/*************************************************************************** * V4L2 driver for SN9C1xx PC Camera Controllers * * * * Copyright (C) 2004-2007 by Luca Risolia * * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version. * * * * This program is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * * GNU General Public License for more details. * * * * You should have received a copy of the GNU General Public License * * along with this program; if not, write to the Free Software * * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. * ***************************************************************************/ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "sn9c102.h" /*****************************************************************************/ #define SN9C102_MODULE_NAME "V4L2 driver for SN9C1xx PC Camera Controllers" #define SN9C102_MODULE_ALIAS "sn9c1xx" #define SN9C102_MODULE_AUTHOR "(C) 2004-2007 Luca Risolia" #define SN9C102_AUTHOR_EMAIL "" #define SN9C102_MODULE_LICENSE "GPL" #define SN9C102_MODULE_VERSION "1:1.47pre49" #define SN9C102_MODULE_VERSION_CODE KERNEL_VERSION(1, 1, 47) /*****************************************************************************/ MODULE_DEVICE_TABLE(usb, sn9c102_id_table); MODULE_AUTHOR(SN9C102_MODULE_AUTHOR " " SN9C102_AUTHOR_EMAIL); MODULE_DESCRIPTION(SN9C102_MODULE_NAME); MODULE_ALIAS(SN9C102_MODULE_ALIAS); MODULE_VERSION(SN9C102_MODULE_VERSION); MODULE_LICENSE(SN9C102_MODULE_LICENSE); static short video_nr[] = {[0 ... SN9C102_MAX_DEVICES-1] = -1}; module_param_array(video_nr, short, NULL, 0444); MODULE_PARM_DESC(video_nr, " <-1|n[,...]>" "\nSpecify V4L2 minor mode number." "\n-1 = use next available (default)" "\n n = use minor number n (integer >= 0)" "\nYou can specify up to "__MODULE_STRING(SN9C102_MAX_DEVICES) " cameras this way." "\nFor example:" "\nvideo_nr=-1,2,-1 would assign minor number 2 to" "\nthe second camera and use auto for the first" "\none and for every other camera." "\n"); static short force_munmap[] = {[0 ... SN9C102_MAX_DEVICES-1] = SN9C102_FORCE_MUNMAP}; module_param_array(force_munmap, bool, NULL, 0444); MODULE_PARM_DESC(force_munmap, " <0|1[,...]>" "\nForce the application to unmap previously" "\nmapped buffer memory before calling any VIDIOC_S_CROP or" "\nVIDIOC_S_FMT ioctl's. Not all the applications support" "\nthis feature. This parameter is specific for each" "\ndetected camera." "\n0 = do not force memory unmapping" "\n1 = force memory unmapping (save memory)" "\nDefault value is "__MODULE_STRING(SN9C102_FORCE_MUNMAP)"." "\n"); static unsigned int frame_timeout[] = {[0 ... SN9C102_MAX_DEVICES-1] = SN9C102_FRAME_TIMEOUT}; module_param_array(frame_timeout, uint, NULL, 0644); MODULE_PARM_DESC(frame_timeout, " <0|n[,...]>" "\nTimeout for a video frame in seconds before" "\nreturning an I/O error; 0 for infinity." "\nThis parameter is specific for each detected camera." "\nDefault value is "__MODULE_STRING(SN9C102_FRAME_TIMEOUT)"." "\n"); #ifdef SN9C102_DEBUG static unsigned short debug = SN9C102_DEBUG_LEVEL; module_param(debug, ushort, 0644); MODULE_PARM_DESC(debug, " " "\nDebugging information level, from 0 to 3:" "\n0 = none (use carefully)" "\n1 = critical errors" "\n2 = significant informations" "\n3 = more verbose messages" "\nLevel 3 is useful for testing only." "\nDefault value is "__MODULE_STRING(SN9C102_DEBUG_LEVEL)"." "\n"); #endif /*****************************************************************************/ static u32 sn9c102_request_buffers(struct sn9c102_device* cam, u32 count, enum sn9c102_io_method io) { struct v4l2_pix_format* p = &(cam->sensor.pix_format); struct v4l2_rect* r = &(cam->sensor.cropcap.bounds); size_t imagesize = cam->module_param.force_munmap || io == IO_READ ? (p->width * p->height * p->priv) / 8 : (r->width * r->height * p->priv) / 8; void* buff = NULL; u32 i; if (count > SN9C102_MAX_FRAMES) count = SN9C102_MAX_FRAMES; if (cam->bridge == BRIDGE_SN9C105 || cam->bridge == BRIDGE_SN9C120) imagesize += 589 + 2; /* length of JPEG header + EOI marker */ cam->nbuffers = count; while (cam->nbuffers > 0) { if ((buff = vmalloc_32_user(cam->nbuffers * PAGE_ALIGN(imagesize)))) break; cam->nbuffers--; } for (i = 0; i < cam->nbuffers; i++) { cam->frame[i].bufmem = buff + i*PAGE_ALIGN(imagesize); cam->frame[i].buf.index = i; cam->frame[i].buf.m.offset = i*PAGE_ALIGN(imagesize); cam->frame[i].buf.length = imagesize; cam->frame[i].buf.type = V4L2_BUF_TYPE_VIDEO_CAPTURE; cam->frame[i].buf.sequence = 0; cam->frame[i].buf.field = V4L2_FIELD_NONE; cam->frame[i].buf.memory = V4L2_MEMORY_MMAP; cam->frame[i].buf.flags = 0; } return cam->nbuffers; } static void sn9c102_release_buffers(struct sn9c102_device* cam) { if (cam->nbuffers) { vfree(cam->frame[0].bufmem); cam->nbuffers = 0; } cam->frame_current = NULL; } static void sn9c102_empty_framequeues(struct sn9c102_device* cam) { u32 i; INIT_LIST_HEAD(&cam->inqueue); INIT_LIST_HEAD(&cam->outqueue); for (i = 0; i < SN9C102_MAX_FRAMES; i++) { cam->frame[i].state = F_UNUSED; cam->frame[i].buf.bytesused = 0; } } static void sn9c102_requeue_outqueue(struct sn9c102_device* cam) { struct sn9c102_frame_t *i; list_for_each_entry(i, &cam->outqueue, frame) { i->state = F_QUEUED; list_add(&i->frame, &cam->inqueue); } INIT_LIST_HEAD(&cam->outqueue); } static void sn9c102_queue_unusedframes(struct sn9c102_device* cam) { unsigned long lock_flags; u32 i; for (i = 0; i < cam->nbuffers; i++) if (cam->frame[i].state == F_UNUSED) { cam->frame[i].state = F_QUEUED; spin_lock_irqsave(&cam->queue_lock, lock_flags); list_add_tail(&cam->frame[i].frame, &cam->inqueue); spin_unlock_irqrestore(&cam->queue_lock, lock_flags); } } /*****************************************************************************/ /* Write a sequence of count value/register pairs. Returns -1 after the first failed write, or 0 for no errors. */ int sn9c102_write_regs(struct sn9c102_device* cam, const u8 valreg[][2], int count) { struct usb_device* udev = cam->usbdev; u8* buff = cam->control_buffer; int i, res; for (i = 0; i < count; i++) { u8 index = valreg[i][1]; /* index is a u8, so it must be <256 and can't be out of range. If we put in a check anyway, gcc annoys us with a warning hat our check is useless. People get all uppity when they see warnings in the kernel compile. */ *buff = valreg[i][0]; res = usb_control_msg(udev, usb_sndctrlpipe(udev, 0), 0x08, 0x41, index, 0, buff, 1, SN9C102_CTRL_TIMEOUT); if (res < 0) { DBG(3, "Failed to write a register (value 0x%02X, " "index 0x%02X, error %d)", *buff, index, res); return -1; } cam->reg[index] = *buff; } return 0; } int sn9c102_write_reg(struct sn9c102_device* cam, u8 value, u16 index) { struct usb_device* udev = cam->usbdev; u8* buff = cam->control_buffer; int res; if (index >= ARRAY_SIZE(cam->reg)) return -1; *buff = value; res = usb_control_msg(udev, usb_sndctrlpipe(udev, 0), 0x08, 0x41, index, 0, buff, 1, SN9C102_CTRL_TIMEOUT); if (res < 0) { DBG(3, "Failed to write a register (value 0x%02X, index " "0x%02X, error %d)", value, index, res); return -1; } cam->reg[index] = value; return 0; } /* NOTE: with the SN9C10[123] reading some registers always returns 0 */ int sn9c102_read_reg(struct sn9c102_device* cam, u16 index) { struct usb_device* udev = cam->usbdev; u8* buff = cam->control_buffer; int res; res = usb_control_msg(udev, usb_rcvctrlpipe(udev, 0), 0x00, 0xc1, index, 0, buff, 1, SN9C102_CTRL_TIMEOUT); if (res < 0) DBG(3, "Failed to read a register (index 0x%02X, error %d)", index, res); return (res >= 0) ? (int)(*buff) : -1; } int sn9c102_pread_reg(struct sn9c102_device* cam, u16 index) { if (index >= ARRAY_SIZE(cam->reg)) return -1; return cam->reg[index]; } static int sn9c102_i2c_wait(struct sn9c102_device* cam, const struct sn9c102_sensor* sensor) { int i, r; for (i = 1; i <= 5; i++) { r = sn9c102_read_reg(cam, 0x08); if (r < 0) return -EIO; if (r & 0x04) return 0; if (sensor->frequency & SN9C102_I2C_400KHZ) udelay(5*16); else udelay(16*16); } return -EBUSY; } static int sn9c102_i2c_detect_read_error(struct sn9c102_device* cam, const struct sn9c102_sensor* sensor) { int r , err = 0; r = sn9c102_read_reg(cam, 0x08); if (r < 0) err += r; if (cam->bridge == BRIDGE_SN9C101 || cam->bridge == BRIDGE_SN9C102) { if (!(r & 0x08)) err += -1; } else { if (r & 0x08) err += -1; } return err ? -EIO : 0; } static int sn9c102_i2c_detect_write_error(struct sn9c102_device* cam, const struct sn9c102_sensor* sensor) { int r; r = sn9c102_read_reg(cam, 0x08); return (r < 0 || (r >= 0 && (r & 0x08))) ? -EIO : 0; } int sn9c102_i2c_try_raw_read(struct sn9c102_device* cam, const struct sn9c102_sensor* sensor, u8 data0, u8 data1, u8 n, u8 buffer[]) { struct usb_device* udev = cam->usbdev; u8* data = cam->control_buffer; int i = 0, err = 0, res; /* Write cycle */ data[0] = ((sensor->interface == SN9C102_I2C_2WIRES) ? 0x80 : 0) | ((sensor->frequency & SN9C102_I2C_400KHZ) ? 0x01 : 0) | 0x10; data[1] = data0; /* I2C slave id */ data[2] = data1; /* address */ data[7] = 0x10; res = usb_control_msg(udev, usb_sndctrlpipe(udev, 0), 0x08, 0x41, 0x08, 0, data, 8, SN9C102_CTRL_TIMEOUT); if (res < 0) err += res; err += sn9c102_i2c_wait(cam, sensor); /* Read cycle - n bytes */ data[0] = ((sensor->interface == SN9C102_I2C_2WIRES) ? 0x80 : 0) | ((sensor->frequency & SN9C102_I2C_400KHZ) ? 0x01 : 0) | (n << 4) | 0x02; data[1] = data0; data[7] = 0x10; res = usb_control_msg(udev, usb_sndctrlpipe(udev, 0), 0x08, 0x41, 0x08, 0, data, 8, SN9C102_CTRL_TIMEOUT); if (res < 0) err += res; err += sn9c102_i2c_wait(cam, sensor); /* The first read byte will be placed in data[4] */ res = usb_control_msg(udev, usb_rcvctrlpipe(udev, 0), 0x00, 0xc1, 0x0a, 0, data, 5, SN9C102_CTRL_TIMEOUT); if (res < 0) err += res; err += sn9c102_i2c_detect_read_error(cam, sensor); PDBGG("I2C read: address 0x%02X, first read byte: 0x%02X", data1, data[4]); if (err) { DBG(3, "I2C read failed for %s image sensor", sensor->name); return -1; } if (buffer) for (i = 0; i < n && i < 5; i++) buffer[n-i-1] = data[4-i]; return (int)data[4]; } int sn9c102_i2c_try_raw_write(struct sn9c102_device* cam, const struct sn9c102_sensor* sensor, u8 n, u8 data0, u8 data1, u8 data2, u8 data3, u8 data4, u8 data5) { struct usb_device* udev = cam->usbdev; u8* data = cam->control_buffer; int err = 0, res; /* Write cycle. It usually is address + value */ data[0] = ((sensor->interface == SN9C102_I2C_2WIRES) ? 0x80 : 0) | ((sensor->frequency & SN9C102_I2C_400KHZ) ? 0x01 : 0) | ((n - 1) << 4); data[1] = data0; data[2] = data1; data[3] = data2; data[4] = data3; data[5] = data4; data[6] = data5; data[7] = 0x17; res = usb_control_msg(udev, usb_sndctrlpipe(udev, 0), 0x08, 0x41, 0x08, 0, data, 8, SN9C102_CTRL_TIMEOUT); if (res < 0) err += res; err += sn9c102_i2c_wait(cam, sensor); err += sn9c102_i2c_detect_write_error(cam, sensor); if (err) DBG(3, "I2C write failed for %s image sensor", sensor->name); PDBGG("I2C raw write: %u bytes, data0 = 0x%02X, data1 = 0x%02X, " "data2 = 0x%02X, data3 = 0x%02X, data4 = 0x%02X, data5 = 0x%02X", n, data0, data1, data2, data3, data4, data5); return err ? -1 : 0; } int sn9c102_i2c_try_read(struct sn9c102_device* cam, const struct sn9c102_sensor* sensor, u8 address) { return sn9c102_i2c_try_raw_read(cam, sensor, sensor->i2c_slave_id, address, 1, NULL); } static int sn9c102_i2c_try_write(struct sn9c102_device* cam, const struct sn9c102_sensor* sensor, u8 address, u8 value) { return sn9c102_i2c_try_raw_write(cam, sensor, 3, sensor->i2c_slave_id, address, value, 0, 0, 0); } int sn9c102_i2c_read(struct sn9c102_device* cam, u8 address) { return sn9c102_i2c_try_read(cam, &cam->sensor, address); } int sn9c102_i2c_write(struct sn9c102_device* cam, u8 address, u8 value) { return sn9c102_i2c_try_write(cam, &cam->sensor, address, value); } /*****************************************************************************/ static size_t sn9c102_sof_length(struct sn9c102_device* cam) { switch (cam->bridge) { case BRIDGE_SN9C101: case BRIDGE_SN9C102: return 12; case BRIDGE_SN9C103: return 18; case BRIDGE_SN9C105: case BRIDGE_SN9C120: return 62; } return 0; } static void* sn9c102_find_sof_header(struct sn9c102_device* cam, void* mem, size_t len) { static const char marker[6] = {0xff, 0xff, 0x00, 0xc4, 0xc4, 0x96}; const char *m = mem; size_t soflen = 0, i, j; soflen = sn9c102_sof_length(cam); for (i = 0; i < len; i++) { size_t b; /* Read the variable part of the header */ if (unlikely(cam->sof.bytesread >= sizeof(marker))) { cam->sof.header[cam->sof.bytesread] = *(m+i); if (++cam->sof.bytesread == soflen) { cam->sof.bytesread = 0; return mem + i; } continue; } /* Search for the SOF marker (fixed part) in the header */ for (j = 0, b=cam->sof.bytesread; j+b < sizeof(marker); j++) { if (unlikely(i+j == len)) return NULL; if (*(m+i+j) == marker[cam->sof.bytesread]) { cam->sof.header[cam->sof.bytesread] = *(m+i+j); if (++cam->sof.bytesread == sizeof(marker)) { PDBGG("Bytes to analyze: %zd. SOF " "starts at byte #%zd", len, i); i += j+1; break; } } else { cam->sof.bytesread = 0; break; } } } return NULL; } static void* sn9c102_find_eof_header(struct sn9c102_device* cam, void* mem, size_t len) { static const u8 eof_header[4][4] = { {0x00, 0x00, 0x00, 0x00}, {0x40, 0x00, 0x00, 0x00}, {0x80, 0x00, 0x00, 0x00}, {0xc0, 0x00, 0x00, 0x00}, }; size_t i, j; /* The EOF header does not exist in compressed data */ if (cam->sensor.pix_format.pixelformat == V4L2_PIX_FMT_SN9C10X || cam->sensor.pix_format.pixelformat == V4L2_PIX_FMT_JPEG) return NULL; /* The EOF header might cross the packet boundary, but this is not a problem, since the end of a frame is determined by checking its size in the first place. */ for (i = 0; (len >= 4) && (i <= len - 4); i++) for (j = 0; j < ARRAY_SIZE(eof_header); j++) if (!memcmp(mem + i, eof_header[j], 4)) return mem + i; return NULL; } static void sn9c102_write_jpegheader(struct sn9c102_device* cam, struct sn9c102_frame_t* f) { static const u8 jpeg_header[589] = { 0xff, 0xd8, 0xff, 0xdb, 0x00, 0x84, 0x00, 0x06, 0x04, 0x05, 0x06, 0x05, 0x04, 0x06, 0x06, 0x05, 0x06, 0x07, 0x07, 0x06, 0x08, 0x0a, 0x10, 0x0a, 0x0a, 0x09, 0x09, 0x0a, 0x14, 0x0e, 0x0f, 0x0c, 0x10, 0x17, 0x14, 0x18, 0x18, 0x17, 0x14, 0x16, 0x16, 0x1a, 0x1d, 0x25, 0x1f, 0x1a, 0x1b, 0x23, 0x1c, 0x16, 0x16, 0x20, 0x2c, 0x20, 0x23, 0x26, 0x27, 0x29, 0x2a, 0x29, 0x19, 0x1f, 0x2d, 0x30, 0x2d, 0x28, 0x30, 0x25, 0x28, 0x29, 0x28, 0x01, 0x07, 0x07, 0x07, 0x0a, 0x08, 0x0a, 0x13, 0x0a, 0x0a, 0x13, 0x28, 0x1a, 0x16, 0x1a, 0x28, 0x28, 0x28, 0x28, 0x28, 0x28, 0x28, 0x28, 0x28, 0x28, 0x28, 0x28, 0x28, 0x28, 0x28, 0x28, 0x28, 0x28, 0x28, 0x28, 0x28, 0x28, 0x28, 0x28, 0x28, 0x28, 0x28, 0x28, 0x28, 0x28, 0x28, 0x28, 0x28, 0x28, 0x28, 0x28, 0x28, 0x28, 0x28, 0x28, 0x28, 0x28, 0x28, 0x28, 0x28, 0x28, 0x28, 0x28, 0x28, 0x28, 0xff, 0xc4, 0x01, 0xa2, 0x00, 0x00, 0x01, 0x05, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x01, 0x00, 0x03, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x10, 0x00, 0x02, 0x01, 0x03, 0x03, 0x02, 0x04, 0x03, 0x05, 0x05, 0x04, 0x04, 0x00, 0x00, 0x01, 0x7d, 0x01, 0x02, 0x03, 0x00, 0x04, 0x11, 0x05, 0x12, 0x21, 0x31, 0x41, 0x06, 0x13, 0x51, 0x61, 0x07, 0x22, 0x71, 0x14, 0x32, 0x81, 0x91, 0xa1, 0x08, 0x23, 0x42, 0xb1, 0xc1, 0x15, 0x52, 0xd1, 0xf0, 0x24, 0x33, 0x62, 0x72, 0x82, 0x09, 0x0a, 0x16, 0x17, 0x18, 0x19, 0x1a, 0x25, 0x26, 0x27, 0x28, 0x29, 0x2a, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39, 0x3a, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48, 0x49, 0x4a, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58, 0x59, 0x5a, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68, 0x69, 0x6a, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78, 0x79, 0x7a, 0x83, 0x84, 0x85, 0x86, 0x87, 0x88, 0x89, 0x8a, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97, 0x98, 0x99, 0x9a, 0xa2, 0xa3, 0xa4, 0xa5, 0xa6, 0xa7, 0xa8, 0xa9, 0xaa, 0xb2, 0xb3, 0xb4, 0xb5, 0xb6, 0xb7, 0xb8, 0xb9, 0xba, 0xc2, 0xc3, 0xc4, 0xc5, 0xc6, 0xc7, 0xc8, 0xc9, 0xca, 0xd2, 0xd3, 0xd4, 0xd5, 0xd6, 0xd7, 0xd8, 0xd9, 0xda, 0xe1, 0xe2, 0xe3, 0xe4, 0xe5, 0xe6, 0xe7, 0xe8, 0xe9, 0xea, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7, 0xf8, 0xf9, 0xfa, 0x11, 0x00, 0x02, 0x01, 0x02, 0x04, 0x04, 0x03, 0x04, 0x07, 0x05, 0x04, 0x04, 0x00, 0x01, 0x02, 0x77, 0x00, 0x01, 0x02, 0x03, 0x11, 0x04, 0x05, 0x21, 0x31, 0x06, 0x12, 0x41, 0x51, 0x07, 0x61, 0x71, 0x13, 0x22, 0x32, 0x81, 0x08, 0x14, 0x42, 0x91, 0xa1, 0xb1, 0xc1, 0x09, 0x23, 0x33, 0x52, 0xf0, 0x15, 0x62, 0x72, 0xd1, 0x0a, 0x16, 0x24, 0x34, 0xe1, 0x25, 0xf1, 0x17, 0x18, 0x19, 0x1a, 0x26, 0x27, 0x28, 0x29, 0x2a, 0x35, 0x36, 0x37, 0x38, 0x39, 0x3a, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48, 0x49, 0x4a, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58, 0x59, 0x5a, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68, 0x69, 0x6a, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78, 0x79, 0x7a, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87, 0x88, 0x89, 0x8a, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97, 0x98, 0x99, 0x9a, 0xa2, 0xa3, 0xa4, 0xa5, 0xa6, 0xa7, 0xa8, 0xa9, 0xaa, 0xb2, 0xb3, 0xb4, 0xb5, 0xb6, 0xb7, 0xb8, 0xb9, 0xba, 0xc2, 0xc3, 0xc4, 0xc5, 0xc6, 0xc7, 0xc8, 0xc9, 0xca, 0xd2, 0xd3, 0xd4, 0xd5, 0xd6, 0xd7, 0xd8, 0xd9, 0xda, 0xe2, 0xe3, 0xe4, 0xe5, 0xe6, 0xe7, 0xe8, 0xe9, 0xea, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7, 0xf8, 0xf9, 0xfa, 0xff, 0xc0, 0x00, 0x11, 0x08, 0x01, 0xe0, 0x02, 0x80, 0x03, 0x01, 0x21, 0x00, 0x02, 0x11, 0x01, 0x03, 0x11, 0x01, 0xff, 0xda, 0x00, 0x0c, 0x03, 0x01, 0x00, 0x02, 0x11, 0x03, 0x11, 0x00, 0x3f, 0x00 }; u8 *pos = f->bufmem; memcpy(pos, jpeg_header, sizeof(jpeg_header)); *(pos + 6) = 0x00; *(pos + 7 + 64) = 0x01; if (cam->compression.quality == 0) { memcpy(pos + 7, SN9C102_Y_QTABLE0, 64); memcpy(pos + 8 + 64, SN9C102_UV_QTABLE0, 64); } else if (cam->compression.quality == 1) { memcpy(pos + 7, SN9C102_Y_QTABLE1, 64); memcpy(pos + 8 + 64, SN9C102_UV_QTABLE1, 64); } *(pos + 564) = cam->sensor.pix_format.width & 0xFF; *(pos + 563) = (cam->sensor.pix_format.width >> 8) & 0xFF; *(pos + 562) = cam->sensor.pix_format.height & 0xFF; *(pos + 561) = (cam->sensor.pix_format.height >> 8) & 0xFF; *(pos + 567) = 0x21; f->buf.bytesused += sizeof(jpeg_header); } static void sn9c102_urb_complete(struct urb *urb) { struct sn9c102_device* cam = urb->context; struct sn9c102_frame_t** f; size_t imagesize, soflen; u8 i; int err = 0; if (urb->status == -ENOENT) return; f = &cam->frame_current; if (cam->stream == STREAM_INTERRUPT) { cam->stream = STREAM_OFF; if ((*f)) (*f)->state = F_QUEUED; cam->sof.bytesread = 0; DBG(3, "Stream interrupted by application"); wake_up(&cam->wait_stream); } if (cam->state & DEV_DISCONNECTED) return; if (cam->state & DEV_MISCONFIGURED) { wake_up_interruptible(&cam->wait_frame); return; } if (cam->stream == STREAM_OFF || list_empty(&cam->inqueue)) goto resubmit_urb; if (!(*f)) (*f) = list_entry(cam->inqueue.next, struct sn9c102_frame_t, frame); imagesize = (cam->sensor.pix_format.width * cam->sensor.pix_format.height * cam->sensor.pix_format.priv) / 8; if (cam->sensor.pix_format.pixelformat == V4L2_PIX_FMT_JPEG) imagesize += 589; /* length of jpeg header */ soflen = sn9c102_sof_length(cam); for (i = 0; i < urb->number_of_packets; i++) { unsigned int img, len, status; void *pos, *sof, *eof; len = urb->iso_frame_desc[i].actual_length; status = urb->iso_frame_desc[i].status; pos = urb->iso_frame_desc[i].offset + urb->transfer_buffer; if (status) { DBG(3, "Error in isochronous frame"); (*f)->state = F_ERROR; cam->sof.bytesread = 0; continue; } PDBGG("Isochrnous frame: length %u, #%u i", len, i); redo: sof = sn9c102_find_sof_header(cam, pos, len); if (likely(!sof)) { eof = sn9c102_find_eof_header(cam, pos, len); if ((*f)->state == F_GRABBING) { end_of_frame: img = len; if (eof) img = (eof > pos) ? eof - pos - 1 : 0; if ((*f)->buf.bytesused + img > imagesize) { u32 b; b = (*f)->buf.bytesused + img - imagesize; img = imagesize - (*f)->buf.bytesused; PDBGG("Expected EOF not found: video " "frame cut"); if (eof) DBG(3, "Exceeded limit: +%u " "bytes", (unsigned)(b)); } memcpy((*f)->bufmem + (*f)->buf.bytesused, pos, img); if ((*f)->buf.bytesused == 0) do_gettimeofday(&(*f)->buf.timestamp); (*f)->buf.bytesused += img; if ((*f)->buf.bytesused == imagesize || ((cam->sensor.pix_format.pixelformat == V4L2_PIX_FMT_SN9C10X || cam->sensor.pix_format.pixelformat == V4L2_PIX_FMT_JPEG) && eof)) { u32 b; b = (*f)->buf.bytesused; (*f)->state = F_DONE; (*f)->buf.sequence= ++cam->frame_count; spin_lock(&cam->queue_lock); list_move_tail(&(*f)->frame, &cam->outqueue); if (!list_empty(&cam->inqueue)) (*f) = list_entry( cam->inqueue.next, struct sn9c102_frame_t, frame ); else (*f) = NULL; spin_unlock(&cam->queue_lock); memcpy(cam->sysfs.frame_header, cam->sof.header, soflen); DBG(3, "Video frame captured: %lu " "bytes", (unsigned long)(b)); if (!(*f)) goto resubmit_urb; } else if (eof) { (*f)->state = F_ERROR; DBG(3, "Not expected EOF after %lu " "bytes of image data", (unsigned long) ((*f)->buf.bytesused)); } if (sof) /* (1) */ goto start_of_frame; } else if (eof) { DBG(3, "EOF without SOF"); continue; } else { PDBGG("Ignoring pointless isochronous frame"); continue; } } else if ((*f)->state == F_QUEUED || (*f)->state == F_ERROR) { start_of_frame: (*f)->state = F_GRABBING; (*f)->buf.bytesused = 0; len -= (sof - pos); pos = sof; if (cam->sensor.pix_format.pixelformat == V4L2_PIX_FMT_JPEG) sn9c102_write_jpegheader(cam, (*f)); DBG(3, "SOF detected: new video frame"); if (len) goto redo; } else if ((*f)->state == F_GRABBING) { eof = sn9c102_find_eof_header(cam, pos, len); if (eof && eof < sof) goto end_of_frame; /* (1) */ else { if (cam->sensor.pix_format.pixelformat == V4L2_PIX_FMT_SN9C10X || cam->sensor.pix_format.pixelformat == V4L2_PIX_FMT_JPEG) { if (sof - pos >= soflen) { eof = sof - soflen; } else { /* remove header */ eof = pos; (*f)->buf.bytesused -= (soflen - (sof - pos)); } goto end_of_frame; } else { DBG(3, "SOF before expected EOF after " "%lu bytes of image data", (unsigned long) ((*f)->buf.bytesused)); goto start_of_frame; } } } } resubmit_urb: urb->dev = cam->usbdev; err = usb_submit_urb(urb, GFP_ATOMIC); if (err < 0 && err != -EPERM) { cam->state |= DEV_MISCONFIGURED; DBG(1, "usb_submit_urb() failed"); } wake_up_interruptible(&cam->wait_frame); } static int sn9c102_start_transfer(struct sn9c102_device* cam) { struct usb_device *udev = cam->usbdev; struct urb* urb; struct usb_host_interface* altsetting = usb_altnum_to_altsetting( usb_ifnum_to_if(udev, 0), SN9C102_ALTERNATE_SETTING); const unsigned int psz = le16_to_cpu(altsetting-> endpoint[0].desc.wMaxPacketSize); s8 i, j; int err = 0; for (i = 0; i < SN9C102_URBS; i++) { cam->transfer_buffer[i] = kzalloc(SN9C102_ISO_PACKETS * psz, GFP_KERNEL); if (!cam->transfer_buffer[i]) { err = -ENOMEM; DBG(1, "Not enough memory"); goto free_buffers; } } for (i = 0; i < SN9C102_URBS; i++) { urb = usb_alloc_urb(SN9C102_ISO_PACKETS, GFP_KERNEL); cam->urb[i] = urb; if (!urb) { err = -ENOMEM; DBG(1, "usb_alloc_urb() failed"); goto free_urbs; } urb->dev = udev; urb->context = cam; urb->pipe = usb_rcvisocpipe(udev, 1); urb->transfer_flags = URB_ISO_ASAP; urb->number_of_packets = SN9C102_ISO_PACKETS; urb->complete = sn9c102_urb_complete; urb->transfer_buffer = cam->transfer_buffer[i]; urb->transfer_buffer_length = psz * SN9C102_ISO_PACKETS; urb->interval = 1; for (j = 0; j < SN9C102_ISO_PACKETS; j++) { urb->iso_frame_desc[j].offset = psz * j; urb->iso_frame_desc[j].length = psz; } } /* Enable video */ if (!(cam->reg[0x01] & 0x04)) { err = sn9c102_write_reg(cam, cam->reg[0x01] | 0x04, 0x01); if (err) { err = -EIO; DBG(1, "I/O hardware error"); goto free_urbs; } } err = usb_set_interface(udev, 0, SN9C102_ALTERNATE_SETTING); if (err) { DBG(1, "usb_set_interface() failed"); goto free_urbs; } cam->frame_current = NULL; cam->sof.bytesread = 0; for (i = 0; i < SN9C102_URBS; i++) { err = usb_submit_urb(cam->urb[i], GFP_KERNEL); if (err) { for (j = i-1; j >= 0; j--) usb_kill_urb(cam->urb[j]); DBG(1, "usb_submit_urb() failed, error %d", err); goto free_urbs; } } return 0; free_urbs: for (i = 0; (i < SN9C102_URBS) && cam->urb[i]; i++) usb_free_urb(cam->urb[i]); free_buffers: for (i = 0; (i < SN9C102_URBS) && cam->transfer_buffer[i]; i++) kfree(cam->transfer_buffer[i]); return err; } static int sn9c102_stop_transfer(struct sn9c102_device* cam) { struct usb_device *udev = cam->usbdev; s8 i; int err = 0; if (cam->state & DEV_DISCONNECTED) return 0; for (i = SN9C102_URBS-1; i >= 0; i--) { usb_kill_urb(cam->urb[i]); usb_free_urb(cam->urb[i]); kfree(cam->transfer_buffer[i]); } err = usb_set_interface(udev, 0, 0); /* 0 Mb/s */ if (err) DBG(3, "usb_set_interface() failed"); return err; } static int sn9c102_stream_interrupt(struct sn9c102_device* cam) { long timeout; cam->stream = STREAM_INTERRUPT; timeout = wait_event_timeout(cam->wait_stream, (cam->stream == STREAM_OFF) || (cam->state & DEV_DISCONNECTED), SN9C102_URB_TIMEOUT); if (cam->state & DEV_DISCONNECTED) return -ENODEV; else if (cam->stream != STREAM_OFF) { cam->state |= DEV_MISCONFIGURED; DBG(1, "URB timeout reached. The camera is misconfigured. " "To use it, close and open /dev/video%d again.", cam->v4ldev->minor); return -EIO; } return 0; } /*****************************************************************************/ #ifdef CONFIG_VIDEO_ADV_DEBUG static u16 sn9c102_strtou16(const char* buff, size_t len, ssize_t* count) { char str[7]; char* endp; unsigned long val; if (len < 6) { strncpy(str, buff, len); str[len] = '\0'; } else { strncpy(str, buff, 6); str[6] = '\0'; } val = simple_strtoul(str, &endp, 0); *count = 0; if (val <= 0xffff) *count = (ssize_t)(endp - str); if ((*count) && (len == *count+1) && (buff[*count] == '\n')) *count += 1; return (u16)val; } /* NOTE 1: being inside one of the following methods implies that the v4l device exists for sure (see kobjects and reference counters) NOTE 2: buffers are PAGE_SIZE long */ static ssize_t sn9c102_show_reg(struct device* cd, struct device_attribute *attr, char* buf) { struct sn9c102_device* cam; ssize_t count; if (mutex_lock_interruptible(&sn9c102_sysfs_lock)) return -ERESTARTSYS; cam = video_get_drvdata(container_of(cd, struct video_device, class_dev)); if (!cam) { mutex_unlock(&sn9c102_sysfs_lock); return -ENODEV; } count = sprintf(buf, "%u\n", cam->sysfs.reg); mutex_unlock(&sn9c102_sysfs_lock); return count; } static ssize_t sn9c102_store_reg(struct device* cd, struct device_attribute *attr, const char* buf, size_t len) { struct sn9c102_device* cam; u16 index; ssize_t count; if (mutex_lock_interruptible(&sn9c102_sysfs_lock)) return -ERESTARTSYS; cam = video_get_drvdata(container_of(cd, struct video_device, class_dev)); if (!cam) { mutex_unlock(&sn9c102_sysfs_lock); return -ENODEV; } index = sn9c102_strtou16(buf, len, &count); if (index >= ARRAY_SIZE(cam->reg) || !count) { mutex_unlock(&sn9c102_sysfs_lock); return -EINVAL; } cam->sysfs.reg = index; DBG(2, "Moved SN9C1XX register index to 0x%02X", cam->sysfs.reg); DBG(3, "Written bytes: %zd", count); mutex_unlock(&sn9c102_sysfs_lock); return count; } static ssize_t sn9c102_show_val(struct device* cd, struct device_attribute *attr, char* buf) { struct sn9c102_device* cam; ssize_t count; int val; if (mutex_lock_interruptible(&sn9c102_sysfs_lock)) return -ERESTARTSYS; cam = video_get_drvdata(container_of(cd, struct video_device, class_dev)); if (!cam) { mutex_unlock(&sn9c102_sysfs_lock); return -ENODEV; } if ((val = sn9c102_read_reg(cam, cam->sysfs.reg)) < 0) { mutex_unlock(&sn9c102_sysfs_lock); return -EIO; } count = sprintf(buf, "%d\n", val); DBG(3, "Read bytes: %zd, value: %d", count, val); mutex_unlock(&sn9c102_sysfs_lock); return count; } static ssize_t sn9c102_store_val(struct device* cd, struct device_attribute *attr, const char* buf, size_t len) { struct sn9c102_device* cam; u16 value; ssize_t count; int err; if (mutex_lock_interruptible(&sn9c102_sysfs_lock)) return -ERESTARTSYS; cam = video_get_drvdata(container_of(cd, struct video_device, class_dev)); if (!cam) { mutex_unlock(&sn9c102_sysfs_lock); return -ENODEV; } value = sn9c102_strtou16(buf, len, &count); if (!count) { mutex_unlock(&sn9c102_sysfs_lock); return -EINVAL; } err = sn9c102_write_reg(cam, value, cam->sysfs.reg); if (err) { mutex_unlock(&sn9c102_sysfs_lock); return -EIO; } DBG(2, "Written SN9C1XX reg. 0x%02X, val. 0x%02X", cam->sysfs.reg, value); DBG(3, "Written bytes: %zd", count); mutex_unlock(&sn9c102_sysfs_lock); return count; } static ssize_t sn9c102_show_i2c_reg(struct device* cd, struct device_attribute *attr, char* buf) { struct sn9c102_device* cam; ssize_t count; if (mutex_lock_interruptible(&sn9c102_sysfs_lock)) return -ERESTARTSYS; cam = video_get_drvdata(container_of(cd, struct video_device, class_dev)); if (!cam) { mutex_unlock(&sn9c102_sysfs_lock); return -ENODEV; } count = sprintf(buf, "%u\n", cam->sysfs.i2c_reg); DBG(3, "Read bytes: %zd", count); mutex_unlock(&sn9c102_sysfs_lock); return count; } static ssize_t sn9c102_store_i2c_reg(struct device* cd, struct device_attribute *attr, const char* buf, size_t len) { struct sn9c102_device* cam; u16 index; ssize_t count; if (mutex_lock_interruptible(&sn9c102_sysfs_lock)) return -ERESTARTSYS; cam = video_get_drvdata(container_of(cd, struct video_device, class_dev)); if (!cam) { mutex_unlock(&sn9c102_sysfs_lock); return -ENODEV; } index = sn9c102_strtou16(buf, len, &count); if (!count) { mutex_unlock(&sn9c102_sysfs_lock); return -EINVAL; } cam->sysfs.i2c_reg = index; DBG(2, "Moved sensor register index to 0x%02X", cam->sysfs.i2c_reg); DBG(3, "Written bytes: %zd", count); mutex_unlock(&sn9c102_sysfs_lock); return count; } static ssize_t sn9c102_show_i2c_val(struct device* cd, struct device_attribute *attr, char* buf) { struct sn9c102_device* cam; ssize_t count; int val; if (mutex_lock_interruptible(&sn9c102_sysfs_lock)) return -ERESTARTSYS; cam = video_get_drvdata(container_of(cd, struct video_device, class_dev)); if (!cam) { mutex_unlock(&sn9c102_sysfs_lock); return -ENODEV; } if (!(cam->sensor.sysfs_ops & SN9C102_I2C_READ)) { mutex_unlock(&sn9c102_sysfs_lock); return -ENOSYS; } if ((val = sn9c102_i2c_read(cam, cam->sysfs.i2c_reg)) < 0) { mutex_unlock(&sn9c102_sysfs_lock); return -EIO; } count = sprintf(buf, "%d\n", val); DBG(3, "Read bytes: %zd, value: %d", count, val); mutex_unlock(&sn9c102_sysfs_lock); return count; } static ssize_t sn9c102_store_i2c_val(struct device* cd, struct device_attribute *attr, const char* buf, size_t len) { struct sn9c102_device* cam; u16 value; ssize_t count; int err; if (mutex_lock_interruptible(&sn9c102_sysfs_lock)) return -ERESTARTSYS; cam = video_get_drvdata(container_of(cd, struct video_device, class_dev)); if (!cam) { mutex_unlock(&sn9c102_sysfs_lock); return -ENODEV; } if (!(cam->sensor.sysfs_ops & SN9C102_I2C_WRITE)) { mutex_unlock(&sn9c102_sysfs_lock); return -ENOSYS; } value = sn9c102_strtou16(buf, len, &count); if (!count) { mutex_unlock(&sn9c102_sysfs_lock); return -EINVAL; } err = sn9c102_i2c_write(cam, cam->sysfs.i2c_reg, value); if (err) { mutex_unlock(&sn9c102_sysfs_lock); return -EIO; } DBG(2, "Written sensor reg. 0x%02X, val. 0x%02X", cam->sysfs.i2c_reg, value); DBG(3, "Written bytes: %zd", count); mutex_unlock(&sn9c102_sysfs_lock); return count; } static ssize_t sn9c102_store_green(struct device* cd, struct device_attribute *attr, const char* buf, size_t len) { struct sn9c102_device* cam; enum sn9c102_bridge bridge; ssize_t res = 0; u16 value; ssize_t count; if (mutex_lock_interruptible(&sn9c102_sysfs_lock)) return -ERESTARTSYS; cam = video_get_drvdata(container_of(cd, struct video_device, class_dev)); if (!cam) { mutex_unlock(&sn9c102_sysfs_lock); return -ENODEV; } bridge = cam->bridge; mutex_unlock(&sn9c102_sysfs_lock); value = sn9c102_strtou16(buf, len, &count); if (!count) return -EINVAL; switch (bridge) { case BRIDGE_SN9C101: case BRIDGE_SN9C102: if (value > 0x0f) return -EINVAL; if ((res = sn9c102_store_reg(cd, attr, "0x11", 4)) >= 0) res = sn9c102_store_val(cd, attr, buf, len); break; case BRIDGE_SN9C103: case BRIDGE_SN9C105: case BRIDGE_SN9C120: if (value > 0x7f) return -EINVAL; if ((res = sn9c102_store_reg(cd, attr, "0x07", 4)) >= 0) res = sn9c102_store_val(cd, attr, buf, len); break; } return res; } static ssize_t sn9c102_store_blue(struct device* cd, struct device_attribute *attr, const char* buf, size_t len) { ssize_t res = 0; u16 value; ssize_t count; value = sn9c102_strtou16(buf, len, &count); if (!count || value > 0x7f) return -EINVAL; if ((res = sn9c102_store_reg(cd, attr, "0x06", 4)) >= 0) res = sn9c102_store_val(cd, attr, buf, len); return res; } static ssize_t sn9c102_store_red(struct device* cd, struct device_attribute *attr, const char* buf, size_t len) { ssize_t res = 0; u16 value; ssize_t count; value = sn9c102_strtou16(buf, len, &count); if (!count || value > 0x7f) return -EINVAL; if ((res = sn9c102_store_reg(cd, attr, "0x05", 4)) >= 0) res = sn9c102_store_val(cd, attr, buf, len); return res; } static ssize_t sn9c102_show_frame_header(struct device* cd, struct device_attribute *attr, char* buf) { struct sn9c102_device* cam; ssize_t count; cam = video_get_drvdata(container_of(cd, struct video_device, class_dev)); if (!cam) return -ENODEV; count = sizeof(cam->sysfs.frame_header); memcpy(buf, cam->sysfs.frame_header, count); DBG(3, "Frame header, read bytes: %zd", count); return count; } static DEVICE_ATTR(reg, S_IRUGO | S_IWUSR, sn9c102_show_reg, sn9c102_store_reg); static DEVICE_ATTR(val, S_IRUGO | S_IWUSR, sn9c102_show_val, sn9c102_store_val); static DEVICE_ATTR(i2c_reg, S_IRUGO | S_IWUSR, sn9c102_show_i2c_reg, sn9c102_store_i2c_reg); static DEVICE_ATTR(i2c_val, S_IRUGO | S_IWUSR, sn9c102_show_i2c_val, sn9c102_store_i2c_val); static DEVICE_ATTR(green, S_IWUGO, NULL, sn9c102_store_green); static DEVICE_ATTR(blue, S_IWUGO, NULL, sn9c102_store_blue); static DEVICE_ATTR(red, S_IWUGO, NULL, sn9c102_store_red); static DEVICE_ATTR(frame_header, S_IRUGO, sn9c102_show_frame_header, NULL); static int sn9c102_create_sysfs(struct sn9c102_device* cam) { struct device *classdev = &(cam->v4ldev->class_dev); int err = 0; if ((err = device_create_file(classdev, &dev_attr_reg))) goto err_out; if ((err = device_create_file(classdev, &dev_attr_val))) goto err_reg; if ((err = device_create_file(classdev, &dev_attr_frame_header))) goto err_val; if (cam->sensor.sysfs_ops) { if ((err = device_create_file(classdev, &dev_attr_i2c_reg))) goto err_frame_header; if ((err = device_create_file(classdev, &dev_attr_i2c_val))) goto err_i2c_reg; } if (cam->bridge == BRIDGE_SN9C101 || cam->bridge == BRIDGE_SN9C102) { if ((err = device_create_file(classdev, &dev_attr_green))) goto err_i2c_val; } else { if ((err = device_create_file(classdev, &dev_attr_blue))) goto err_i2c_val; if ((err = device_create_file(classdev, &dev_attr_red))) goto err_blue; } return 0; err_blue: device_remove_file(classdev, &dev_attr_blue); err_i2c_val: if (cam->sensor.sysfs_ops) device_remove_file(classdev, &dev_attr_i2c_val); err_i2c_reg: if (cam->sensor.sysfs_ops) device_remove_file(classdev, &dev_attr_i2c_reg); err_frame_header: device_remove_file(classdev, &dev_attr_frame_header); err_val: device_remove_file(classdev, &dev_attr_val); err_reg: device_remove_file(classdev, &dev_attr_reg); err_out: return err; } #endif /* CONFIG_VIDEO_ADV_DEBUG */ /*****************************************************************************/ static int sn9c102_set_pix_format(struct sn9c102_device* cam, struct v4l2_pix_format* pix) { int err = 0; if (pix->pixelformat == V4L2_PIX_FMT_SN9C10X || pix->pixelformat == V4L2_PIX_FMT_JPEG) { switch (cam->bridge) { case BRIDGE_SN9C101: case BRIDGE_SN9C102: case BRIDGE_SN9C103: err += sn9c102_write_reg(cam, cam->reg[0x18] | 0x80, 0x18); break; case BRIDGE_SN9C105: case BRIDGE_SN9C120: err += sn9c102_write_reg(cam, cam->reg[0x18] & 0x7f, 0x18); break; } } else { switch (cam->bridge) { case BRIDGE_SN9C101: case BRIDGE_SN9C102: case BRIDGE_SN9C103: err += sn9c102_write_reg(cam, cam->reg[0x18] & 0x7f, 0x18); break; case BRIDGE_SN9C105: case BRIDGE_SN9C120: err += sn9c102_write_reg(cam, cam->reg[0x18] | 0x80, 0x18); break; } } return err ? -EIO : 0; } static int sn9c102_set_compression(struct sn9c102_device* cam, struct v4l2_jpegcompression* compression) { int i, err = 0; switch (cam->bridge) { case BRIDGE_SN9C101: case BRIDGE_SN9C102: case BRIDGE_SN9C103: if (compression->quality == 0) err += sn9c102_write_reg(cam, cam->reg[0x17] | 0x01, 0x17); else if (compression->quality == 1) err += sn9c102_write_reg(cam, cam->reg[0x17] & 0xfe, 0x17); break; case BRIDGE_SN9C105: case BRIDGE_SN9C120: if (compression->quality == 0) { for (i = 0; i <= 63; i++) { err += sn9c102_write_reg(cam, SN9C102_Y_QTABLE1[i], 0x100 + i); err += sn9c102_write_reg(cam, SN9C102_UV_QTABLE1[i], 0x140 + i); } err += sn9c102_write_reg(cam, cam->reg[0x18] & 0xbf, 0x18); } else if (compression->quality == 1) { for (i = 0; i <= 63; i++) { err += sn9c102_write_reg(cam, SN9C102_Y_QTABLE1[i], 0x100 + i); err += sn9c102_write_reg(cam, SN9C102_UV_QTABLE1[i], 0x140 + i); } err += sn9c102_write_reg(cam, cam->reg[0x18] | 0x40, 0x18); } break; } return err ? -EIO : 0; } static int sn9c102_set_scale(struct sn9c102_device* cam, u8 scale) { u8 r = 0; int err = 0; if (scale == 1) r = cam->reg[0x18] & 0xcf; else if (scale == 2) { r = cam->reg[0x18] & 0xcf; r |= 0x10; } else if (scale == 4) r = cam->reg[0x18] | 0x20; err += sn9c102_write_reg(cam, r, 0x18); if (err) return -EIO; PDBGG("Scaling factor: %u", scale); return 0; } static int sn9c102_set_crop(struct sn9c102_device* cam, struct v4l2_rect* rect) { struct sn9c102_sensor* s = &cam->sensor; u8 h_start = (u8)(rect->left - s->cropcap.bounds.left), v_start = (u8)(rect->top - s->cropcap.bounds.top), h_size = (u8)(rect->width / 16), v_size = (u8)(rect->height / 16); int err = 0; err += sn9c102_write_reg(cam, h_start, 0x12); err += sn9c102_write_reg(cam, v_start, 0x13); err += sn9c102_write_reg(cam, h_size, 0x15); err += sn9c102_write_reg(cam, v_size, 0x16); if (err) return -EIO; PDBGG("h_start, v_start, h_size, v_size, ho_size, vo_size " "%u %u %u %u", h_start, v_start, h_size, v_size); return 0; } static int sn9c102_init(struct sn9c102_device* cam) { struct sn9c102_sensor* s = &cam->sensor; struct v4l2_control ctrl; struct v4l2_queryctrl *qctrl; struct v4l2_rect* rect; u8 i = 0; int err = 0; if (!(cam->state & DEV_INITIALIZED)) { mutex_init(&cam->open_mutex); init_waitqueue_head(&cam->wait_open); qctrl = s->qctrl; rect = &(s->cropcap.defrect); } else { /* use current values */ qctrl = s->_qctrl; rect = &(s->_rect); } err += sn9c102_set_scale(cam, rect->width / s->pix_format.width); err += sn9c102_set_crop(cam, rect); if (err) return err; if (s->init) { err = s->init(cam); if (err) { DBG(3, "Sensor initialization failed"); return err; } } if (!(cam->state & DEV_INITIALIZED)) if (cam->bridge == BRIDGE_SN9C101 || cam->bridge == BRIDGE_SN9C102 || cam->bridge == BRIDGE_SN9C103) { if (s->pix_format.pixelformat == V4L2_PIX_FMT_JPEG) s->pix_format.pixelformat= V4L2_PIX_FMT_SBGGR8; cam->compression.quality = cam->reg[0x17] & 0x01 ? 0 : 1; } else { if (s->pix_format.pixelformat == V4L2_PIX_FMT_SN9C10X) s->pix_format.pixelformat = V4L2_PIX_FMT_JPEG; cam->compression.quality = cam->reg[0x18] & 0x40 ? 0 : 1; err += sn9c102_set_compression(cam, &cam->compression); } else err += sn9c102_set_compression(cam, &cam->compression); err += sn9c102_set_pix_format(cam, &s->pix_format); if (s->set_pix_format) err += s->set_pix_format(cam, &s->pix_format); if (err) return err; if (s->pix_format.pixelformat == V4L2_PIX_FMT_SN9C10X || s->pix_format.pixelformat == V4L2_PIX_FMT_JPEG) DBG(3, "Compressed video format is active, quality %d", cam->compression.quality); else DBG(3, "Uncompressed video format is active"); if (s->set_crop) if ((err = s->set_crop(cam, rect))) { DBG(3, "set_crop() failed"); return err; } if (s->set_ctrl) { for (i = 0; i < ARRAY_SIZE(s->qctrl); i++) if (s->qctrl[i].id != 0 && !(s->qctrl[i].flags & V4L2_CTRL_FLAG_DISABLED)) { ctrl.id = s->qctrl[i].id; ctrl.value = qctrl[i].default_value; err = s->set_ctrl(cam, &ctrl); if (err) { DBG(3, "Set %s control failed", s->qctrl[i].name); return err; } DBG(3, "Image sensor supports '%s' control", s->qctrl[i].name); } } if (!(cam->state & DEV_INITIALIZED)) { mutex_init(&cam->fileop_mutex); spin_lock_init(&cam->queue_lock); init_waitqueue_head(&cam->wait_frame); init_waitqueue_head(&cam->wait_stream); cam->nreadbuffers = 2; memcpy(s->_qctrl, s->qctrl, sizeof(s->qctrl)); memcpy(&(s->_rect), &(s->cropcap.defrect), sizeof(struct v4l2_rect)); cam->state |= DEV_INITIALIZED; } DBG(2, "Initialization succeeded"); return 0; } /*****************************************************************************/ static void sn9c102_release_resources(struct kref *kref) { struct sn9c102_device *cam; mutex_lock(&sn9c102_sysfs_lock); cam = container_of(kref, struct sn9c102_device, kref); DBG(2, "V4L2 device /dev/video%d deregistered", cam->v4ldev->minor); video_set_drvdata(cam->v4ldev, NULL); video_unregister_device(cam->v4ldev); usb_put_dev(cam->usbdev); kfree(cam->control_buffer); kfree(cam); mutex_unlock(&sn9c102_sysfs_lock); } static int sn9c102_open(struct inode* inode, struct file* filp) { struct sn9c102_device* cam; int err = 0; /* A read_trylock() in open() is the only safe way to prevent race conditions with disconnect(), one close() and multiple (not necessarily simultaneous) attempts to open(). For example, it prevents from waiting for a second access, while the device structure is being deallocated, after a possible disconnect() and during a following close() holding the write lock: given that, after this deallocation, no access will be possible anymore, using the non-trylock version would have let open() gain the access to the device structure improperly. For this reason the lock must also not be per-device. */ if (!down_read_trylock(&sn9c102_dev_lock)) return -ERESTARTSYS; cam = video_get_drvdata(video_devdata(filp)); if (wait_for_completion_interruptible(&cam->probe)) { up_read(&sn9c102_dev_lock); return -ERESTARTSYS; } kref_get(&cam->kref); /* Make sure to isolate all the simultaneous opens. */ if (mutex_lock_interruptible(&cam->open_mutex)) { kref_put(&cam->kref, sn9c102_release_resources); up_read(&sn9c102_dev_lock); return -ERESTARTSYS; } if (cam->state & DEV_DISCONNECTED) { DBG(1, "Device not present"); err = -ENODEV; goto out; } if (cam->users) { DBG(2, "Device /dev/video%d is already in use", cam->v4ldev->minor); DBG(3, "Simultaneous opens are not supported"); /* open() must follow the open flags and should block eventually while the device is in use. */ if ((filp->f_flags & O_NONBLOCK) || (filp->f_flags & O_NDELAY)) { err = -EWOULDBLOCK; goto out; } DBG(2, "A blocking open() has been requested. Wait for the " "device to be released..."); up_read(&sn9c102_dev_lock); /* We will not release the "open_mutex" lock, so that only one process can be in the wait queue below. This way the process will be sleeping while holding the lock, without loosing its priority after any wake_up(). */ err = wait_event_interruptible_exclusive(cam->wait_open, (cam->state & DEV_DISCONNECTED) || !cam->users); down_read(&sn9c102_dev_lock); if (err) goto out; if (cam->state & DEV_DISCONNECTED) { err = -ENODEV; goto out; } } if (cam->state & DEV_MISCONFIGURED) { err = sn9c102_init(cam); if (err) { DBG(1, "Initialization failed again. " "I will retry on next open()."); goto out; } cam->state &= ~DEV_MISCONFIGURED; } if ((err = sn9c102_start_transfer(cam))) goto out; filp->private_data = cam; cam->users++; cam->io = IO_NONE; cam->stream = STREAM_OFF; cam->nbuffers = 0; cam->frame_count = 0; sn9c102_empty_framequeues(cam); DBG(3, "Video device /dev/video%d is open", cam->v4ldev->minor); out: mutex_unlock(&cam->open_mutex); if (err) kref_put(&cam->kref, sn9c102_release_resources); up_read(&sn9c102_dev_lock); return err; } static int sn9c102_release(struct inode* inode, struct file* filp) { struct sn9c102_device* cam; down_write(&sn9c102_dev_lock); cam = video_get_drvdata(video_devdata(filp)); sn9c102_stop_transfer(cam); sn9c102_release_buffers(cam); cam->users--; wake_up_interruptible_nr(&cam->wait_open, 1); DBG(3, "Video device /dev/video%d closed", cam->v4ldev->minor); kref_put(&cam->kref, sn9c102_release_resources); up_write(&sn9c102_dev_lock); return 0; } static ssize_t sn9c102_read(struct file* filp, char __user * buf, size_t count, loff_t* f_pos) { struct sn9c102_device* cam = video_get_drvdata(video_devdata(filp)); struct sn9c102_frame_t* f, * i; unsigned long lock_flags; long timeout; int err = 0; if (mutex_lock_interruptible(&cam->fileop_mutex)) return -ERESTARTSYS; if (cam->state & DEV_DISCONNECTED) { DBG(1, "Device not present"); mutex_unlock(&cam->fileop_mutex); return -ENODEV; } if (cam->state & DEV_MISCONFIGURED) { DBG(1, "The camera is misconfigured. Close and open it " "again."); mutex_unlock(&cam->fileop_mutex); return -EIO; } if (cam->io == IO_MMAP) { DBG(3, "Close and open the device again to choose " "the read method"); mutex_unlock(&cam->fileop_mutex); return -EBUSY; } if (cam->io == IO_NONE) { if (!sn9c102_request_buffers(cam,cam->nreadbuffers, IO_READ)) { DBG(1, "read() failed, not enough memory"); mutex_unlock(&cam->fileop_mutex); return -ENOMEM; } cam->io = IO_READ; cam->stream = STREAM_ON; } if (list_empty(&cam->inqueue)) { if (!list_empty(&cam->outqueue)) sn9c102_empty_framequeues(cam); sn9c102_queue_unusedframes(cam); } if (!count) { mutex_unlock(&cam->fileop_mutex); return 0; } if (list_empty(&cam->outqueue)) { if (filp->f_flags & O_NONBLOCK) { mutex_unlock(&cam->fileop_mutex); return -EAGAIN; } if (!cam->module_param.frame_timeout) { err = wait_event_interruptible ( cam->wait_frame, (!list_empty(&cam->outqueue)) || (cam->state & DEV_DISCONNECTED) || (cam->state & DEV_MISCONFIGURED) ); if (err) { mutex_unlock(&cam->fileop_mutex); return err; } } else { timeout = wait_event_interruptible_timeout ( cam->wait_frame, (!list_empty(&cam->outqueue)) || (cam->state & DEV_DISCONNECTED) || (cam->state & DEV_MISCONFIGURED), cam->module_param.frame_timeout * 1000 * msecs_to_jiffies(1) ); if (timeout < 0) { mutex_unlock(&cam->fileop_mutex); return timeout; } else if (timeout == 0 && !(cam->state & DEV_DISCONNECTED)) { DBG(1, "Video frame timeout elapsed"); mutex_unlock(&cam->fileop_mutex); return -EIO; } } if (cam->state & DEV_DISCONNECTED) { mutex_unlock(&cam->fileop_mutex); return -ENODEV; } if (cam->state & DEV_MISCONFIGURED) { mutex_unlock(&cam->fileop_mutex); return -EIO; } } f = list_entry(cam->outqueue.prev, struct sn9c102_frame_t, frame); if (count > f->buf.bytesused) count = f->buf.bytesused; if (copy_to_user(buf, f->bufmem, count)) { err = -EFAULT; goto exit; } *f_pos += count; exit: spin_lock_irqsave(&cam->queue_lock, lock_flags); list_for_each_entry(i, &cam->outqueue, frame) i->state = F_UNUSED; INIT_LIST_HEAD(&cam->outqueue); spin_unlock_irqrestore(&cam->queue_lock, lock_flags); sn9c102_queue_unusedframes(cam); PDBGG("Frame #%lu, bytes read: %zu", (unsigned long)f->buf.index, count); mutex_unlock(&cam->fileop_mutex); return count; } static unsigned int sn9c102_poll(struct file *filp, poll_table *wait) { struct sn9c102_device* cam = video_get_drvdata(video_devdata(filp)); struct sn9c102_frame_t* f; unsigned long lock_flags; unsigned int mask = 0; if (mutex_lock_interruptible(&cam->fileop_mutex)) return POLLERR; if (cam->state & DEV_DISCONNECTED) { DBG(1, "Device not present"); goto error; } if (cam->state & DEV_MISCONFIGURED) { DBG(1, "The camera is misconfigured. Close and open it " "again."); goto error; } if (cam->io == IO_NONE) { if (!sn9c102_request_buffers(cam, cam->nreadbuffers, IO_READ)) { DBG(1, "poll() failed, not enough memory"); goto error; } cam->io = IO_READ; cam->stream = STREAM_ON; } if (cam->io == IO_READ) { spin_lock_irqsave(&cam->queue_lock, lock_flags); list_for_each_entry(f, &cam->outqueue, frame) f->state = F_UNUSED; INIT_LIST_HEAD(&cam->outqueue); spin_unlock_irqrestore(&cam->queue_lock, lock_flags); sn9c102_queue_unusedframes(cam); } poll_wait(filp, &cam->wait_frame, wait); if (!list_empty(&cam->outqueue)) mask |= POLLIN | POLLRDNORM; mutex_unlock(&cam->fileop_mutex); return mask; error: mutex_unlock(&cam->fileop_mutex); return POLLERR; } static void sn9c102_vm_open(struct vm_area_struct* vma) { struct sn9c102_frame_t* f = vma->vm_private_data; f->vma_use_count++; } static void sn9c102_vm_close(struct vm_area_struct* vma) { /* NOTE: buffers are not freed here */ struct sn9c102_frame_t* f = vma->vm_private_data; f->vma_use_count--; } static struct vm_operations_struct sn9c102_vm_ops = { .open = sn9c102_vm_open, .close = sn9c102_vm_close, }; static int sn9c102_mmap(struct file* filp, struct vm_area_struct *vma) { struct sn9c102_device* cam = video_get_drvdata(video_devdata(filp)); unsigned long size = vma->vm_end - vma->vm_start, start = vma->vm_start; void *pos; u32 i; if (mutex_lock_interruptible(&cam->fileop_mutex)) return -ERESTARTSYS; if (cam->state & DEV_DISCONNECTED) { DBG(1, "Device not present"); mutex_unlock(&cam->fileop_mutex); return -ENODEV; } if (cam->state & DEV_MISCONFIGURED) { DBG(1, "The camera is misconfigured. Close and open it " "again."); mutex_unlock(&cam->fileop_mutex); return -EIO; } if (!(vma->vm_flags & (VM_WRITE | VM_READ))) { mutex_unlock(&cam->fileop_mutex); return -EACCES; } if (cam->io != IO_MMAP || size != PAGE_ALIGN(cam->frame[0].buf.length)) { mutex_unlock(&cam->fileop_mutex); return -EINVAL; } for (i = 0; i < cam->nbuffers; i++) { if ((cam->frame[i].buf.m.offset>>PAGE_SHIFT) == vma->vm_pgoff) break; } if (i == cam->nbuffers) { mutex_unlock(&cam->fileop_mutex); return -EINVAL; } vma->vm_flags |= VM_IO; vma->vm_flags |= VM_RESERVED; pos = cam->frame[i].bufmem; while (size > 0) { /* size is page-aligned */ if (vm_insert_page(vma, start, vmalloc_to_page(pos))) { mutex_unlock(&cam->fileop_mutex); return -EAGAIN; } start += PAGE_SIZE; pos += PAGE_SIZE; size -= PAGE_SIZE; } vma->vm_ops = &sn9c102_vm_ops; vma->vm_private_data = &cam->frame[i]; sn9c102_vm_open(vma); mutex_unlock(&cam->fileop_mutex); return 0; } /*****************************************************************************/ static int sn9c102_vidioc_querycap(struct sn9c102_device* cam, void __user * arg) { struct v4l2_capability cap = { .driver = "sn9c102", .version = SN9C102_MODULE_VERSION_CODE, .capabilities = V4L2_CAP_VIDEO_CAPTURE | V4L2_CAP_READWRITE | V4L2_CAP_STREAMING, }; strlcpy(cap.card, cam->v4ldev->name, sizeof(cap.card)); if (usb_make_path(cam->usbdev, cap.bus_info, sizeof(cap.bus_info)) < 0) strlcpy(cap.bus_info, cam->usbdev->dev.bus_id, sizeof(cap.bus_info)); if (copy_to_user(arg, &cap, sizeof(cap))) return -EFAULT; return 0; } static int sn9c102_vidioc_enuminput(struct sn9c102_device* cam, void __user * arg) { struct v4l2_input i; if (copy_from_user(&i, arg, sizeof(i))) return -EFAULT; if (i.index) return -EINVAL; memset(&i, 0, sizeof(i)); strcpy(i.name, "Camera"); i.type = V4L2_INPUT_TYPE_CAMERA; if (copy_to_user(arg, &i, sizeof(i))) return -EFAULT; return 0; } static int sn9c102_vidioc_g_input(struct sn9c102_device* cam, void __user * arg) { int index = 0; if (copy_to_user(arg, &index, sizeof(index))) return -EFAULT; return 0; } static int sn9c102_vidioc_s_input(struct sn9c102_device* cam, void __user * arg) { int index; if (copy_from_user(&index, arg, sizeof(index))) return -EFAULT; if (index != 0) return -EINVAL; return 0; } static int sn9c102_vidioc_query_ctrl(struct sn9c102_device* cam, void __user * arg) { struct sn9c102_sensor* s = &cam->sensor; struct v4l2_queryctrl qc; u8 i; if (copy_from_user(&qc, arg, sizeof(qc))) return -EFAULT; for (i = 0; i < ARRAY_SIZE(s->qctrl); i++) if (qc.id && qc.id == s->qctrl[i].id) { memcpy(&qc, &(s->qctrl[i]), sizeof(qc)); if (copy_to_user(arg, &qc, sizeof(qc))) return -EFAULT; return 0; } return -EINVAL; } static int sn9c102_vidioc_g_ctrl(struct sn9c102_device* cam, void __user * arg) { struct sn9c102_sensor* s = &cam->sensor; struct v4l2_control ctrl; int err = 0; u8 i; if (!s->get_ctrl && !s->set_ctrl) return -EINVAL; if (copy_from_user(&ctrl, arg, sizeof(ctrl))) return -EFAULT; if (!s->get_ctrl) { for (i = 0; i < ARRAY_SIZE(s->qctrl); i++) if (ctrl.id && ctrl.id == s->qctrl[i].id) { ctrl.value = s->_qctrl[i].default_value; goto exit; } return -EINVAL; } else err = s->get_ctrl(cam, &ctrl); exit: if (copy_to_user(arg, &ctrl, sizeof(ctrl))) return -EFAULT; PDBGG("VIDIOC_G_CTRL: id %lu, value %lu", (unsigned long)ctrl.id, (unsigned long)ctrl.value); return err; } static int sn9c102_vidioc_s_ctrl(struct sn9c102_device* cam, void __user * arg) { struct sn9c102_sensor* s = &cam->sensor; struct v4l2_control ctrl; u8 i; int err = 0; if (!s->set_ctrl) return -EINVAL; if (copy_from_user(&ctrl, arg, sizeof(ctrl))) return -EFAULT; for (i = 0; i < ARRAY_SIZE(s->qctrl); i++) if (ctrl.id == s->qctrl[i].id) { if (s->qctrl[i].flags & V4L2_CTRL_FLAG_DISABLED) return -EINVAL; if (ctrl.value < s->qctrl[i].minimum || ctrl.value > s->qctrl[i].maximum) return -ERANGE; ctrl.value -= ctrl.value % s->qctrl[i].step; break; } if ((err = s->set_ctrl(cam, &ctrl))) return err; s->_qctrl[i].default_value = ctrl.value; PDBGG("VIDIOC_S_CTRL: id %lu, value %lu", (unsigned long)ctrl.id, (unsigned long)ctrl.value); return 0; } static int sn9c102_vidioc_cropcap(struct sn9c102_device* cam, void __user * arg) { struct v4l2_cropcap* cc = &(cam->sensor.cropcap); cc->type = V4L2_BUF_TYPE_VIDEO_CAPTURE; cc->pixelaspect.numerator = 1; cc->pixelaspect.denominator = 1; if (copy_to_user(arg, cc, sizeof(*cc))) return -EFAULT; return 0; } static int sn9c102_vidioc_g_crop(struct sn9c102_device* cam, void __user * arg) { struct sn9c102_sensor* s = &cam->sensor; struct v4l2_crop crop = { .type = V4L2_BUF_TYPE_VIDEO_CAPTURE, }; memcpy(&(crop.c), &(s->_rect), sizeof(struct v4l2_rect)); if (copy_to_user(arg, &crop, sizeof(crop))) return -EFAULT; return 0; } static int sn9c102_vidioc_s_crop(struct sn9c102_device* cam, void __user * arg) { struct sn9c102_sensor* s = &cam->sensor; struct v4l2_crop crop; struct v4l2_rect* rect; struct v4l2_rect* bounds = &(s->cropcap.bounds); struct v4l2_pix_format* pix_format = &(s->pix_format); u8 scale; const enum sn9c102_stream_state stream = cam->stream; const u32 nbuffers = cam->nbuffers; u32 i; int err = 0; if (copy_from_user(&crop, arg, sizeof(crop))) return -EFAULT; rect = &(crop.c); if (crop.type != V4L2_BUF_TYPE_VIDEO_CAPTURE) return -EINVAL; if (cam->module_param.force_munmap) for (i = 0; i < cam->nbuffers; i++) if (cam->frame[i].vma_use_count) { DBG(3, "VIDIOC_S_CROP failed. " "Unmap the buffers first."); return -EBUSY; } /* Preserve R,G or B origin */ rect->left = (s->_rect.left & 1L) ? rect->left | 1L : rect->left & ~1L; rect->top = (s->_rect.top & 1L) ? rect->top | 1L : rect->top & ~1L; if (rect->width < 16) rect->width = 16; if (rect->height < 16) rect->height = 16; if (rect->width > bounds->width) rect->width = bounds->width; if (rect->height > bounds->height) rect->height = bounds->height; if (rect->left < bounds->left) rect->left = bounds->left; if (rect->top < bounds->top) rect->top = bounds->top; if (rect->left + rect->width > bounds->left + bounds->width) rect->left = bounds->left+bounds->width - rect->width; if (rect->top + rect->height > bounds->top + bounds->height) rect->top = bounds->top+bounds->height - rect->height; rect->width &= ~15L; rect->height &= ~15L; if (SN9C102_PRESERVE_IMGSCALE) { /* Calculate the actual scaling factor */ u32 a, b; a = rect->width * rect->height; b = pix_format->width * pix_format->height; scale = b ? (u8)((a / b) < 4 ? 1 : ((a / b) < 16 ? 2 : 4)) : 1; } else scale = 1; if (cam->stream == STREAM_ON) if ((err = sn9c102_stream_interrupt(cam))) return err; if (copy_to_user(arg, &crop, sizeof(crop))) { cam->stream = stream; return -EFAULT; } if (cam->module_param.force_munmap || cam->io == IO_READ) sn9c102_release_buffers(cam); err = sn9c102_set_crop(cam, rect); if (s->set_crop) err += s->set_crop(cam, rect); err += sn9c102_set_scale(cam, scale); if (err) { /* atomic, no rollback in ioctl() */ cam->state |= DEV_MISCONFIGURED; DBG(1, "VIDIOC_S_CROP failed because of hardware problems. To " "use the camera, close and open /dev/video%d again.", cam->v4ldev->minor); return -EIO; } s->pix_format.width = rect->width/scale; s->pix_format.height = rect->height/scale; memcpy(&(s->_rect), rect, sizeof(*rect)); if ((cam->module_param.force_munmap || cam->io == IO_READ) && nbuffers != sn9c102_request_buffers(cam, nbuffers, cam->io)) { cam->state |= DEV_MISCONFIGURED; DBG(1, "VIDIOC_S_CROP failed because of not enough memory. To " "use the camera, close and open /dev/video%d again.", cam->v4ldev->minor); return -ENOMEM; } if (cam->io == IO_READ) sn9c102_empty_framequeues(cam); else if (cam->module_param.force_munmap) sn9c102_requeue_outqueue(cam); cam->stream = stream; return 0; } static int sn9c102_vidioc_enum_framesizes(struct sn9c102_device* cam, void __user * arg) { struct v4l2_frmsizeenum frmsize; if (copy_from_user(&frmsize, arg, sizeof(frmsize))) return -EFAULT; if (frmsize.index != 0) return -EINVAL; switch (cam->bridge) { case BRIDGE_SN9C101: case BRIDGE_SN9C102: case BRIDGE_SN9C103: if (frmsize.pixel_format != V4L2_PIX_FMT_SN9C10X && frmsize.pixel_format != V4L2_PIX_FMT_SBGGR8) return -EINVAL; case BRIDGE_SN9C105: case BRIDGE_SN9C120: if (frmsize.pixel_format != V4L2_PIX_FMT_JPEG && frmsize.pixel_format != V4L2_PIX_FMT_SBGGR8) return -EINVAL; } frmsize.type = V4L2_FRMSIZE_TYPE_STEPWISE; frmsize.stepwise.min_width = frmsize.stepwise.step_width = 16; frmsize.stepwise.min_height = frmsize.stepwise.step_height = 16; frmsize.stepwise.max_width = cam->sensor.cropcap.bounds.width; frmsize.stepwise.max_height = cam->sensor.cropcap.bounds.height; memset(&frmsize.reserved, 0, sizeof(frmsize.reserved)); if (copy_to_user(arg, &frmsize, sizeof(frmsize))) return -EFAULT; return 0; } static int sn9c102_vidioc_enum_fmt(struct sn9c102_device* cam, void __user * arg) { struct v4l2_fmtdesc fmtd; if (copy_from_user(&fmtd, arg, sizeof(fmtd))) return -EFAULT; if (fmtd.type != V4L2_BUF_TYPE_VIDEO_CAPTURE) return -EINVAL; if (fmtd.index == 0) { strcpy(fmtd.description, "bayer rgb"); fmtd.pixelformat = V4L2_PIX_FMT_SBGGR8; } else if (fmtd.index == 1) { switch (cam->bridge) { case BRIDGE_SN9C101: case BRIDGE_SN9C102: case BRIDGE_SN9C103: strcpy(fmtd.description, "compressed"); fmtd.pixelformat = V4L2_PIX_FMT_SN9C10X; break; case BRIDGE_SN9C105: case BRIDGE_SN9C120: strcpy(fmtd.description, "JPEG"); fmtd.pixelformat = V4L2_PIX_FMT_JPEG; break; } fmtd.flags = V4L2_FMT_FLAG_COMPRESSED; } else return -EINVAL; fmtd.type = V4L2_BUF_TYPE_VIDEO_CAPTURE; memset(&fmtd.reserved, 0, sizeof(fmtd.reserved)); if (copy_to_user(arg, &fmtd, sizeof(fmtd))) return -EFAULT; return 0; } static int sn9c102_vidioc_g_fmt(struct sn9c102_device* cam, void __user * arg) { struct v4l2_format format; struct v4l2_pix_format* pfmt = &(cam->sensor.pix_format); if (copy_from_user(&format, arg, sizeof(format))) return -EFAULT; if (format.type != V4L2_BUF_TYPE_VIDEO_CAPTURE) return -EINVAL; pfmt->colorspace = (pfmt->pixelformat == V4L2_PIX_FMT_JPEG) ? V4L2_COLORSPACE_JPEG : V4L2_COLORSPACE_SRGB; pfmt->bytesperline = (pfmt->pixelformat == V4L2_PIX_FMT_SN9C10X || pfmt->pixelformat == V4L2_PIX_FMT_JPEG) ? 0 : (pfmt->width * pfmt->priv) / 8; pfmt->sizeimage = pfmt->height * ((pfmt->width*pfmt->priv)/8); pfmt->field = V4L2_FIELD_NONE; memcpy(&(format.fmt.pix), pfmt, sizeof(*pfmt)); if (copy_to_user(arg, &format, sizeof(format))) return -EFAULT; return 0; } static int sn9c102_vidioc_try_s_fmt(struct sn9c102_device* cam, unsigned int cmd, void __user * arg) { struct sn9c102_sensor* s = &cam->sensor; struct v4l2_format format; struct v4l2_pix_format* pix; struct v4l2_pix_format* pfmt = &(s->pix_format); struct v4l2_rect* bounds = &(s->cropcap.bounds); struct v4l2_rect rect; u8 scale; const enum sn9c102_stream_state stream = cam->stream; const u32 nbuffers = cam->nbuffers; u32 i; int err = 0; if (copy_from_user(&format, arg, sizeof(format))) return -EFAULT; pix = &(format.fmt.pix); if (format.type != V4L2_BUF_TYPE_VIDEO_CAPTURE) return -EINVAL; memcpy(&rect, &(s->_rect), sizeof(rect)); { /* calculate the actual scaling factor */ u32 a, b; a = rect.width * rect.height; b = pix->width * pix->height; scale = b ? (u8)((a / b) < 4 ? 1 : ((a / b) < 16 ? 2 : 4)) : 1; } rect.width = scale * pix->width; rect.height = scale * pix->height; if (rect.width < 16) rect.width = 16; if (rect.height < 16) rect.height = 16; if (rect.width > bounds->left + bounds->width - rect.left) rect.width = bounds->left + bounds->width - rect.left; if (rect.height > bounds->top + bounds->height - rect.top) rect.height = bounds->top + bounds->height - rect.top; rect.width &= ~15L; rect.height &= ~15L; { /* adjust the scaling factor */ u32 a, b; a = rect.width * rect.height; b = pix->width * pix->height; scale = b ? (u8)((a / b) < 4 ? 1 : ((a / b) < 16 ? 2 : 4)) : 1; } pix->width = rect.width / scale; pix->height = rect.height / scale; switch (cam->bridge) { case BRIDGE_SN9C101: case BRIDGE_SN9C102: case BRIDGE_SN9C103: if (pix->pixelformat != V4L2_PIX_FMT_SN9C10X && pix->pixelformat != V4L2_PIX_FMT_SBGGR8) pix->pixelformat = pfmt->pixelformat; break; case BRIDGE_SN9C105: case BRIDGE_SN9C120: if (pix->pixelformat != V4L2_PIX_FMT_JPEG && pix->pixelformat != V4L2_PIX_FMT_SBGGR8) pix->pixelformat = pfmt->pixelformat; break; } pix->priv = pfmt->priv; /* bpp */ pix->colorspace = (pix->pixelformat == V4L2_PIX_FMT_JPEG) ? V4L2_COLORSPACE_JPEG : V4L2_COLORSPACE_SRGB; pix->bytesperline = (pix->pixelformat == V4L2_PIX_FMT_SN9C10X || pix->pixelformat == V4L2_PIX_FMT_JPEG) ? 0 : (pix->width * pix->priv) / 8; pix->sizeimage = pix->height * ((pix->width * pix->priv) / 8); pix->field = V4L2_FIELD_NONE; if (cmd == VIDIOC_TRY_FMT) { if (copy_to_user(arg, &format, sizeof(format))) return -EFAULT; return 0; } if (cam->module_param.force_munmap) for (i = 0; i < cam->nbuffers; i++) if (cam->frame[i].vma_use_count) { DBG(3, "VIDIOC_S_FMT failed. Unmap the " "buffers first."); return -EBUSY; } if (cam->stream == STREAM_ON) if ((err = sn9c102_stream_interrupt(cam))) return err; if (copy_to_user(arg, &format, sizeof(format))) { cam->stream = stream; return -EFAULT; } if (cam->module_param.force_munmap || cam->io == IO_READ) sn9c102_release_buffers(cam); err += sn9c102_set_pix_format(cam, pix); err += sn9c102_set_crop(cam, &rect); if (s->set_pix_format) err += s->set_pix_format(cam, pix); if (s->set_crop) err += s->set_crop(cam, &rect); err += sn9c102_set_scale(cam, scale); if (err) { /* atomic, no rollback in ioctl() */ cam->state |= DEV_MISCONFIGURED; DBG(1, "VIDIOC_S_FMT failed because of hardware problems. To " "use the camera, close and open /dev/video%d again.", cam->v4ldev->minor); return -EIO; } memcpy(pfmt, pix, sizeof(*pix)); memcpy(&(s->_rect), &rect, sizeof(rect)); if ((cam->module_param.force_munmap || cam->io == IO_READ) && nbuffers != sn9c102_request_buffers(cam, nbuffers, cam->io)) { cam->state |= DEV_MISCONFIGURED; DBG(1, "VIDIOC_S_FMT failed because of not enough memory. To " "use the camera, close and open /dev/video%d again.", cam->v4ldev->minor); return -ENOMEM; } if (cam->io == IO_READ) sn9c102_empty_framequeues(cam); else if (cam->module_param.force_munmap) sn9c102_requeue_outqueue(cam); cam->stream = stream; return 0; } static int sn9c102_vidioc_g_jpegcomp(struct sn9c102_device* cam, void __user * arg) { if (copy_to_user(arg, &cam->compression, sizeof(cam->compression))) return -EFAULT; return 0; } static int sn9c102_vidioc_s_jpegcomp(struct sn9c102_device* cam, void __user * arg) { struct v4l2_jpegcompression jc; const enum sn9c102_stream_state stream = cam->stream; int err = 0; if (copy_from_user(&jc, arg, sizeof(jc))) return -EFAULT; if (jc.quality != 0 && jc.quality != 1) return -EINVAL; if (cam->stream == STREAM_ON) if ((err = sn9c102_stream_interrupt(cam))) return err; err += sn9c102_set_compression(cam, &jc); if (err) { /* atomic, no rollback in ioctl() */ cam->state |= DEV_MISCONFIGURED; DBG(1, "VIDIOC_S_JPEGCOMP failed because of hardware " "problems. To use the camera, close and open " "/dev/video%d again.", cam->v4ldev->minor); return -EIO; } cam->compression.quality = jc.quality; cam->stream = stream; return 0; } static int sn9c102_vidioc_reqbufs(struct sn9c102_device* cam, void __user * arg) { struct v4l2_requestbuffers rb; u32 i; int err; if (copy_from_user(&rb, arg, sizeof(rb))) return -EFAULT; if (rb.type != V4L2_BUF_TYPE_VIDEO_CAPTURE || rb.memory != V4L2_MEMORY_MMAP) return -EINVAL; if (cam->io == IO_READ) { DBG(3, "Close and open the device again to choose the mmap " "I/O method"); return -EBUSY; } for (i = 0; i < cam->nbuffers; i++) if (cam->frame[i].vma_use_count) { DBG(3, "VIDIOC_REQBUFS failed. Previous buffers are " "still mapped."); return -EBUSY; } if (cam->stream == STREAM_ON) if ((err = sn9c102_stream_interrupt(cam))) return err; sn9c102_empty_framequeues(cam); sn9c102_release_buffers(cam); if (rb.count) rb.count = sn9c102_request_buffers(cam, rb.count, IO_MMAP); if (copy_to_user(arg, &rb, sizeof(rb))) { sn9c102_release_buffers(cam); cam->io = IO_NONE; return -EFAULT; } cam->io = rb.count ? IO_MMAP : IO_NONE; return 0; } static int sn9c102_vidioc_querybuf(struct sn9c102_device* cam, void __user * arg) { struct v4l2_buffer b; if (copy_from_user(&b, arg, sizeof(b))) return -EFAULT; if (b.type != V4L2_BUF_TYPE_VIDEO_CAPTURE || b.index >= cam->nbuffers || cam->io != IO_MMAP) return -EINVAL; memcpy(&b, &cam->frame[b.index].buf, sizeof(b)); if (cam->frame[b.index].vma_use_count) b.flags |= V4L2_BUF_FLAG_MAPPED; if (cam->frame[b.index].state == F_DONE) b.flags |= V4L2_BUF_FLAG_DONE; else if (cam->frame[b.index].state != F_UNUSED) b.flags |= V4L2_BUF_FLAG_QUEUED; if (copy_to_user(arg, &b, sizeof(b))) return -EFAULT; return 0; } static int sn9c102_vidioc_qbuf(struct sn9c102_device* cam, void __user * arg) { struct v4l2_buffer b; unsigned long lock_flags; if (copy_from_user(&b, arg, sizeof(b))) return -EFAULT; if (b.type != V4L2_BUF_TYPE_VIDEO_CAPTURE || b.index >= cam->nbuffers || cam->io != IO_MMAP) return -EINVAL; if (cam->frame[b.index].state != F_UNUSED) return -EINVAL; cam->frame[b.index].state = F_QUEUED; spin_lock_irqsave(&cam->queue_lock, lock_flags); list_add_tail(&cam->frame[b.index].frame, &cam->inqueue); spin_unlock_irqrestore(&cam->queue_lock, lock_flags); PDBGG("Frame #%lu queued", (unsigned long)b.index); return 0; } static int sn9c102_vidioc_dqbuf(struct sn9c102_device* cam, struct file* filp, void __user * arg) { struct v4l2_buffer b; struct sn9c102_frame_t *f; unsigned long lock_flags; long timeout; int err = 0; if (copy_from_user(&b, arg, sizeof(b))) return -EFAULT; if (b.type != V4L2_BUF_TYPE_VIDEO_CAPTURE || cam->io != IO_MMAP) return -EINVAL; if (list_empty(&cam->outqueue)) { if (cam->stream == STREAM_OFF) return -EINVAL; if (filp->f_flags & O_NONBLOCK) return -EAGAIN; if (!cam->module_param.frame_timeout) { err = wait_event_interruptible ( cam->wait_frame, (!list_empty(&cam->outqueue)) || (cam->state & DEV_DISCONNECTED) || (cam->state & DEV_MISCONFIGURED) ); if (err) return err; } else { timeout = wait_event_interruptible_timeout ( cam->wait_frame, (!list_empty(&cam->outqueue)) || (cam->state & DEV_DISCONNECTED) || (cam->state & DEV_MISCONFIGURED), cam->module_param.frame_timeout * 1000 * msecs_to_jiffies(1) ); if (timeout < 0) return timeout; else if (timeout == 0 && !(cam->state & DEV_DISCONNECTED)) { DBG(1, "Video frame timeout elapsed"); return -EIO; } } if (cam->state & DEV_DISCONNECTED) return -ENODEV; if (cam->state & DEV_MISCONFIGURED) return -EIO; } spin_lock_irqsave(&cam->queue_lock, lock_flags); f = list_entry(cam->outqueue.next, struct sn9c102_frame_t, frame); list_del(cam->outqueue.next); spin_unlock_irqrestore(&cam->queue_lock, lock_flags); f->state = F_UNUSED; memcpy(&b, &f->buf, sizeof(b)); if (f->vma_use_count) b.flags |= V4L2_BUF_FLAG_MAPPED; if (copy_to_user(arg, &b, sizeof(b))) return -EFAULT; PDBGG("Frame #%lu dequeued", (unsigned long)f->buf.index); return 0; } static int sn9c102_vidioc_streamon(struct sn9c102_device* cam, void __user * arg) { int type; if (copy_from_user(&type, arg, sizeof(type))) return -EFAULT; if (type != V4L2_BUF_TYPE_VIDEO_CAPTURE || cam->io != IO_MMAP) return -EINVAL; cam->stream = STREAM_ON; DBG(3, "Stream on"); return 0; } static int sn9c102_vidioc_streamoff(struct sn9c102_device* cam, void __user * arg) { int type, err; if (copy_from_user(&type, arg, sizeof(type))) return -EFAULT; if (type != V4L2_BUF_TYPE_VIDEO_CAPTURE || cam->io != IO_MMAP) return -EINVAL; if (cam->stream == STREAM_ON) if ((err = sn9c102_stream_interrupt(cam))) return err; sn9c102_empty_framequeues(cam); DBG(3, "Stream off"); return 0; } static int sn9c102_vidioc_g_parm(struct sn9c102_device* cam, void __user * arg) { struct v4l2_streamparm sp; if (copy_from_user(&sp, arg, sizeof(sp))) return -EFAULT; if (sp.type != V4L2_BUF_TYPE_VIDEO_CAPTURE) return -EINVAL; sp.parm.capture.extendedmode = 0; sp.parm.capture.readbuffers = cam->nreadbuffers; if (copy_to_user(arg, &sp, sizeof(sp))) return -EFAULT; return 0; } static int sn9c102_vidioc_s_parm(struct sn9c102_device* cam, void __user * arg) { struct v4l2_streamparm sp; if (copy_from_user(&sp, arg, sizeof(sp))) return -EFAULT; if (sp.type != V4L2_BUF_TYPE_VIDEO_CAPTURE) return -EINVAL; sp.parm.capture.extendedmode = 0; if (sp.parm.capture.readbuffers == 0) sp.parm.capture.readbuffers = cam->nreadbuffers; if (sp.parm.capture.readbuffers > SN9C102_MAX_FRAMES) sp.parm.capture.readbuffers = SN9C102_MAX_FRAMES; if (copy_to_user(arg, &sp, sizeof(sp))) return -EFAULT; cam->nreadbuffers = sp.parm.capture.readbuffers; return 0; } static int sn9c102_vidioc_enumaudio(struct sn9c102_device* cam, void __user * arg) { struct v4l2_audio audio; if (cam->bridge == BRIDGE_SN9C101 || cam->bridge == BRIDGE_SN9C102) return -EINVAL; if (copy_from_user(&audio, arg, sizeof(audio))) return -EFAULT; if (audio.index != 0) return -EINVAL; strcpy(audio.name, "Microphone"); audio.capability = 0; audio.mode = 0; if (copy_to_user(arg, &audio, sizeof(audio))) return -EFAULT; return 0; } static int sn9c102_vidioc_g_audio(struct sn9c102_device* cam, void __user * arg) { struct v4l2_audio audio; if (cam->bridge == BRIDGE_SN9C101 || cam->bridge == BRIDGE_SN9C102) return -EINVAL; if (copy_from_user(&audio, arg, sizeof(audio))) return -EFAULT; memset(&audio, 0, sizeof(audio)); strcpy(audio.name, "Microphone"); if (copy_to_user(arg, &audio, sizeof(audio))) return -EFAULT; return 0; } static int sn9c102_vidioc_s_audio(struct sn9c102_device* cam, void __user * arg) { struct v4l2_audio audio; if (cam->bridge == BRIDGE_SN9C101 || cam->bridge == BRIDGE_SN9C102) return -EINVAL; if (copy_from_user(&audio, arg, sizeof(audio))) return -EFAULT; if (audio.index != 0) return -EINVAL; return 0; } static int sn9c102_ioctl_v4l2(struct inode* inode, struct file* filp, unsigned int cmd, void __user * arg) { struct sn9c102_device* cam = video_get_drvdata(video_devdata(filp)); switch (cmd) { case VIDIOC_QUERYCAP: return sn9c102_vidioc_querycap(cam, arg); case VIDIOC_ENUMINPUT: return sn9c102_vidioc_enuminput(cam, arg); case VIDIOC_G_INPUT: return sn9c102_vidioc_g_input(cam, arg); case VIDIOC_S_INPUT: return sn9c102_vidioc_s_input(cam, arg); case VIDIOC_QUERYCTRL: return sn9c102_vidioc_query_ctrl(cam, arg); case VIDIOC_G_CTRL: return sn9c102_vidioc_g_ctrl(cam, arg); case VIDIOC_S_CTRL: return sn9c102_vidioc_s_ctrl(cam, arg); case VIDIOC_CROPCAP: return sn9c102_vidioc_cropcap(cam, arg); case VIDIOC_G_CROP: return sn9c102_vidioc_g_crop(cam, arg); case VIDIOC_S_CROP: return sn9c102_vidioc_s_crop(cam, arg); case VIDIOC_ENUM_FRAMESIZES: return sn9c102_vidioc_enum_framesizes(cam, arg); case VIDIOC_ENUM_FMT: return sn9c102_vidioc_enum_fmt(cam, arg); case VIDIOC_G_FMT: return sn9c102_vidioc_g_fmt(cam, arg); case VIDIOC_TRY_FMT: case VIDIOC_S_FMT: return sn9c102_vidioc_try_s_fmt(cam, cmd, arg); case VIDIOC_G_JPEGCOMP: return sn9c102_vidioc_g_jpegcomp(cam, arg); case VIDIOC_S_JPEGCOMP: return sn9c102_vidioc_s_jpegcomp(cam, arg); case VIDIOC_REQBUFS: return sn9c102_vidioc_reqbufs(cam, arg); case VIDIOC_QUERYBUF: return sn9c102_vidioc_querybuf(cam, arg); case VIDIOC_QBUF: return sn9c102_vidioc_qbuf(cam, arg); case VIDIOC_DQBUF: return sn9c102_vidioc_dqbuf(cam, filp, arg); case VIDIOC_STREAMON: return sn9c102_vidioc_streamon(cam, arg); case VIDIOC_STREAMOFF: return sn9c102_vidioc_streamoff(cam, arg); case VIDIOC_G_PARM: return sn9c102_vidioc_g_parm(cam, arg); case VIDIOC_S_PARM: return sn9c102_vidioc_s_parm(cam, arg); case VIDIOC_ENUMAUDIO: return sn9c102_vidioc_enumaudio(cam, arg); case VIDIOC_G_AUDIO: return sn9c102_vidioc_g_audio(cam, arg); case VIDIOC_S_AUDIO: return sn9c102_vidioc_s_audio(cam, arg); case VIDIOC_G_STD: case VIDIOC_S_STD: case VIDIOC_QUERYSTD: case VIDIOC_ENUMSTD: case VIDIOC_QUERYMENU: case VIDIOC_ENUM_FRAMEINTERVALS: return -EINVAL; default: return -EINVAL; } } static int sn9c102_ioctl(struct inode* inode, struct file* filp, unsigned int cmd, unsigned long arg) { struct sn9c102_device* cam = video_get_drvdata(video_devdata(filp)); int err = 0; if (mutex_lock_interruptible(&cam->fileop_mutex)) return -ERESTARTSYS; if (cam->state & DEV_DISCONNECTED) { DBG(1, "Device not present"); mutex_unlock(&cam->fileop_mutex); return -ENODEV; } if (cam->state & DEV_MISCONFIGURED) { DBG(1, "The camera is misconfigured. Close and open it " "again."); mutex_unlock(&cam->fileop_mutex); return -EIO; } V4LDBG(3, "sn9c102", cmd); err = sn9c102_ioctl_v4l2(inode, filp, cmd, (void __user *)arg); mutex_unlock(&cam->fileop_mutex); return err; } /*****************************************************************************/ static const struct file_operations sn9c102_fops = { .owner = THIS_MODULE, .open = sn9c102_open, .release = sn9c102_release, .ioctl = sn9c102_ioctl, #ifdef CONFIG_COMPAT .compat_ioctl = v4l_compat_ioctl32, #endif .read = sn9c102_read, .poll = sn9c102_poll, .mmap = sn9c102_mmap, .llseek = no_llseek, }; /*****************************************************************************/ /* It exists a single interface only. We do not need to validate anything. */ static int sn9c102_usb_probe(struct usb_interface* intf, const struct usb_device_id* id) { struct usb_device *udev = interface_to_usbdev(intf); struct sn9c102_device* cam; static unsigned int dev_nr; unsigned int i; int err = 0, r; if (!(cam = kzalloc(sizeof(struct sn9c102_device), GFP_KERNEL))) return -ENOMEM; cam->usbdev = udev; if (!(cam->control_buffer = kzalloc(8, GFP_KERNEL))) { DBG(1, "kzalloc() failed"); err = -ENOMEM; goto fail; } if (!(cam->v4ldev = video_device_alloc())) { DBG(1, "video_device_alloc() failed"); err = -ENOMEM; goto fail; } r = sn9c102_read_reg(cam, 0x00); if (r < 0 || (r != 0x10 && r != 0x11 && r != 0x12)) { DBG(1, "Sorry, this is not a SN9C1xx-based camera " "(vid:pid 0x%04X:0x%04X)", id->idVendor, id->idProduct); err = -ENODEV; goto fail; } cam->bridge = id->driver_info; switch (cam->bridge) { case BRIDGE_SN9C101: case BRIDGE_SN9C102: DBG(2, "SN9C10[12] PC Camera Controller detected " "(vid:pid 0x%04X:0x%04X)", id->idVendor, id->idProduct); break; case BRIDGE_SN9C103: DBG(2, "SN9C103 PC Camera Controller detected " "(vid:pid 0x%04X:0x%04X)", id->idVendor, id->idProduct); break; case BRIDGE_SN9C105: DBG(2, "SN9C105 PC Camera Controller detected " "(vid:pid 0x%04X:0x%04X)", id->idVendor, id->idProduct); break; case BRIDGE_SN9C120: DBG(2, "SN9C120 PC Camera Controller detected " "(vid:pid 0x%04X:0x%04X)", id->idVendor, id->idProduct); break; } for (i = 0; i < ARRAY_SIZE(sn9c102_sensor_table); i++) { err = sn9c102_sensor_table[i](cam); if (!err) break; } if (!err) { DBG(2, "%s image sensor detected", cam->sensor.name); DBG(3, "Support for %s maintained by %s", cam->sensor.name, cam->sensor.maintainer); } else { DBG(1, "No supported image sensor detected for this bridge"); err = -ENODEV; goto fail; } if (!(cam->bridge & cam->sensor.supported_bridge)) { DBG(1, "Bridge not supported"); err = -ENODEV; goto fail; } if (sn9c102_init(cam)) { DBG(1, "Initialization failed. I will retry on open()."); cam->state |= DEV_MISCONFIGURED; } strcpy(cam->v4ldev->name, "SN9C1xx PC Camera"); cam->v4ldev->owner = THIS_MODULE; cam->v4ldev->type = VID_TYPE_CAPTURE | VID_TYPE_SCALES; cam->v4ldev->fops = &sn9c102_fops; cam->v4ldev->minor = video_nr[dev_nr]; cam->v4ldev->release = video_device_release; init_completion(&cam->probe); err = video_register_device(cam->v4ldev, VFL_TYPE_GRABBER, video_nr[dev_nr]); if (err) { DBG(1, "V4L2 device registration failed"); if (err == -ENFILE && video_nr[dev_nr] == -1) DBG(1, "Free /dev/videoX node not found"); video_nr[dev_nr] = -1; dev_nr = (dev_nr < SN9C102_MAX_DEVICES-1) ? dev_nr+1 : 0; complete_all(&cam->probe); goto fail; } DBG(2, "V4L2 device registered as /dev/video%d", cam->v4ldev->minor); video_set_drvdata(cam->v4ldev, cam); cam->module_param.force_munmap = force_munmap[dev_nr]; cam->module_param.frame_timeout = frame_timeout[dev_nr]; dev_nr = (dev_nr < SN9C102_MAX_DEVICES-1) ? dev_nr+1 : 0; #ifdef CONFIG_VIDEO_ADV_DEBUG err = sn9c102_create_sysfs(cam); if (!err) DBG(2, "Optional device control through 'sysfs' " "interface ready"); else DBG(2, "Failed to create optional 'sysfs' interface for " "device controlling. Error #%d", err); #else DBG(2, "Optional device control through 'sysfs' interface disabled"); DBG(3, "Compile the kernel with the 'CONFIG_VIDEO_ADV_DEBUG' " "configuration option to enable it."); #endif usb_set_intfdata(intf, cam); kref_init(&cam->kref); usb_get_dev(cam->usbdev); complete_all(&cam->probe); return 0; fail: if (cam) { kfree(cam->control_buffer); if (cam->v4ldev) video_device_release(cam->v4ldev); kfree(cam); } return err; } static void sn9c102_usb_disconnect(struct usb_interface* intf) { struct sn9c102_device* cam; down_write(&sn9c102_dev_lock); cam = usb_get_intfdata(intf); DBG(2, "Disconnecting %s...", cam->v4ldev->name); if (cam->users) { DBG(2, "Device /dev/video%d is open! Deregistration and " "memory deallocation are deferred.", cam->v4ldev->minor); cam->state |= DEV_MISCONFIGURED; sn9c102_stop_transfer(cam); cam->state |= DEV_DISCONNECTED; wake_up_interruptible(&cam->wait_frame); wake_up(&cam->wait_stream); } else cam->state |= DEV_DISCONNECTED; wake_up_interruptible_all(&cam->wait_open); kref_put(&cam->kref, sn9c102_release_resources); up_write(&sn9c102_dev_lock); } static struct usb_driver sn9c102_usb_driver = { .name = "sn9c102", .id_table = sn9c102_id_table, .probe = sn9c102_usb_probe, .disconnect = sn9c102_usb_disconnect, }; /*****************************************************************************/ static int __init sn9c102_module_init(void) { int err = 0; KDBG(2, SN9C102_MODULE_NAME " v" SN9C102_MODULE_VERSION); KDBG(3, SN9C102_MODULE_AUTHOR); if ((err = usb_register(&sn9c102_usb_driver))) KDBG(1, "usb_register() failed"); return err; } static void __exit sn9c102_module_exit(void) { usb_deregister(&sn9c102_usb_driver); } module_init(sn9c102_module_init); module_exit(sn9c102_module_exit);