/* * Copyright (C) 2003 Russell King, All Rights Reserved. * Copyright 2006-2007 Pierre Ossman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * */ #include #include #include #include #include #include #include #include #include #include "queue.h" #include "block.h" #include "core.h" #include "card.h" #define MMC_QUEUE_BOUNCESZ 65536 /* * Prepare a MMC request. This just filters out odd stuff. */ static int mmc_prep_request(struct request_queue *q, struct request *req) { struct mmc_queue *mq = q->queuedata; if (mq && (mmc_card_removed(mq->card) || mmc_access_rpmb(mq))) return BLKPREP_KILL; req->rq_flags |= RQF_DONTPREP; req_to_mmc_queue_req(req)->retries = 0; return BLKPREP_OK; } static void mmc_cqe_request_fn(struct request_queue *q) { struct mmc_queue *mq = q->queuedata; struct request *req; if (!mq) { while ((req = blk_fetch_request(q)) != NULL) { req->rq_flags |= RQF_QUIET; __blk_end_request_all(req, -EIO); } return; } if (mq->asleep && !mq->cqe_busy) wake_up_process(mq->thread); } static inline bool mmc_cqe_dcmd_busy(struct mmc_queue *mq) { /* Allow only 1 DCMD at a time */ return mq->cqe_in_flight[MMC_ISSUE_DCMD]; } void mmc_cqe_kick_queue(struct mmc_queue *mq) { if ((mq->cqe_busy & MMC_CQE_DCMD_BUSY) && !mmc_cqe_dcmd_busy(mq)) mq->cqe_busy &= ~MMC_CQE_DCMD_BUSY; mq->cqe_busy &= ~MMC_CQE_QUEUE_FULL; if (mq->asleep && !mq->cqe_busy) __blk_run_queue(mq->queue); } static inline bool mmc_cqe_can_dcmd(struct mmc_host *host) { return host->caps2 & MMC_CAP2_CQE_DCMD; } enum mmc_issue_type mmc_cqe_issue_type(struct mmc_host *host, struct request *req) { if (req && ((req_op(req) == REQ_OP_DISCARD) || (req_op(req) == REQ_OP_SECURE_ERASE))) { return MMC_ISSUE_SYNC; } else if (req && req_op(req) == REQ_OP_FLUSH) { return mmc_cqe_can_dcmd(host) ? MMC_ISSUE_DCMD : MMC_ISSUE_SYNC; } else { return MMC_ISSUE_ASYNC; } } static void __mmc_cqe_recovery_notifier(struct mmc_queue *mq) { if (!mq->cqe_recovery_needed) { mq->cqe_recovery_needed = true; wake_up_process(mq->thread); } } static void mmc_cqe_recovery_notifier(struct mmc_host *host, struct mmc_request *mrq) { struct mmc_queue_req *mqrq = container_of(mrq, struct mmc_queue_req, brq.mrq); struct request *req = mqrq->req; struct request_queue *q = req->q; struct mmc_queue *mq = q->queuedata; unsigned long flags; spin_lock_irqsave(q->queue_lock, flags); __mmc_cqe_recovery_notifier(mq); spin_unlock_irqrestore(q->queue_lock, flags); } static int mmc_cqe_thread(void *d) { struct mmc_queue *mq = d; struct request_queue *q = mq->queue; struct mmc_card *card = mq->card; struct mmc_host *host = card->host; unsigned long flags; int get_put = 0; current->flags |= PF_MEMALLOC; down(&mq->thread_sem); spin_lock_irqsave(q->queue_lock, flags); while (1) { struct request *req = NULL; enum mmc_issue_type issue_type; bool retune_ok = false; if (mq->cqe_recovery_needed) { spin_unlock_irqrestore(q->queue_lock, flags); mmc_blk_cqe_recovery(mq); spin_lock_irqsave(q->queue_lock, flags); mq->cqe_recovery_needed = false; } set_current_state(TASK_INTERRUPTIBLE); if (!kthread_should_stop()) req = blk_peek_request(q); if (req) { issue_type = mmc_cqe_issue_type(host, req); switch (issue_type) { case MMC_ISSUE_DCMD: if (mmc_cqe_dcmd_busy(mq)) { mq->cqe_busy |= MMC_CQE_DCMD_BUSY; req = NULL; break; } /* Fall through */ case MMC_ISSUE_ASYNC: if (blk_queue_start_tag(q, req)) { mq->cqe_busy |= MMC_CQE_QUEUE_FULL; req = NULL; } break; default: /* * Timeouts are handled by mmc core, so set a * large value to avoid races. */ req->timeout = 600 * HZ; blk_start_request(req); break; } if (req) { mq->cqe_in_flight[issue_type] += 1; if (mmc_cqe_tot_in_flight(mq) == 1) get_put += 1; if (mmc_cqe_qcnt(mq) == 1) retune_ok = true; } } mq->asleep = !req; spin_unlock_irqrestore(q->queue_lock, flags); if (req) { enum mmc_issued issued; set_current_state(TASK_RUNNING); if (get_put) { get_put = 0; mmc_get_card(card); } if (host->need_retune && retune_ok && !host->hold_retune) host->retune_now = true; else host->retune_now = false; issued = mmc_blk_cqe_issue_rq(mq, req); cond_resched(); spin_lock_irqsave(q->queue_lock, flags); switch (issued) { case MMC_REQ_STARTED: break; case MMC_REQ_BUSY: blk_requeue_request(q, req); goto finished; case MMC_REQ_FAILED_TO_START: __blk_end_request_all(req, -EIO); /* Fall through */ case MMC_REQ_FINISHED: finished: mq->cqe_in_flight[issue_type] -= 1; if (mmc_cqe_tot_in_flight(mq) == 0) get_put = -1; } } else { if (get_put < 0) { get_put = 0; mmc_put_card(card); } /* * Do not stop with requests in flight in case recovery * is needed. */ if (kthread_should_stop() && !mmc_cqe_tot_in_flight(mq)) { set_current_state(TASK_RUNNING); break; } up(&mq->thread_sem); schedule(); down(&mq->thread_sem); spin_lock_irqsave(q->queue_lock, flags); } } /* loop */ up(&mq->thread_sem); return 0; } static enum blk_eh_timer_return __mmc_cqe_timed_out(struct request *req) { struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); struct mmc_request *mrq = &mqrq->brq.mrq; struct mmc_queue *mq = req->q->queuedata; struct mmc_host *host = mq->card->host; enum mmc_issue_type issue_type = mmc_cqe_issue_type(host, req); bool recovery_needed = false; switch (issue_type) { case MMC_ISSUE_ASYNC: case MMC_ISSUE_DCMD: if (host->cqe_ops->cqe_timeout(host, mrq, &recovery_needed)) { if (recovery_needed) __mmc_cqe_recovery_notifier(mq); return BLK_EH_RESET_TIMER; } /* No timeout */ return BLK_EH_HANDLED; default: /* Timeout is handled by mmc core */ return BLK_EH_RESET_TIMER; } } static enum blk_eh_timer_return mmc_cqe_timed_out(struct request *req) { struct mmc_queue *mq = req->q->queuedata; if (mq->cqe_recovery_needed) return BLK_EH_RESET_TIMER; return __mmc_cqe_timed_out(req); } static int mmc_queue_thread(void *d) { struct mmc_queue *mq = d; struct request_queue *q = mq->queue; struct mmc_context_info *cntx = &mq->card->host->context_info; current->flags |= PF_MEMALLOC; down(&mq->thread_sem); do { struct request *req; spin_lock_irq(q->queue_lock); set_current_state(TASK_INTERRUPTIBLE); req = blk_fetch_request(q); mq->asleep = false; cntx->is_waiting_last_req = false; cntx->is_new_req = false; if (!req) { /* * Dispatch queue is empty so set flags for * mmc_request_fn() to wake us up. */ if (mq->qcnt) cntx->is_waiting_last_req = true; else mq->asleep = true; } spin_unlock_irq(q->queue_lock); if (req || mq->qcnt) { set_current_state(TASK_RUNNING); mmc_blk_issue_rq(mq, req); cond_resched(); } else { if (kthread_should_stop()) { set_current_state(TASK_RUNNING); break; } up(&mq->thread_sem); schedule(); down(&mq->thread_sem); } } while (1); up(&mq->thread_sem); return 0; } /* * Generic MMC request handler. This is called for any queue on a * particular host. When the host is not busy, we look for a request * on any queue on this host, and attempt to issue it. This may * not be the queue we were asked to process. */ static void mmc_request_fn(struct request_queue *q) { struct mmc_queue *mq = q->queuedata; struct request *req; struct mmc_context_info *cntx; if (!mq) { while ((req = blk_fetch_request(q)) != NULL) { req->rq_flags |= RQF_QUIET; __blk_end_request_all(req, -EIO); } return; } cntx = &mq->card->host->context_info; if (cntx->is_waiting_last_req) { cntx->is_new_req = true; wake_up_interruptible(&cntx->wait); } if (mq->asleep) wake_up_process(mq->thread); } static struct scatterlist *mmc_alloc_sg(int sg_len, gfp_t gfp) { struct scatterlist *sg; sg = kmalloc_array(sg_len, sizeof(*sg), gfp); if (sg) sg_init_table(sg, sg_len); return sg; } static void mmc_queue_setup_discard(struct request_queue *q, struct mmc_card *card) { unsigned max_discard; max_discard = mmc_calc_max_discard(card); if (!max_discard) return; queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q); blk_queue_max_discard_sectors(q, max_discard); if (card->erased_byte == 0 && !mmc_can_discard(card)) q->limits.discard_zeroes_data = 1; q->limits.discard_granularity = card->pref_erase << 9; /* granularity must not be greater than max. discard */ if (card->pref_erase > max_discard) q->limits.discard_granularity = 0; if (mmc_can_secure_erase_trim(card)) queue_flag_set_unlocked(QUEUE_FLAG_SECERASE, q); } static unsigned int mmc_queue_calc_bouncesz(struct mmc_host *host) { unsigned int bouncesz = MMC_QUEUE_BOUNCESZ; if (host->max_segs != 1 || (host->caps & MMC_CAP_NO_BOUNCE_BUFF)) return 0; if (bouncesz > host->max_req_size) bouncesz = host->max_req_size; if (bouncesz > host->max_seg_size) bouncesz = host->max_seg_size; if (bouncesz > host->max_blk_count * 512) bouncesz = host->max_blk_count * 512; if (bouncesz <= 512) return 0; return bouncesz; } /** * mmc_init_request() - initialize the MMC-specific per-request data * @q: the request queue * @req: the request * @gfp: memory allocation policy */ static int mmc_init_request(struct request_queue *q, struct request *req, gfp_t gfp) { struct mmc_queue_req *mq_rq = req_to_mmc_queue_req(req); struct mmc_queue *mq = q->queuedata; struct mmc_card *card = mq->card; struct mmc_host *host = card->host; mq_rq->req = req; if (card->bouncesz) { mq_rq->bounce_buf = kmalloc(card->bouncesz, gfp); if (!mq_rq->bounce_buf) return -ENOMEM; if (card->bouncesz > 512) { mq_rq->sg = mmc_alloc_sg(1, gfp); if (!mq_rq->sg) return -ENOMEM; mq_rq->bounce_sg = mmc_alloc_sg(card->bouncesz / 512, gfp); if (!mq_rq->bounce_sg) return -ENOMEM; } } else { mq_rq->bounce_buf = NULL; mq_rq->bounce_sg = NULL; mq_rq->sg = mmc_alloc_sg(host->max_segs, gfp); if (!mq_rq->sg) return -ENOMEM; } return 0; } static void mmc_exit_request(struct request_queue *q, struct request *req) { struct mmc_queue_req *mq_rq = req_to_mmc_queue_req(req); /* It is OK to kfree(NULL) so this will be smooth */ kfree(mq_rq->bounce_sg); mq_rq->bounce_sg = NULL; kfree(mq_rq->bounce_buf); mq_rq->bounce_buf = NULL; kfree(mq_rq->sg); mq_rq->sg = NULL; mq_rq->req = NULL; } /** * mmc_init_queue - initialise a queue structure. * @mq: mmc queue * @card: mmc card to attach this queue * @lock: queue lock * @subname: partition subname * * Initialise a MMC card request queue. */ int mmc_init_queue(struct mmc_queue *mq, struct mmc_card *card, spinlock_t *lock, const char *subname, int area_type) { struct mmc_host *host = card->host; u64 limit = BLK_BOUNCE_HIGH; int ret = -ENOMEM; bool use_cqe = host->cqe_enabled && area_type != MMC_BLK_DATA_AREA_RPMB; if (mmc_dev(host)->dma_mask && *mmc_dev(host)->dma_mask) limit = (u64)dma_max_pfn(mmc_dev(host)) << PAGE_SHIFT; /* * mmc_init_request() depends on card->bouncesz so it must be calculated * before blk_init_allocated_queue() starts allocating requests. */ card->bouncesz = mmc_queue_calc_bouncesz(host); mq->card = card; mq->queue = blk_alloc_queue(GFP_KERNEL); if (!mq->queue) return -ENOMEM; mq->queue->queue_lock = lock; mq->queue->request_fn = use_cqe ? mmc_cqe_request_fn : mmc_request_fn; mq->queue->init_rq_fn = mmc_init_request; mq->queue->exit_rq_fn = mmc_exit_request; mq->queue->cmd_size = sizeof(struct mmc_queue_req); mq->queue->queuedata = mq; mq->qcnt = 0; ret = blk_init_allocated_queue(mq->queue); if (ret) { blk_cleanup_queue(mq->queue); return ret; } if (use_cqe) { int q_depth = card->ext_csd.cmdq_depth; if (q_depth > host->cqe_qdepth) q_depth = host->cqe_qdepth; ret = blk_queue_init_tags(mq->queue, q_depth, NULL, BLK_TAG_ALLOC_FIFO); if (ret) goto cleanup_queue; blk_queue_softirq_done(mq->queue, mmc_blk_cqe_complete_rq); blk_queue_rq_timed_out(mq->queue, mmc_cqe_timed_out); blk_queue_rq_timeout(mq->queue, 60 * HZ); host->cqe_recovery_notifier = mmc_cqe_recovery_notifier; } blk_queue_prep_rq(mq->queue, mmc_prep_request); queue_flag_set_unlocked(QUEUE_FLAG_NONROT, mq->queue); queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, mq->queue); if (mmc_can_erase(card)) mmc_queue_setup_discard(mq->queue, card); if (card->bouncesz) { blk_queue_bounce_limit(mq->queue, BLK_BOUNCE_ANY); blk_queue_max_hw_sectors(mq->queue, card->bouncesz / 512); blk_queue_max_segments(mq->queue, card->bouncesz / 512); blk_queue_max_segment_size(mq->queue, card->bouncesz); } else { blk_queue_bounce_limit(mq->queue, limit); blk_queue_max_hw_sectors(mq->queue, min(host->max_blk_count, host->max_req_size / 512)); blk_queue_max_segments(mq->queue, host->max_segs); blk_queue_max_segment_size(mq->queue, host->max_seg_size); } sema_init(&mq->thread_sem, 1); mq->thread = kthread_run(use_cqe ? mmc_cqe_thread : mmc_queue_thread, mq, "mmcqd/%d%s", host->index, subname ? subname : ""); if (IS_ERR(mq->thread)) { ret = PTR_ERR(mq->thread); goto cleanup_queue; } return 0; cleanup_queue: blk_cleanup_queue(mq->queue); return ret; } void mmc_cleanup_queue(struct mmc_queue *mq) { struct request_queue *q = mq->queue; unsigned long flags; /* Make sure the queue isn't suspended, as that will deadlock */ mmc_queue_resume(mq); /* Then terminate our worker thread */ kthread_stop(mq->thread); /* Empty the queue */ spin_lock_irqsave(q->queue_lock, flags); q->queuedata = NULL; blk_start_queue(q); spin_unlock_irqrestore(q->queue_lock, flags); mq->card = NULL; } EXPORT_SYMBOL(mmc_cleanup_queue); /** * mmc_queue_suspend - suspend a MMC request queue * @mq: MMC queue to suspend * * Stop the block request queue, and wait for our thread to * complete any outstanding requests. This ensures that we * won't suspend while a request is being processed. */ void mmc_queue_suspend(struct mmc_queue *mq) { struct request_queue *q = mq->queue; unsigned long flags; if (!mq->suspended) { mq->suspended |= true; spin_lock_irqsave(q->queue_lock, flags); blk_stop_queue(q); spin_unlock_irqrestore(q->queue_lock, flags); down(&mq->thread_sem); } } /** * mmc_queue_resume - resume a previously suspended MMC request queue * @mq: MMC queue to resume */ void mmc_queue_resume(struct mmc_queue *mq) { struct request_queue *q = mq->queue; unsigned long flags; if (mq->suspended) { mq->suspended = false; up(&mq->thread_sem); spin_lock_irqsave(q->queue_lock, flags); blk_start_queue(q); spin_unlock_irqrestore(q->queue_lock, flags); } } /* * Prepare the sg list(s) to be handed of to the host driver */ unsigned int mmc_queue_map_sg(struct mmc_queue *mq, struct mmc_queue_req *mqrq) { unsigned int sg_len; size_t buflen; struct scatterlist *sg; int i; if (!mqrq->bounce_buf) return blk_rq_map_sg(mq->queue, mqrq->req, mqrq->sg); sg_len = blk_rq_map_sg(mq->queue, mqrq->req, mqrq->bounce_sg); mqrq->bounce_sg_len = sg_len; buflen = 0; for_each_sg(mqrq->bounce_sg, sg, sg_len, i) buflen += sg->length; sg_init_one(mqrq->sg, mqrq->bounce_buf, buflen); return 1; } /* * If writing, bounce the data to the buffer before the request * is sent to the host driver */ void mmc_queue_bounce_pre(struct mmc_queue_req *mqrq) { if (!mqrq->bounce_buf) return; if (rq_data_dir(mqrq->req) != WRITE) return; sg_copy_to_buffer(mqrq->bounce_sg, mqrq->bounce_sg_len, mqrq->bounce_buf, mqrq->sg[0].length); } /* * If reading, bounce the data from the buffer after the request * has been handled by the host driver */ void mmc_queue_bounce_post(struct mmc_queue_req *mqrq) { if (!mqrq->bounce_buf) return; if (rq_data_dir(mqrq->req) != READ) return; sg_copy_from_buffer(mqrq->bounce_sg, mqrq->bounce_sg_len, mqrq->bounce_buf, mqrq->sg[0].length); }