0x%02x (%s - chip version 0x%04x)\n", c->addr << 1, c->adapter->name, version); return 0; } static int mt9v011_remove(struct i2c_client *c) { struct v4l2_subdev *sd = i2c_get_clientdata(c); v4l2_dbg(1, debug, sd, "mt9v011.c: removing mt9v011 adapter on address 0x%x\n", c->addr << 1); v4l2_device_unregister_subdev(sd); kfree(to_mt9v011(sd)); return 0; } /* ----------------------------------------------------------------------- */ static const struct i2c_device_id mt9v011_id[] = { { "mt9v011", 0 }, { } }; MODULE_DEVICE_TABLE(i2c, mt9v011_id); static struct i2c_driver mt9v011_driver = { .driver = { .owner = THIS_MODULE, .name = "mt9v011", }, .probe = mt9v011_probe, .remove = mt9v011_remove, .id_table = mt9v011_id, }; static __init int init_mt9v011(void) { return i2c_add_driver(&mt9v011_driver); } static __exit void exit_mt9v011(void) { i2c_del_driver(&mt9v011_driver); } module_init(init_mt9v011); module_exit(exit_mt9v011);