/* * Copyright 2005-2010 Freescale Semiconductor, Inc. All Rights Reserved. */ /* * The code contained herein is licensed under the GNU General Public * License. You may obtain a copy of the GNU General Public License * Version 2 or later at the following locations: * * http://www.opensource.org/licenses/gpl-license.html * http://www.gnu.org/copyleft/gpl.html */ /*! * @file ipu_disp.c * * @brief IPU display submodule API functions * * @ingroup IPU */ #include #include #include #include #include #include #include #include #include #include #include "ipu_prv.h" #include "ipu_regs.h" #include "ipu_param_mem.h" enum csc_type_t { RGB2YUV = 0, YUV2RGB, RGB2RGB, YUV2YUV, CSC_NONE, CSC_NUM }; struct dp_csc_param_t { int mode; void *coeff; }; #define SYNC_WAVE 0 #define ASYNC_SER_WAVE 6 /* DC display ID assignments */ #define DC_DISP_ID_SYNC(di) (di) #define DC_DISP_ID_SERIAL 2 #define DC_DISP_ID_ASYNC 3 int dmfc_type_setup; static int dmfc_size_28, dmfc_size_29, dmfc_size_24, dmfc_size_27, dmfc_size_23; void _ipu_dmfc_init(int dmfc_type, int first) { u32 dmfc_wr_chan, dmfc_dp_chan; if (first) { if (dmfc_type_setup > dmfc_type) dmfc_type = dmfc_type_setup; else dmfc_type_setup = dmfc_type; /* disable DMFC-IC channel*/ __raw_writel(0x2, DMFC_IC_CTRL); } else if (dmfc_type_setup >= DMFC_HIGH_RESOLUTION_DC) { printk(KERN_DEBUG "DMFC high resolution has set, will not change\n"); return; } else dmfc_type_setup = dmfc_type; if (dmfc_type == DMFC_HIGH_RESOLUTION_DC) { /* 1 - segment 0~3; * 5B - segement 4, 5; * 5F - segement 6, 7; * 1C, 2C and 6B, 6F unused; */ printk(KERN_INFO "IPU DMFC DC HIGH RESOLUTION: 1(0~3), 5B(4,5), 5F(6,7)\n"); dmfc_wr_chan = 0x00000088; dmfc_dp_chan = 0x00009694; dmfc_size_28 = 256*4; dmfc_size_29 = 0; dmfc_size_24 = 0; dmfc_size_27 = 128*4; dmfc_size_23 = 128*4; } else if (dmfc_type == DMFC_HIGH_RESOLUTION_DP) { /* 1 - segment 0, 1; * 5B - segement 2~5; * 5F - segement 6,7; * 1C, 2C and 6B, 6F unused; */ printk(KERN_INFO "IPU DMFC DP HIGH RESOLUTION: 1(0,1), 5B(2~5), 5F(6,7)\n"); dmfc_wr_chan = 0x00000090; dmfc_dp_chan = 0x0000968a; dmfc_size_28 = 128*4; dmfc_size_29 = 0; dmfc_size_24 = 0; dmfc_size_27 = 128*4; dmfc_size_23 = 256*4; } else if (dmfc_type == DMFC_HIGH_RESOLUTION_ONLY_DP) { /* 5B - segement 0~3; * 5F - segement 4~7; * 1, 1C, 2C and 6B, 6F unused; */ printk(KERN_INFO "IPU DMFC ONLY-DP HIGH RESOLUTION: 5B(0~3), 5F(4~7)\n"); dmfc_wr_chan = 0x00000000; dmfc_dp_chan = 0x00008c88; dmfc_size_28 = 0; dmfc_size_29 = 0; dmfc_size_24 = 0; dmfc_size_27 = 256*4; dmfc_size_23 = 256*4; } else { /* 1 - segment 0, 1; * 5B - segement 4, 5; * 5F - segement 6, 7; * 1C, 2C and 6B, 6F unused; */ printk(KERN_INFO "IPU DMFC NORMAL mode: 1(0~1), 5B(4,5), 5F(6,7)\n"); dmfc_wr_chan = 0x00000090; dmfc_dp_chan = 0x00009694; dmfc_size_28 = 128*4; dmfc_size_29 = 0; dmfc_size_24 = 0; dmfc_size_27 = 128*4; dmfc_size_23 = 128*4; } __raw_writel(dmfc_wr_chan, DMFC_WR_CHAN); __raw_writel(0x202020F6, DMFC_WR_CHAN_DEF); __raw_writel(dmfc_dp_chan, DMFC_DP_CHAN); /* Enable chan 5 watermark set at 5 bursts and clear at 7 bursts */ __raw_writel(0x2020F6F6, DMFC_DP_CHAN_DEF); } static int __init dmfc_setup(char *options) { get_option(&options, &dmfc_type_setup); if (dmfc_type_setup > DMFC_HIGH_RESOLUTION_ONLY_DP) dmfc_type_setup = DMFC_HIGH_RESOLUTION_ONLY_DP; return 1; } __setup("dmfc=", dmfc_setup); static bool _ipu_update_dmfc_used_size(int dma_chan, int width, int dmfc_size) { u32 fifo_size_5f = 1; u32 dmfc_dp_chan = __raw_readl(DMFC_DP_CHAN); if ((width > 352) && (dmfc_size == (256 * 4))) fifo_size_5f = 1; else if (width > 176) fifo_size_5f = 2; else if (width > 88) fifo_size_5f = 3; else if (width > 44) fifo_size_5f = 4; else if (width > 22) fifo_size_5f = 5; else if (width > 11) fifo_size_5f = 6; else if (width > 6) fifo_size_5f = 7; else return false; if (dma_chan == 27) { dmfc_dp_chan &= ~DMFC_FIFO_SIZE_5F; dmfc_dp_chan |= fifo_size_5f << 11; __raw_writel(dmfc_dp_chan, DMFC_DP_CHAN); } return true; } void _ipu_dmfc_set_wait4eot(int dma_chan, int width) { u32 dmfc_gen1 = __raw_readl(DMFC_GENERAL1); if (width >= HIGH_RESOLUTION_WIDTH) { if (dma_chan == 23) _ipu_dmfc_init(DMFC_HIGH_RESOLUTION_DP, 0); else if (dma_chan == 28) _ipu_dmfc_init(DMFC_HIGH_RESOLUTION_DC, 0); } if (dma_chan == 23) { /*5B*/ if (dmfc_size_23/width > 3) dmfc_gen1 |= 1UL << 20; else dmfc_gen1 &= ~(1UL << 20); } else if (dma_chan == 24) { /*6B*/ if (dmfc_size_24/width > 1) dmfc_gen1 |= 1UL << 22; else dmfc_gen1 &= ~(1UL << 22); } else if (dma_chan == 27) { /*5F*/ if (!_ipu_update_dmfc_used_size(dma_chan, width, dmfc_size_27)) dmfc_gen1 |= 1UL << 21; else dmfc_gen1 &= ~(1UL << 21); } else if (dma_chan == 28) { /*1*/ if (dmfc_size_28/width > 2) dmfc_gen1 |= 1UL << 16; else dmfc_gen1 &= ~(1UL << 16); } else if (dma_chan == 29) { /*6F*/ if (dmfc_size_29/width > 1) dmfc_gen1 |= 1UL << 23; else dmfc_gen1 &= ~(1UL << 23); } __raw_writel(dmfc_gen1, DMFC_GENERAL1); } static void _ipu_di_data_wave_config(int di, int wave_gen, int access_size, int component_size) { u32 reg; reg = (access_size << DI_DW_GEN_ACCESS_SIZE_OFFSET) | (component_size << DI_DW_GEN_COMPONENT_SIZE_OFFSET); __raw_writel(reg, DI_DW_GEN(di, wave_gen)); } static void _ipu_di_data_pin_config(int di, int wave_gen, int di_pin, int set, int up, int down) { u32 reg; reg = __raw_readl(DI_DW_GEN(di, wave_gen)); reg &= ~(0x3 << (di_pin * 2)); reg |= set << (di_pin * 2); __raw_writel(reg, DI_DW_GEN(di, wave_gen)); __raw_writel((down << 16) | up, DI_DW_SET(di, wave_gen, set)); } static void _ipu_di_sync_config(int di, int wave_gen, int run_count, int run_src, int offset_count, int offset_src, int repeat_count, int cnt_clr_src, int cnt_polarity_gen_en, int cnt_polarity_clr_src, int cnt_polarity_trigger_src, int cnt_up, int cnt_down) { u32 reg; if ((run_count >= 0x1000) || (offset_count >= 0x1000) || (repeat_count >= 0x1000) || (cnt_up >= 0x400) || (cnt_down >= 0x400)) { dev_err(g_ipu_dev, "DI%d counters out of range.\n", di); return; } reg = (run_count << 19) | (++run_src << 16) | (offset_count << 3) | ++offset_src; __raw_writel(reg, DI_SW_GEN0(di, wave_gen)); reg = (cnt_polarity_gen_en << 29) | (++cnt_clr_src << 25) | (++cnt_polarity_trigger_src << 12) | (++cnt_polarity_clr_src << 9); reg |= (cnt_down << 16) | cnt_up; if (repeat_count == 0) { /* Enable auto reload */ reg |= 0x10000000; } __raw_writel(reg, DI_SW_GEN1(di, wave_gen)); reg = __raw_readl(DI_STP_REP(di, wave_gen)); reg &= ~(0xFFFF << (16 * ((wave_gen - 1) & 0x1))); reg |= repeat_count << (16 * ((wave_gen - 1) & 0x1)); __raw_writel(reg, DI_STP_REP(di, wave_gen)); } static void _ipu_dc_map_link(int current_map, int base_map_0, int buf_num_0, int base_map_1, int buf_num_1, int base_map_2, int buf_num_2) { int ptr_0 = base_map_0 * 3 + buf_num_0; int ptr_1 = base_map_1 * 3 + buf_num_1; int ptr_2 = base_map_2 * 3 + buf_num_2; int ptr; u32 reg; ptr = (ptr_2 << 10) + (ptr_1 << 5) + ptr_0; reg = __raw_readl(DC_MAP_CONF_PTR(current_map)); reg &= ~(0x1F << ((16 * (current_map & 0x1)))); reg |= ptr << ((16 * (current_map & 0x1))); __raw_writel(reg, DC_MAP_CONF_PTR(current_map)); } static void _ipu_dc_map_config(int map, int byte_num, int offset, int mask) { int ptr = map * 3 + byte_num; u32 reg; reg = __raw_readl(DC_MAP_CONF_VAL(ptr)); reg &= ~(0xFFFF << (16 * (ptr & 0x1))); reg |= ((offset << 8) | mask) << (16 * (ptr & 0x1)); __raw_writel(reg, DC_MAP_CONF_VAL(ptr)); reg = __raw_readl(DC_MAP_CONF_PTR(map)); reg &= ~(0x1F << ((16 * (map & 0x1)) + (5 * byte_num))); reg |= ptr << ((16 * (map & 0x1)) + (5 * byte_num)); __raw_writel(reg, DC_MAP_CONF_PTR(map)); } static void _ipu_dc_map_clear(int map) { u32 reg = __raw_readl(DC_MAP_CONF_PTR(map)); __raw_writel(reg & ~(0xFFFF << (16 * (map & 0x1))), DC_MAP_CONF_PTR(map)); } static void _ipu_dc_write_tmpl(int word, u32 opcode, u32 operand, int map, int wave, int glue, int sync, int stop) { u32 reg; if (opcode == WRG) { reg = sync; reg |= (glue << 4); reg |= (++wave << 11); reg |= ((operand & 0x1FFFF) << 15); __raw_writel(reg, ipu_dc_tmpl_reg + word * 2); reg = (operand >> 17); reg |= opcode << 7; reg |= (stop << 9); __raw_writel(reg, ipu_dc_tmpl_reg + word * 2 + 1); } else { reg = sync; reg |= (glue << 4); reg |= (++wave << 11); reg |= (++map << 15); reg |= (operand << 20) & 0xFFF00000; __raw_writel(reg, ipu_dc_tmpl_reg + word * 2); reg = (operand >> 12); reg |= opcode << 4; reg |= (stop << 9); __raw_writel(reg, ipu_dc_tmpl_reg + word * 2 + 1); } } static void _ipu_dc_link_event(int chan, int event, int addr, int priority) { u32 reg; u32 address_shift; if (event < DC_EVEN_UGDE0) { reg = __raw_readl(DC_RL_CH(chan, event)); reg &= ~(0xFFFF << (16 * (event & 0x1))); reg |= ((addr << 8) | priority) << (16 * (event & 0x1)); __raw_writel(reg, DC_RL_CH(chan, event)); } else { reg = __raw_readl(DC_UGDE_0((event - DC_EVEN_UGDE0) / 2)); if ((event - DC_EVEN_UGDE0) & 0x1) { reg &= ~(0x2FF << 16); reg |= (addr << 16); reg |= priority ? (2 << 24) : 0x0; } else { reg &= ~0xFC00FFFF; if (priority) chan = (chan >> 1) + ((((chan & 0x1) + ((chan & 0x2) >> 1))) | (chan >> 3)); else chan = 0x7; address_shift = ((event - DC_EVEN_UGDE0) >> 1) ? 7 : 8; reg |= (addr << address_shift) | (priority << 3) | chan; } __raw_writel(reg, DC_UGDE_0((event - DC_EVEN_UGDE0) / 2)); } } /* Y = R * 1.200 + G * 2.343 + B * .453 + 0.250; U = R * -.672 + G * -1.328 + B * 2.000 + 512.250.; V = R * 2.000 + G * -1.672 + B * -.328 + 512.250.;*/ static const int rgb2ycbcr_coeff[5][3] = { {0x4D, 0x96, 0x1D}, {-0x2B, -0x55, 0x80}, {0x80, -0x6B, -0x15}, {0x0000, 0x0200, 0x0200}, /* B0, B1, B2 */ {0x2, 0x2, 0x2}, /* S0, S1, S2 */ }; /* R = (1.164 * (Y - 16)) + (1.596 * (Cr - 128)); G = (1.164 * (Y - 16)) - (0.392 * (Cb - 128)) - (0.813 * (Cr - 128)); B = (1.164 * (Y - 16)) + (2.017 * (Cb - 128); */ static const int ycbcr2rgb_coeff[5][3] = { {0x095, 0x000, 0x0CC}, {0x095, 0x3CE, 0x398}, {0x095, 0x0FF, 0x000}, {0x3E42, 0x010A, 0x3DD6}, /*B0,B1,B2 */ {0x1, 0x1, 0x1}, /*S0,S1,S2 */ }; #define mask_a(a) ((u32)(a) & 0x3FF) #define mask_b(b) ((u32)(b) & 0x3FFF) /* Pls keep S0, S1 and S2 as 0x2 by using this convertion */ static int _rgb_to_yuv(int n, int red, int green, int blue) { int c; c = red * rgb2ycbcr_coeff[n][0]; c += green * rgb2ycbcr_coeff[n][1]; c += blue * rgb2ycbcr_coeff[n][2]; c /= 16; c += rgb2ycbcr_coeff[3][n] * 4; c += 8; c /= 16; if (c < 0) c = 0; if (c > 255) c = 255; return c; } /* * Row is for BG: RGB2YUV YUV2RGB RGB2RGB YUV2YUV CSC_NONE * Column is for FG: RGB2YUV YUV2RGB RGB2RGB YUV2YUV CSC_NONE */ static struct dp_csc_param_t dp_csc_array[CSC_NUM][CSC_NUM] = { {{DP_COM_CONF_CSC_DEF_BOTH, &rgb2ycbcr_coeff}, {0, 0}, {0, 0}, {DP_COM_CONF_CSC_DEF_BG, &rgb2ycbcr_coeff}, {DP_COM_CONF_CSC_DEF_BG, &rgb2ycbcr_coeff} }, {{0, 0}, {DP_COM_CONF_CSC_DEF_BOTH, &ycbcr2rgb_coeff}, {DP_COM_CONF_CSC_DEF_BG, &ycbcr2rgb_coeff}, {0, 0}, {DP_COM_CONF_CSC_DEF_BG, &ycbcr2rgb_coeff} }, {{0, 0}, {DP_COM_CONF_CSC_DEF_FG, &ycbcr2rgb_coeff}, {0, 0}, {0, 0}, {0, 0} }, {{DP_COM_CONF_CSC_DEF_FG, &rgb2ycbcr_coeff}, {0, 0}, {0, 0}, {0, 0}, {0, 0} }, {{DP_COM_CONF_CSC_DEF_FG, &rgb2ycbcr_coeff}, {DP_COM_CONF_CSC_DEF_FG, &ycbcr2rgb_coeff}, {0, 0}, {0, 0}, {0, 0} } }; static enum csc_type_t fg_csc_type = CSC_NONE, bg_csc_type = CSC_NONE; static int color_key_4rgb = 1; void __ipu_dp_csc_setup(int dp, struct dp_csc_param_t dp_csc_param, bool srm_mode_update) { u32 reg; const int (*coeff)[5][3]; if (dp_csc_param.mode >= 0) { reg = __raw_readl(DP_COM_CONF(dp)); reg &= ~DP_COM_CONF_CSC_DEF_MASK; reg |= dp_csc_param.mode; __raw_writel(reg, DP_COM_CONF(dp)); } coeff = dp_csc_param.coeff; if (coeff) { __raw_writel(mask_a((*coeff)[0][0]) | (mask_a((*coeff)[0][1]) << 16), DP_CSC_A_0(dp)); __raw_writel(mask_a((*coeff)[0][2]) | (mask_a((*coeff)[1][0]) << 16), DP_CSC_A_1(dp)); __raw_writel(mask_a((*coeff)[1][1]) | (mask_a((*coeff)[1][2]) << 16), DP_CSC_A_2(dp)); __raw_writel(mask_a((*coeff)[2][0]) | (mask_a((*coeff)[2][1]) << 16), DP_CSC_A_3(dp)); __raw_writel(mask_a((*coeff)[2][2]) | (mask_b((*coeff)[3][0]) << 16) | ((*coeff)[4][0] << 30), DP_CSC_0(dp)); __raw_writel(mask_b((*coeff)[3][1]) | ((*coeff)[4][1] << 14) | (mask_b((*coeff)[3][2]) << 16) | ((*coeff)[4][2] << 30), DP_CSC_1(dp)); } if (srm_mode_update) { reg = __raw_readl(IPU_SRM_PRI2) | 0x8; __raw_writel(reg, IPU_SRM_PRI2); } } int _ipu_dp_init(ipu_channel_t channel, uint32_t in_pixel_fmt, uint32_t out_pixel_fmt) { int in_fmt, out_fmt; int dp; int partial = false; uint32_t reg; if (channel == MEM_FG_SYNC) { dp = DP_SYNC; partial = true; } else if (channel == MEM_BG_SYNC) { dp = DP_SYNC; partial = false; } else if (channel == MEM_BG_ASYNC0) { dp = DP_ASYNC0; partial = false; } else { return -EINVAL; } in_fmt = format_to_colorspace(in_pixel_fmt); out_fmt = format_to_colorspace(out_pixel_fmt); if (partial) { if (in_fmt == RGB) { if (out_fmt == RGB) fg_csc_type = RGB2RGB; else fg_csc_type = RGB2YUV; } else { if (out_fmt == RGB) fg_csc_type = YUV2RGB; else fg_csc_type = YUV2YUV; } } else { if (in_fmt == RGB) { if (out_fmt == RGB) bg_csc_type = RGB2RGB; else bg_csc_type = RGB2YUV; } else { if (out_fmt == RGB) bg_csc_type = YUV2RGB; else bg_csc_type = YUV2YUV; } } /* Transform color key from rgb to yuv if CSC is enabled */ reg = __raw_readl(DP_COM_CONF(dp)); if (color_key_4rgb && (reg & DP_COM_CONF_GWCKE) && (((fg_csc_type == RGB2YUV) && (bg_csc_type == YUV2YUV)) || ((fg_csc_type == YUV2YUV) && (bg_csc_type == RGB2YUV)) || ((fg_csc_type == YUV2YUV) && (bg_csc_type == YUV2YUV)) || ((fg_csc_type == YUV2RGB) && (bg_csc_type == YUV2RGB)))) { int red, green, blue; int y, u, v; uint32_t color_key = __raw_readl(DP_GRAPH_WIND_CTRL(dp)) & 0xFFFFFFL; dev_dbg(g_ipu_dev, "_ipu_dp_init color key 0x%x need change to yuv fmt!\n", color_key); red = (color_key >> 16) & 0xFF; green = (color_key >> 8) & 0xFF; blue = color_key & 0xFF; y = _rgb_to_yuv(0, red, green, blue); u = _rgb_to_yuv(1, red, green, blue); v = _rgb_to_yuv(2, red, green, blue); color_key = (y << 16) | (u << 8) | v; reg = __raw_readl(DP_GRAPH_WIND_CTRL(dp)) & 0xFF000000L; __raw_writel(reg | color_key, DP_GRAPH_WIND_CTRL(dp)); color_key_4rgb = 0; dev_dbg(g_ipu_dev, "_ipu_dp_init color key change to yuv fmt 0x%x!\n", color_key); } __ipu_dp_csc_setup(dp, dp_csc_array[bg_csc_type][fg_csc_type], true); return 0; } void _ipu_dp_uninit(ipu_channel_t channel) { int dp; int partial = false; if (channel == MEM_FG_SYNC) { dp = DP_SYNC; partial = true; } else if (channel == MEM_BG_SYNC) { dp = DP_SYNC; partial = false; } else if (channel == MEM_BG_ASYNC0) { dp = DP_ASYNC0; partial = false; } else { return; } if (partial) fg_csc_type = CSC_NONE; else bg_csc_type = CSC_NONE; __ipu_dp_csc_setup(dp, dp_csc_array[bg_csc_type][fg_csc_type], false); } void _ipu_dc_init(int dc_chan, int di, bool interlaced, uint32_t pixel_fmt) { u32 reg = 0; if ((dc_chan == 1) || (dc_chan == 5)) { if (interlaced) { _ipu_dc_link_event(dc_chan, DC_EVT_NL, 0, 3); _ipu_dc_link_event(dc_chan, DC_EVT_EOL, 0, 2); _ipu_dc_link_event(dc_chan, DC_EVT_NEW_DATA, 0, 1); } else { if (di) { _ipu_dc_link_event(dc_chan, DC_EVT_NL, 2, 3); _ipu_dc_link_event(dc_chan, DC_EVT_EOL, 3, 2); _ipu_dc_link_event(dc_chan, DC_EVT_NEW_DATA, 4, 1); if ((pixel_fmt == IPU_PIX_FMT_YUYV) || (pixel_fmt == IPU_PIX_FMT_UYVY) || (pixel_fmt == IPU_PIX_FMT_YVYU) || (pixel_fmt == IPU_PIX_FMT_VYUY)) { _ipu_dc_link_event(dc_chan, DC_ODD_UGDE1, 9, 5); _ipu_dc_link_event(dc_chan, DC_EVEN_UGDE1, 8, 5); } } else { _ipu_dc_link_event(dc_chan, DC_EVT_NL, 5, 3); _ipu_dc_link_event(dc_chan, DC_EVT_EOL, 6, 2); _ipu_dc_link_event(dc_chan, DC_EVT_NEW_DATA, 7, 1); if ((pixel_fmt == IPU_PIX_FMT_YUYV) || (pixel_fmt == IPU_PIX_FMT_UYVY) || (pixel_fmt == IPU_PIX_FMT_YVYU) || (pixel_fmt == IPU_PIX_FMT_VYUY)) { _ipu_dc_link_event(dc_chan, DC_ODD_UGDE0, 10, 5); _ipu_dc_link_event(dc_chan, DC_EVEN_UGDE0, 11, 5); } } } _ipu_dc_link_event(dc_chan, DC_EVT_NF, 0, 0); _ipu_dc_link_event(dc_chan, DC_EVT_NFIELD, 0, 0); _ipu_dc_link_event(dc_chan, DC_EVT_EOF, 0, 0); _ipu_dc_link_event(dc_chan, DC_EVT_EOFIELD, 0, 0); _ipu_dc_link_event(dc_chan, DC_EVT_NEW_CHAN, 0, 0); _ipu_dc_link_event(dc_chan, DC_EVT_NEW_ADDR, 0, 0); reg = 0x2; reg |= DC_DISP_ID_SYNC(di) << DC_WR_CH_CONF_PROG_DISP_ID_OFFSET; reg |= di << 2; if (interlaced) reg |= DC_WR_CH_CONF_FIELD_MODE; } else if ((dc_chan == 8) || (dc_chan == 9)) { /* async channels */ _ipu_dc_link_event(dc_chan, DC_EVT_NEW_DATA_W_0, 0x64, 1); _ipu_dc_link_event(dc_chan, DC_EVT_NEW_DATA_W_1, 0x64, 1); reg = 0x3; reg |= DC_DISP_ID_SERIAL << DC_WR_CH_CONF_PROG_DISP_ID_OFFSET; } __raw_writel(reg, DC_WR_CH_CONF(dc_chan)); __raw_writel(0x00000000, DC_WR_CH_ADDR(dc_chan)); __raw_writel(0x00000084, DC_GEN); } void _ipu_dc_uninit(int dc_chan) { if ((dc_chan == 1) || (dc_chan == 5)) { _ipu_dc_link_event(dc_chan, DC_EVT_NL, 0, 0); _ipu_dc_link_event(dc_chan, DC_EVT_EOL, 0, 0); _ipu_dc_link_event(dc_chan, DC_EVT_NEW_DATA, 0, 0); _ipu_dc_link_event(dc_chan, DC_EVT_NF, 0, 0); _ipu_dc_link_event(dc_chan, DC_EVT_NFIELD, 0, 0); _ipu_dc_link_event(dc_chan, DC_EVT_EOF, 0, 0); _ipu_dc_link_event(dc_chan, DC_EVT_EOFIELD, 0, 0); _ipu_dc_link_event(dc_chan, DC_EVT_NEW_CHAN, 0, 0); _ipu_dc_link_event(dc_chan, DC_EVT_NEW_ADDR, 0, 0); _ipu_dc_link_event(dc_chan, DC_ODD_UGDE0, 0, 0); _ipu_dc_link_event(dc_chan, DC_EVEN_UGDE0, 0, 0); _ipu_dc_link_event(dc_chan, DC_ODD_UGDE1, 0, 0); _ipu_dc_link_event(dc_chan, DC_EVEN_UGDE1, 0, 0); } else if ((dc_chan == 8) || (dc_chan == 9)) { _ipu_dc_link_event(dc_chan, DC_EVT_NEW_ADDR_W_0, 0, 0); _ipu_dc_link_event(dc_chan, DC_EVT_NEW_ADDR_W_1, 0, 0); _ipu_dc_link_event(dc_chan, DC_EVT_NEW_CHAN_W_0, 0, 0); _ipu_dc_link_event(dc_chan, DC_EVT_NEW_CHAN_W_1, 0, 0); _ipu_dc_link_event(dc_chan, DC_EVT_NEW_DATA_W_0, 0, 0); _ipu_dc_link_event(dc_chan, DC_EVT_NEW_DATA_W_1, 0, 0); _ipu_dc_link_event(dc_chan, DC_EVT_NEW_ADDR_R_0, 0, 0); _ipu_dc_link_event(dc_chan, DC_EVT_NEW_ADDR_R_1, 0, 0); _ipu_dc_link_event(dc_chan, DC_EVT_NEW_CHAN_R_0, 0, 0); _ipu_dc_link_event(dc_chan, DC_EVT_NEW_CHAN_R_1, 0, 0); _ipu_dc_link_event(dc_chan, DC_EVT_NEW_DATA_R_0, 0, 0); _ipu_dc_link_event(dc_chan, DC_EVT_NEW_DATA_R_1, 0, 0); } } int _ipu_chan_is_interlaced(ipu_channel_t channel) { if (channel == MEM_DC_SYNC) return !!(__raw_readl(DC_WR_CH_CONF_1) & DC_WR_CH_CONF_FIELD_MODE); else if ((channel == MEM_BG_SYNC) || (channel == MEM_FG_SYNC)) return !!(__raw_readl(DC_WR_CH_CONF_5) & DC_WR_CH_CONF_FIELD_MODE); return 0; } void _ipu_dp_dc_enable(ipu_channel_t channel) { int di; uint32_t reg; uint32_t dc_chan; int irq = 0; if (channel == MEM_FG_SYNC) irq = IPU_IRQ_DP_SF_END; else if (channel == MEM_DC_SYNC) dc_chan = 1; else if (channel == MEM_BG_SYNC) dc_chan = 5; else return; if (channel == MEM_FG_SYNC) { /* Enable FG channel */ reg = __raw_readl(DP_COM_CONF(DP_SYNC)); __raw_writel(reg | DP_COM_CONF_FG_EN, DP_COM_CONF(DP_SYNC)); reg = __raw_readl(IPU_SRM_PRI2) | 0x8; __raw_writel(reg, IPU_SRM_PRI2); return; } di = g_dc_di_assignment[dc_chan]; /* Make sure other DC sync channel is not assigned same DI */ reg = __raw_readl(DC_WR_CH_CONF(6 - dc_chan)); if ((di << 2) == (reg & DC_WR_CH_CONF_PROG_DI_ID)) { reg &= ~DC_WR_CH_CONF_PROG_DI_ID; reg |= di ? 0 : DC_WR_CH_CONF_PROG_DI_ID; __raw_writel(reg, DC_WR_CH_CONF(6 - dc_chan)); } reg = __raw_readl(DC_WR_CH_CONF(dc_chan)); reg |= 4 << DC_WR_CH_CONF_PROG_TYPE_OFFSET; __raw_writel(reg, DC_WR_CH_CONF(dc_chan)); clk_enable(g_pixel_clk[di]); } static bool dc_swap; static irqreturn_t dc_irq_handler(int irq, void *dev_id) { struct completion *comp = dev_id; uint32_t reg; uint32_t dc_chan; if (irq == IPU_IRQ_DC_FC_1) dc_chan = 1; else dc_chan = 5; if (!dc_swap) { reg = __raw_readl(DC_WR_CH_CONF(dc_chan)); reg &= ~DC_WR_CH_CONF_PROG_TYPE_MASK; __raw_writel(reg, DC_WR_CH_CONF(dc_chan)); reg = __raw_readl(IPU_DISP_GEN); if (g_dc_di_assignment[dc_chan]) reg &= ~DI1_COUNTER_RELEASE; else reg &= ~DI0_COUNTER_RELEASE; __raw_writel(reg, IPU_DISP_GEN); } complete(comp); return IRQ_HANDLED; } void _ipu_dp_dc_disable(ipu_channel_t channel, bool swap) { int ret; unsigned long lock_flags; uint32_t reg; uint32_t csc; uint32_t dc_chan; int irq = 0; int timeout = 50; DECLARE_COMPLETION_ONSTACK(dc_comp); dc_swap = swap; if (channel == MEM_DC_SYNC) { dc_chan = 1; irq = IPU_IRQ_DC_FC_1; } else if (channel == MEM_BG_SYNC) { dc_chan = 5; irq = IPU_IRQ_DP_SF_END; } else if (channel == MEM_FG_SYNC) { /* Disable FG channel */ dc_chan = 5; spin_lock_irqsave(&ipu_lock, lock_flags); reg = __raw_readl(DP_COM_CONF(DP_SYNC)); csc = reg & DP_COM_CONF_CSC_DEF_MASK; if (csc == DP_COM_CONF_CSC_DEF_FG) reg &= ~DP_COM_CONF_CSC_DEF_MASK; reg &= ~DP_COM_CONF_FG_EN; __raw_writel(reg, DP_COM_CONF(DP_SYNC)); reg = __raw_readl(IPU_SRM_PRI2) | 0x8; __raw_writel(reg, IPU_SRM_PRI2); spin_unlock_irqrestore(&ipu_lock, lock_flags); __raw_writel(IPUIRQ_2_MASK(IPU_IRQ_DP_SF_END), IPUIRQ_2_STATREG(IPU_IRQ_DP_SF_END)); while ((__raw_readl(IPUIRQ_2_STATREG(IPU_IRQ_DP_SF_END)) & IPUIRQ_2_MASK(IPU_IRQ_DP_SF_END)) == 0) { msleep(2); timeout -= 2; if (timeout <= 0) break; } return; } else { return; } if (!dc_swap) __raw_writel(IPUIRQ_2_MASK(IPU_IRQ_VSYNC_PRE_0 + g_dc_di_assignment[dc_chan]), IPUIRQ_2_STATREG(IPU_IRQ_VSYNC_PRE_0 + g_dc_di_assignment[dc_chan])); ipu_clear_irq(irq); ret = ipu_request_irq(irq, dc_irq_handler, 0, NULL, &dc_comp); if (ret < 0) { dev_err(g_ipu_dev, "DC irq %d in use\n", irq); return; } ret = wait_for_completion_timeout(&dc_comp, msecs_to_jiffies(50)); dev_dbg(g_ipu_dev, "DC stop timeout - %d * 10ms\n", 5 - ret); ipu_free_irq(irq, &dc_comp); if (dc_swap) { spin_lock_irqsave(&ipu_lock, lock_flags); /* Swap DC channel 1 and 5 settings, and disable old dc chan */ reg = __raw_readl(DC_WR_CH_CONF(dc_chan)); __raw_writel(reg, DC_WR_CH_CONF(6 - dc_chan)); reg &= ~DC_WR_CH_CONF_PROG_TYPE_MASK; reg ^= DC_WR_CH_CONF_PROG_DI_ID; __raw_writel(reg, DC_WR_CH_CONF(dc_chan)); spin_unlock_irqrestore(&ipu_lock, lock_flags); } else { /* Clock is already off because it must be done quickly, but we need to fix the ref count */ clk_disable(g_pixel_clk[g_dc_di_assignment[dc_chan]]); if (__raw_readl(IPUIRQ_2_STATREG(IPU_IRQ_VSYNC_PRE_0 + g_dc_di_assignment[dc_chan])) & IPUIRQ_2_MASK(IPU_IRQ_VSYNC_PRE_0 + g_dc_di_assignment[dc_chan])) dev_dbg(g_ipu_dev, "VSyncPre occurred before DI%d disable\n", g_dc_di_assignment[dc_chan]); } } void _ipu_init_dc_mappings(void) { /* IPU_PIX_FMT_RGB24 */ _ipu_dc_map_clear(0); _ipu_dc_map_config(0, 0, 7, 0xFF); _ipu_dc_map_config(0, 1, 15, 0xFF); _ipu_dc_map_config(0, 2, 23, 0xFF); /* IPU_PIX_FMT_RGB666 */ _ipu_dc_map_clear(1); _ipu_dc_map_config(1, 0, 5, 0xFC); _ipu_dc_map_config(1, 1, 11, 0xFC); _ipu_dc_map_config(1, 2, 17, 0xFC); /* IPU_PIX_FMT_YUV444 */ _ipu_dc_map_clear(2); _ipu_dc_map_config(2, 0, 15, 0xFF); _ipu_dc_map_config(2, 1, 23, 0xFF); _ipu_dc_map_config(2, 2, 7, 0xFF); /* IPU_PIX_FMT_RGB565 */ _ipu_dc_map_clear(3); _ipu_dc_map_config(3, 0, 4, 0xF8); _ipu_dc_map_config(3, 1, 10, 0xFC); _ipu_dc_map_config(3, 2, 15, 0xF8); /* IPU_PIX_FMT_LVDS666 */ _ipu_dc_map_clear(4); _ipu_dc_map_config(4, 0, 5, 0xFC); _ipu_dc_map_config(4, 1, 13, 0xFC); _ipu_dc_map_config(4, 2, 21, 0xFC); /* IPU_PIX_FMT_VYUY 16bit width */ _ipu_dc_map_clear(5); _ipu_dc_map_config(5, 0, 7, 0xFF); _ipu_dc_map_config(5, 1, 0, 0x0); _ipu_dc_map_config(5, 2, 15, 0xFF); _ipu_dc_map_clear(6); _ipu_dc_map_config(6, 0, 0, 0x0); _ipu_dc_map_config(6, 1, 7, 0xFF); _ipu_dc_map_config(6, 2, 15, 0xFF); /* IPU_PIX_FMT_UYUV 16bit width */ _ipu_dc_map_clear(7); _ipu_dc_map_link(7, 6, 0, 6, 1, 6, 2); _ipu_dc_map_clear(8); _ipu_dc_map_link(8, 5, 0, 5, 1, 5, 2); /* IPU_PIX_FMT_YUYV 16bit width */ _ipu_dc_map_clear(9); _ipu_dc_map_link(9, 5, 2, 5, 1, 5, 0); _ipu_dc_map_clear(10); _ipu_dc_map_link(10, 5, 1, 5, 2, 5, 0); /* IPU_PIX_FMT_YVYU 16bit width */ _ipu_dc_map_clear(11); _ipu_dc_map_link(11, 5, 1, 5, 2, 5, 0); _ipu_dc_map_clear(12); _ipu_dc_map_link(12, 5, 2, 5, 1, 5, 0); } int _ipu_pixfmt_to_map(uint32_t fmt) { switch (fmt) { case IPU_PIX_FMT_GENERIC: case IPU_PIX_FMT_RGB24: return 0; case IPU_PIX_FMT_RGB666: return 1; case IPU_PIX_FMT_YUV444: return 2; case IPU_PIX_FMT_RGB565: return 3; case IPU_PIX_FMT_LVDS666: return 4; case IPU_PIX_FMT_VYUY: return 6; case IPU_PIX_FMT_UYVY: return 8; case IPU_PIX_FMT_YUYV: return 10; case IPU_PIX_FMT_YVYU: return 12; } return -1; } /*! * This function sets the colorspace for of dp. * modes. * * @param channel Input parameter for the logical channel ID. * * @param param If it's not NULL, update the csc table * with this parameter. * * @return N/A */ void _ipu_dp_set_csc_coefficients(ipu_channel_t channel, int32_t param[][3]) { int dp; struct dp_csc_param_t dp_csc_param; if (channel == MEM_FG_SYNC) dp = DP_SYNC; else if (channel == MEM_BG_SYNC) dp = DP_SYNC; else if (channel == MEM_BG_ASYNC0) dp = DP_ASYNC0; else return; dp_csc_param.mode = -1; dp_csc_param.coeff = param; __ipu_dp_csc_setup(dp, dp_csc_param, true); } /*! * This function is called to adapt synchronous LCD panel to IPU restriction. * */ void adapt_panel_to_ipu_restricitions(uint32_t *pixel_clk, uint16_t width, uint16_t height, uint16_t h_start_width, uint16_t h_end_width, uint16_t v_start_width, uint16_t *v_end_width) { if (*v_end_width < 2) { uint16_t total_width = width + h_start_width + h_end_width; uint16_t total_height_old = height + v_start_width + (*v_end_width); uint16_t total_height_new = height + v_start_width + 2; *v_end_width = 2; *pixel_clk = (*pixel_clk) * total_width * total_height_new / (total_width * total_height_old); dev_err(g_ipu_dev, "WARNING: adapt panel end blank lines\n"); } } /*! * This function is called to initialize a synchronous LCD panel. * * @param disp The DI the panel is attached to. * * @param pixel_clk Desired pixel clock frequency in Hz. * * @param pixel_fmt Input parameter for pixel format of buffer. * Pixel format is a FOURCC ASCII code. * * @param width The width of panel in pixels. * * @param height The height of panel in pixels. * * @param hStartWidth The number of pixel clocks between the HSYNC * signal pulse and the start of valid data. * * @param hSyncWidth The width of the HSYNC signal in units of pixel * clocks. * * @param hEndWidth The number of pixel clocks between the end of * valid data and the HSYNC signal for next line. * * @param vStartWidth The number of lines between the VSYNC * signal pulse and the start of valid data. * * @param vSyncWidth The width of the VSYNC signal in units of lines * * @param vEndWidth The number of lines between the end of valid * data and the VSYNC signal for next frame. * * @param sig Bitfield of signal polarities for LCD interface. * * @return This function returns 0 on success or negative error code on * fail. */ int32_t ipu_init_sync_panel(int disp, uint32_t pixel_clk, uint16_t width, uint16_t height, uint32_t pixel_fmt, uint16_t h_start_width, uint16_t h_sync_width, uint16_t h_end_width, uint16_t v_start_width, uint16_t v_sync_width, uint16_t v_end_width, uint32_t v_to_h_sync, ipu_di_signal_cfg_t sig) { unsigned long lock_flags; uint32_t field0_offset = 0; uint32_t field1_offset; uint32_t reg; uint32_t di_gen, vsync_cnt; uint32_t div, rounded_pixel_clk; uint32_t h_total, v_total; int map; int ipu_freq_scaling_enabled = 0; struct clk *di_parent; dev_dbg(g_ipu_dev, "panel size = %d x %d\n", width, height); if ((v_sync_width == 0) || (h_sync_width == 0)) return EINVAL; adapt_panel_to_ipu_restricitions((uint32_t *)&pixel_clk, width, height, h_start_width, h_end_width, v_start_width, &v_end_width); h_total = width + h_sync_width + h_start_width + h_end_width; v_total = height + v_sync_width + v_start_width + v_end_width; /* Init clocking */ dev_dbg(g_ipu_dev, "pixel clk = %d\n", pixel_clk); if (sig.ext_clk) { /* * Set the PLL to be an even multiple of the pixel clock. * Not round div for tvout and ldb. * Did not consider both DI come from the same ext clk, if * meet such case, ext clk rate should be set specially. */ if (clk_get_usecount(g_pixel_clk[disp]) == 0) { di_parent = clk_get_parent(g_di_clk[disp]); if (strcmp(di_parent->name, "tve_clk") != 0 && strcmp(di_parent->name, "ldb_di0_clk") != 0 && strcmp(di_parent->name, "ldb_di1_clk") != 0) { rounded_pixel_clk = pixel_clk * 2; while (rounded_pixel_clk < 150000000) rounded_pixel_clk += pixel_clk * 2; clk_set_rate(di_parent, rounded_pixel_clk); clk_set_rate(g_di_clk[disp], pixel_clk); } } clk_set_parent(g_pixel_clk[disp], g_di_clk[disp]); } else { if (clk_get_usecount(g_pixel_clk[disp]) != 0) clk_set_parent(g_pixel_clk[disp], g_ipu_clk); } rounded_pixel_clk = clk_round_rate(g_pixel_clk[disp], pixel_clk); clk_set_rate(g_pixel_clk[disp], rounded_pixel_clk); msleep(5); /* Get integer portion of divider */ div = clk_get_rate(clk_get_parent(g_pixel_clk[disp])) / rounded_pixel_clk; ipu_freq_scaling_enabled = dvfs_per_pixel_clk_limit(); if (ipu_freq_scaling_enabled) { /* Enable for a divide by 2 clock change. */ reg = __raw_readl(IPU_PM); reg &= ~(0x7f << 7); reg |= 0x20 << 7; reg &= ~(0x7f << 23); reg |= 0x20 << 23; __raw_writel(reg, IPU_PM); } spin_lock_irqsave(&ipu_lock, lock_flags); _ipu_di_data_wave_config(disp, SYNC_WAVE, div - 1, div - 1); _ipu_di_data_pin_config(disp, SYNC_WAVE, DI_PIN15, 3, 0, div * 2); map = _ipu_pixfmt_to_map(pixel_fmt); if (map < 0) { dev_dbg(g_ipu_dev, "IPU_DISP: No MAP\n"); spin_unlock_irqrestore(&ipu_lock, lock_flags); return -EINVAL; } di_gen = __raw_readl(DI_GENERAL(disp)); if (sig.interlaced) { if (g_ipu_hw_rev >= 2) { /* Setup internal HSYNC waveform */ _ipu_di_sync_config( disp, /* display */ 1, /* counter */ h_total/2 - 1, /* run count */ DI_SYNC_CLK, /* run_resolution */ 0, /* offset */ DI_SYNC_NONE, /* offset resolution */ 0, /* repeat count */ DI_SYNC_NONE, /* CNT_CLR_SEL */ 0, /* CNT_POLARITY_GEN_EN */ DI_SYNC_NONE, /* CNT_POLARITY_CLR_SEL */ DI_SYNC_NONE, /* CNT_POLARITY_TRIGGER_SEL */ 0, /* COUNT UP */ 0 /* COUNT DOWN */ ); /* Field 1 VSYNC waveform */ _ipu_di_sync_config( disp, /* display */ 2, /* counter */ h_total - 1, /* run count */ DI_SYNC_CLK, /* run_resolution */ 0, /* offset */ DI_SYNC_NONE, /* offset resolution */ 0, /* repeat count */ DI_SYNC_NONE, /* CNT_CLR_SEL */ 0, /* CNT_POLARITY_GEN_EN */ DI_SYNC_NONE, /* CNT_POLARITY_CLR_SEL */ DI_SYNC_NONE, /* CNT_POLARITY_TRIGGER_SEL */ 0, /* COUNT UP */ 4 /* COUNT DOWN */ ); /* Setup internal HSYNC waveform */ _ipu_di_sync_config( disp, /* display */ 3, /* counter */ v_total*2 - 1, /* run count */ DI_SYNC_INT_HSYNC, /* run_resolution */ 1, /* offset */ DI_SYNC_INT_HSYNC, /* offset resolution */ 0, /* repeat count */ DI_SYNC_NONE, /* CNT_CLR_SEL */ 0, /* CNT_POLARITY_GEN_EN */ DI_SYNC_NONE, /* CNT_POLARITY_CLR_SEL */ DI_SYNC_NONE, /* CNT_POLARITY_TRIGGER_SEL */ 0, /* COUNT UP */ 4 /* COUNT DOWN */ ); /* Active Field ? */ _ipu_di_sync_config( disp, /* display */ 4, /* counter */ v_total/2 - 1, /* run count */ DI_SYNC_HSYNC, /* run_resolution */ v_start_width, /* offset */ DI_SYNC_HSYNC, /* offset resolution */ 2, /* repeat count */ DI_SYNC_VSYNC, /* CNT_CLR_SEL */ 0, /* CNT_POLARITY_GEN_EN */ DI_SYNC_NONE, /* CNT_POLARITY_CLR_SEL */ DI_SYNC_NONE, /* CNT_POLARITY_TRIGGER_SEL */ 0, /* COUNT UP */ 0 /* COUNT DOWN */ ); /* Active Line */ _ipu_di_sync_config( disp, /* display */ 5, /* counter */ 0, /* run count */ DI_SYNC_HSYNC, /* run_resolution */ 0, /* offset */ DI_SYNC_NONE, /* offset resolution */ height/2, /* repeat count */ 4, /* CNT_CLR_SEL */ 0, /* CNT_POLARITY_GEN_EN */ DI_SYNC_NONE, /* CNT_POLARITY_CLR_SEL */ DI_SYNC_NONE, /* CNT_POLARITY_TRIGGER_SEL */ 0, /* COUNT UP */ 0 /* COUNT DOWN */ ); /* Field 0 VSYNC waveform */ _ipu_di_sync_config( disp, /* display */ 6, /* counter */ v_total - 1, /* run count */ DI_SYNC_HSYNC, /* run_resolution */ 0, /* offset */ DI_SYNC_NONE, /* offset resolution */ 0, /* repeat count */ DI_SYNC_NONE, /* CNT_CLR_SEL */ 0, /* CNT_POLARITY_GEN_EN */ DI_SYNC_NONE, /* CNT_POLARITY_CLR_SEL */ DI_SYNC_NONE, /* CNT_POLARITY_TRIGGER_SEL */ 0, /* COUNT UP */ 0 /* COUNT DOWN */ ); /* DC VSYNC waveform */ vsync_cnt = 7; _ipu_di_sync_config( disp, /* display */ 7, /* counter */ v_total/2 - 1, /* run count */ DI_SYNC_HSYNC, /* run_resolution */ 9, /* offset */ DI_SYNC_HSYNC, /* offset resolution */ 2, /* repeat count */ DI_SYNC_VSYNC, /* CNT_CLR_SEL */ 0, /* CNT_POLARITY_GEN_EN */ DI_SYNC_NONE, /* CNT_POLARITY_CLR_SEL */ DI_SYNC_NONE, /* CNT_POLARITY_TRIGGER_SEL */ 0, /* COUNT UP */ 0 /* COUNT DOWN */ ); /* active pixel waveform */ _ipu_di_sync_config( disp, /* display */ 8, /* counter */ 0, /* run count */ DI_SYNC_CLK, /* run_resolution */ h_start_width, /* offset */ DI_SYNC_CLK, /* offset resolution */ width, /* repeat count */ 5, /* CNT_CLR_SEL */ 0, /* CNT_POLARITY_GEN_EN */ DI_SYNC_NONE, /* CNT_POLARITY_CLR_SEL */ DI_SYNC_NONE, /* CNT_POLARITY_TRIGGER_SEL */ 0, /* COUNT UP */ 0 /* COUNT DOWN */ ); /* ??? */ _ipu_di_sync_config( disp, /* display */ 9, /* counter */ v_total - 1, /* run count */ DI_SYNC_INT_HSYNC, /* run_resolution */ v_total/2, /* offset */ DI_SYNC_INT_HSYNC, /* offset resolution */ 0, /* repeat count */ DI_SYNC_HSYNC, /* CNT_CLR_SEL */ 0, /* CNT_POLARITY_GEN_EN */ DI_SYNC_NONE, /* CNT_POLARITY_CLR_SEL */ DI_SYNC_NONE, /* CNT_POLARITY_TRIGGER_SEL */ 0, /* COUNT UP */ 4 /* COUNT DOWN */ ); /* set gentime select and tag sel */ reg = __raw_readl(DI_SW_GEN1(disp, 9)); reg &= 0x1FFFFFFF; reg |= (3-1)<<29 | 0x00008000; __raw_writel(reg, DI_SW_GEN1(disp, 9)); __raw_writel(v_total / 2 - 1, DI_SCR_CONF(disp)); /* set y_sel = 1 */ di_gen |= 0x10000000; di_gen |= DI_GEN_POLARITY_5; di_gen |= DI_GEN_POLARITY_8; } else { /* Setup internal HSYNC waveform */ _ipu_di_sync_config(disp, 1, h_total - 1, DI_SYNC_CLK, 0, DI_SYNC_NONE, 0, DI_SYNC_NONE, 0, DI_SYNC_NONE, DI_SYNC_NONE, 0, 0); field1_offset = v_sync_width + v_start_width + height / 2 + v_end_width; if (sig.odd_field_first) { field0_offset = field1_offset - 1; field1_offset = 0; } v_total += v_start_width + v_end_width; /* Field 1 VSYNC waveform */ _ipu_di_sync_config(disp, 2, v_total - 1, 1, field0_offset, field0_offset ? 1 : DI_SYNC_NONE, 0, DI_SYNC_NONE, 0, DI_SYNC_NONE, DI_SYNC_NONE, 0, 4); /* Setup internal HSYNC waveform */ _ipu_di_sync_config(disp, 3, h_total - 1, DI_SYNC_CLK, 0, DI_SYNC_NONE, 0, DI_SYNC_NONE, 0, DI_SYNC_NONE, DI_SYNC_NONE, 0, 4); /* Active Field ? */ _ipu_di_sync_config(disp, 4, field0_offset ? field0_offset : field1_offset - 2, 1, v_start_width + v_sync_width, 1, 2, 2, 0, DI_SYNC_NONE, DI_SYNC_NONE, 0, 0); /* Active Line */ _ipu_di_sync_config(disp, 5, 0, 1, 0, DI_SYNC_NONE, height / 2, 4, 0, DI_SYNC_NONE, DI_SYNC_NONE, 0, 0); /* Field 0 VSYNC waveform */ _ipu_di_sync_config(disp, 6, v_total - 1, 1, 0, DI_SYNC_NONE, 0, DI_SYNC_NONE, 0, DI_SYNC_NONE, DI_SYNC_NONE, 0, 0); /* DC VSYNC waveform */ vsync_cnt = 7; _ipu_di_sync_config(disp, 7, 0, 1, field1_offset, field1_offset ? 1 : DI_SYNC_NONE, 1, 2, 0, DI_SYNC_NONE, DI_SYNC_NONE, 0, 0); /* active pixel waveform */ _ipu_di_sync_config(disp, 8, 0, DI_SYNC_CLK, h_sync_width + h_start_width, DI_SYNC_CLK, width, 5, 0, DI_SYNC_NONE, DI_SYNC_NONE, 0, 0); /* ??? */ _ipu_di_sync_config(disp, 9, v_total - 1, 2, 0, DI_SYNC_NONE, 0, DI_SYNC_NONE, 6, DI_SYNC_NONE, DI_SYNC_NONE, 0, 0); reg = __raw_readl(DI_SW_GEN1(disp, 9)); reg |= 0x8000; __raw_writel(reg, DI_SW_GEN1(disp, 9)); __raw_writel(v_sync_width + v_start_width + v_end_width + height / 2 - 1, DI_SCR_CONF(disp)); } /* Init template microcode */ _ipu_dc_write_tmpl(0, WROD(0), 0, map, SYNC_WAVE, 0, 8, 1); if (sig.Hsync_pol) di_gen |= DI_GEN_POLARITY_3; if (sig.Vsync_pol) di_gen |= DI_GEN_POLARITY_2; } else { /* Setup internal HSYNC waveform */ _ipu_di_sync_config(disp, 1, h_total - 1, DI_SYNC_CLK, 0, DI_SYNC_NONE, 0, DI_SYNC_NONE, 0, DI_SYNC_NONE, DI_SYNC_NONE, 0, 0); /* Setup external (delayed) HSYNC waveform */ _ipu_di_sync_config(disp, DI_SYNC_HSYNC, h_total - 1, DI_SYNC_CLK, div * v_to_h_sync, DI_SYNC_CLK, 0, DI_SYNC_NONE, 1, DI_SYNC_NONE, DI_SYNC_CLK, 0, h_sync_width * 2); /* Setup VSYNC waveform */ vsync_cnt = DI_SYNC_VSYNC; _ipu_di_sync_config(disp, DI_SYNC_VSYNC, v_total - 1, DI_SYNC_INT_HSYNC, 0, DI_SYNC_NONE, 0, DI_SYNC_NONE, 1, DI_SYNC_NONE, DI_SYNC_INT_HSYNC, 0, v_sync_width * 2); __raw_writel(v_total - 1, DI_SCR_CONF(disp)); /* Setup active data waveform to sync with DC */ _ipu_di_sync_config(disp, 4, 0, DI_SYNC_HSYNC, v_sync_width + v_start_width, DI_SYNC_HSYNC, height, DI_SYNC_VSYNC, 0, DI_SYNC_NONE, DI_SYNC_NONE, 0, 0); _ipu_di_sync_config(disp, 5, 0, DI_SYNC_CLK, h_sync_width + h_start_width, DI_SYNC_CLK, width, 4, 0, DI_SYNC_NONE, DI_SYNC_NONE, 0, 0); /* reset all unused counters */ __raw_writel(0, DI_SW_GEN0(disp, 6)); __raw_writel(0, DI_SW_GEN1(disp, 6)); __raw_writel(0, DI_SW_GEN0(disp, 7)); __raw_writel(0, DI_SW_GEN1(disp, 7)); __raw_writel(0, DI_SW_GEN0(disp, 8)); __raw_writel(0, DI_SW_GEN1(disp, 8)); __raw_writel(0, DI_SW_GEN0(disp, 9)); __raw_writel(0, DI_SW_GEN1(disp, 9)); reg = __raw_readl(DI_STP_REP(disp, 6)); reg &= 0x0000FFFF; __raw_writel(reg, DI_STP_REP(disp, 6)); __raw_writel(0, DI_STP_REP(disp, 7)); __raw_writel(0, DI_STP_REP(disp, 9)); if (ipu_freq_scaling_enabled) { h_total = ((width + h_start_width + h_sync_width) / 2) - 2; _ipu_di_sync_config(disp, 6, 1, 0, 2, DI_SYNC_CLK, h_total, DI_SYNC_INT_HSYNC, 0, DI_SYNC_NONE, DI_SYNC_NONE, 0, 0); } /* Init template microcode */ if (disp) { if ((pixel_fmt == IPU_PIX_FMT_YUYV) || (pixel_fmt == IPU_PIX_FMT_UYVY) || (pixel_fmt == IPU_PIX_FMT_YVYU) || (pixel_fmt == IPU_PIX_FMT_VYUY)) { _ipu_dc_write_tmpl(8, WROD(0), 0, (map - 1), SYNC_WAVE, 0, 5, 1); _ipu_dc_write_tmpl(9, WROD(0), 0, map, SYNC_WAVE, 0, 5, 1); /* configure user events according to DISP NUM */ __raw_writel((width - 1), DC_UGDE_3(disp)); } _ipu_dc_write_tmpl(2, WROD(0), 0, map, SYNC_WAVE, 8, 5, 1); _ipu_dc_write_tmpl(3, WRG, 0, map, SYNC_WAVE, 4, 5, 1); _ipu_dc_write_tmpl(4, WROD(0), 0, map, SYNC_WAVE, 0, 5, 1); } else { if ((pixel_fmt == IPU_PIX_FMT_YUYV) || (pixel_fmt == IPU_PIX_FMT_UYVY) || (pixel_fmt == IPU_PIX_FMT_YVYU) || (pixel_fmt == IPU_PIX_FMT_VYUY)) { _ipu_dc_write_tmpl(10, WROD(0), 0, (map - 1), SYNC_WAVE, 0, 5, 1); _ipu_dc_write_tmpl(11, WROD(0), 0, map, SYNC_WAVE, 0, 5, 1); /* configure user events according to DISP NUM */ __raw_writel(width - 1, DC_UGDE_3(disp)); } _ipu_dc_write_tmpl(5, WROD(0), 0, map, SYNC_WAVE, 8, 5, 1); _ipu_dc_write_tmpl(6, WRG, 0, map, SYNC_WAVE, 4, 5, 1); _ipu_dc_write_tmpl(7, WROD(0), 0, map, SYNC_WAVE, 0, 5, 1); } if (sig.Hsync_pol) di_gen |= DI_GEN_POLARITY_2; if (sig.Vsync_pol) di_gen |= DI_GEN_POLARITY_3; if (ipu_freq_scaling_enabled) /* Set the clock to stop at counter 6. */ di_gen |= 0x6000000; } /* changinc DISP_CLK polarity: it can be wrong for some applications */ if ((pixel_fmt == IPU_PIX_FMT_YUYV) || (pixel_fmt == IPU_PIX_FMT_UYVY) || (pixel_fmt == IPU_PIX_FMT_YVYU) || (pixel_fmt == IPU_PIX_FMT_VYUY)) di_gen |= 0x00020000; else { /* Configure accordingly to the received configuration */ if (sig.clk_pol) di_gen |= 0x00020000; else di_gen &= ~0x00020000; } __raw_writel(di_gen, DI_GENERAL(disp)); if (!ipu_freq_scaling_enabled) __raw_writel((--vsync_cnt << DI_VSYNC_SEL_OFFSET) | 0x00000002, DI_SYNC_AS_GEN(disp)); else { if (sig.interlaced) __raw_writel((--vsync_cnt << DI_VSYNC_SEL_OFFSET) | 0x00000002, DI_SYNC_AS_GEN(disp)); else __raw_writel((--vsync_cnt << DI_VSYNC_SEL_OFFSET), DI_SYNC_AS_GEN(disp)); } reg = __raw_readl(DI_POL(disp)); reg &= ~(DI_POL_DRDY_DATA_POLARITY | DI_POL_DRDY_POLARITY_15); if (sig.enable_pol) reg |= DI_POL_DRDY_POLARITY_15; if (sig.data_pol) reg |= DI_POL_DRDY_DATA_POLARITY; __raw_writel(reg, DI_POL(disp)); __raw_writel(width, DC_DISP_CONF2(DC_DISP_ID_SYNC(disp))); spin_unlock_irqrestore(&ipu_lock, lock_flags); return 0; } EXPORT_SYMBOL(ipu_init_sync_panel); int ipu_init_async_panel(int disp, int type, uint32_t cycle_time, uint32_t pixel_fmt, ipu_adc_sig_cfg_t sig) { unsigned long lock_flags; int map; u32 ser_conf = 0; u32 div; u32 di_clk = clk_get_rate(g_ipu_clk); /* round up cycle_time, then calcalate the divider using scaled math */ cycle_time += (1000000000UL / di_clk) - 1; div = (cycle_time * (di_clk / 256UL)) / (1000000000UL / 256UL); map = _ipu_pixfmt_to_map(pixel_fmt); if (map < 0) return -EINVAL; spin_lock_irqsave(&ipu_lock, lock_flags); if (type == IPU_PANEL_SERIAL) { __raw_writel((div << 24) | ((sig.ifc_width - 1) << 4), DI_DW_GEN(disp, ASYNC_SER_WAVE)); _ipu_di_data_pin_config(disp, ASYNC_SER_WAVE, DI_PIN_CS, 0, 0, (div * 2) + 1); _ipu_di_data_pin_config(disp, ASYNC_SER_WAVE, DI_PIN_SER_CLK, 1, div, div * 2); _ipu_di_data_pin_config(disp, ASYNC_SER_WAVE, DI_PIN_SER_RS, 2, 0, 0); _ipu_dc_write_tmpl(0x64, WROD(0), 0, map, ASYNC_SER_WAVE, 0, 0, 1); /* Configure DC for serial panel */ __raw_writel(0x14, DC_DISP_CONF1(DC_DISP_ID_SERIAL)); if (sig.clk_pol) ser_conf |= DI_SER_CONF_SERIAL_CLK_POL; if (sig.data_pol) ser_conf |= DI_SER_CONF_SERIAL_DATA_POL; if (sig.rs_pol) ser_conf |= DI_SER_CONF_SERIAL_RS_POL; if (sig.cs_pol) ser_conf |= DI_SER_CONF_SERIAL_CS_POL; __raw_writel(ser_conf, DI_SER_CONF(disp)); } spin_unlock_irqrestore(&ipu_lock, lock_flags); return 0; } EXPORT_SYMBOL(ipu_init_async_panel); /*! * This function sets the foreground and background plane global alpha blending * modes. This function also sets the DP graphic plane according to the * parameter of IPUv3 DP channel. * * @param channel IPUv3 DP channel * * @param enable Boolean to enable or disable global alpha * blending. If disabled, local blending is used. * * @param alpha Global alpha value. * * @return Returns 0 on success or negative error code on fail */ int32_t ipu_disp_set_global_alpha(ipu_channel_t channel, bool enable, uint8_t alpha) { uint32_t reg; uint32_t flow; unsigned long lock_flags; bool bg_chan; if (channel == MEM_BG_SYNC || channel == MEM_FG_SYNC) flow = DP_SYNC; else if (channel == MEM_BG_ASYNC0 || channel == MEM_FG_ASYNC0) flow = DP_ASYNC0; else if (channel == MEM_BG_ASYNC1 || channel == MEM_FG_ASYNC1) flow = DP_ASYNC1; else return -EINVAL; if (channel == MEM_BG_SYNC || channel == MEM_BG_ASYNC0 || channel == MEM_BG_ASYNC1) bg_chan = true; else bg_chan = false; if (!g_ipu_clk_enabled) clk_enable(g_ipu_clk); spin_lock_irqsave(&ipu_lock, lock_flags); if (bg_chan) { reg = __raw_readl(DP_COM_CONF(flow)); __raw_writel(reg & ~DP_COM_CONF_GWSEL, DP_COM_CONF(flow)); } else { reg = __raw_readl(DP_COM_CONF(flow)); __raw_writel(reg | DP_COM_CONF_GWSEL, DP_COM_CONF(flow)); } if (enable) { reg = __raw_readl(DP_GRAPH_WIND_CTRL(flow)) & 0x00FFFFFFL; __raw_writel(reg | ((uint32_t) alpha << 24), DP_GRAPH_WIND_CTRL(flow)); reg = __raw_readl(DP_COM_CONF(flow)); __raw_writel(reg | DP_COM_CONF_GWAM, DP_COM_CONF(flow)); } else { reg = __raw_readl(DP_COM_CONF(flow)); __raw_writel(reg & ~DP_COM_CONF_GWAM, DP_COM_CONF(flow)); } reg = __raw_readl(IPU_SRM_PRI2) | 0x8; __raw_writel(reg, IPU_SRM_PRI2); spin_unlock_irqrestore(&ipu_lock, lock_flags); if (!g_ipu_clk_enabled) clk_disable(g_ipu_clk); return 0; } EXPORT_SYMBOL(ipu_disp_set_global_alpha); /*! * This function sets the transparent color key for SDC graphic plane. * * @param channel Input parameter for the logical channel ID. * * @param enable Boolean to enable or disable color key * * @param colorKey 24-bit RGB color for transparent color key. * * @return Returns 0 on success or negative error code on fail */ int32_t ipu_disp_set_color_key(ipu_channel_t channel, bool enable, uint32_t color_key) { uint32_t reg, flow; int y, u, v; int red, green, blue; unsigned long lock_flags; if (channel == MEM_BG_SYNC || channel == MEM_FG_SYNC) flow = DP_SYNC; else if (channel == MEM_BG_ASYNC0 || channel == MEM_FG_ASYNC0) flow = DP_ASYNC0; else if (channel == MEM_BG_ASYNC1 || channel == MEM_FG_ASYNC1) flow = DP_ASYNC1; else return -EINVAL; if (!g_ipu_clk_enabled) clk_enable(g_ipu_clk); spin_lock_irqsave(&ipu_lock, lock_flags); color_key_4rgb = 1; /* Transform color key from rgb to yuv if CSC is enabled */ if (((fg_csc_type == RGB2YUV) && (bg_csc_type == YUV2YUV)) || ((fg_csc_type == YUV2YUV) && (bg_csc_type == RGB2YUV)) || ((fg_csc_type == YUV2YUV) && (bg_csc_type == YUV2YUV)) || ((fg_csc_type == YUV2RGB) && (bg_csc_type == YUV2RGB))) { dev_dbg(g_ipu_dev, "color key 0x%x need change to yuv fmt\n", color_key); red = (color_key >> 16) & 0xFF; green = (color_key >> 8) & 0xFF; blue = color_key & 0xFF; y = _rgb_to_yuv(0, red, green, blue); u = _rgb_to_yuv(1, red, green, blue); v = _rgb_to_yuv(2, red, green, blue); color_key = (y << 16) | (u << 8) | v; color_key_4rgb = 0; dev_dbg(g_ipu_dev, "color key change to yuv fmt 0x%x\n", color_key); } if (enable) { reg = __raw_readl(DP_GRAPH_WIND_CTRL(flow)) & 0xFF000000L; __raw_writel(reg | color_key, DP_GRAPH_WIND_CTRL(flow)); reg = __raw_readl(DP_COM_CONF(flow)); __raw_writel(reg | DP_COM_CONF_GWCKE, DP_COM_CONF(flow)); } else { reg = __raw_readl(DP_COM_CONF(flow)); __raw_writel(reg & ~DP_COM_CONF_GWCKE, DP_COM_CONF(flow)); } reg = __raw_readl(IPU_SRM_PRI2) | 0x8; __raw_writel(reg, IPU_SRM_PRI2); spin_unlock_irqrestore(&ipu_lock, lock_flags); if (!g_ipu_clk_enabled) clk_disable(g_ipu_clk); return 0; } EXPORT_SYMBOL(ipu_disp_set_color_key); /*! * This function sets the gamma correction for DP output. * * @param channel Input parameter for the logical channel ID. * * @param enable Boolean to enable or disable gamma correction. * * @param constk Gamma piecewise linear approximation constk coeff. * * @param slopek Gamma piecewise linear approximation slopek coeff. * * @return Returns 0 on success or negative error code on fail */ int32_t ipu_disp_set_gamma_correction(ipu_channel_t channel, bool enable, int constk[], int slopek[]) { uint32_t reg, flow, i; unsigned long lock_flags; if (channel == MEM_BG_SYNC || channel == MEM_FG_SYNC) flow = DP_SYNC; else if (channel == MEM_BG_ASYNC0 || channel == MEM_FG_ASYNC0) flow = DP_ASYNC0; else if (channel == MEM_BG_ASYNC1 || channel == MEM_FG_ASYNC1) flow = DP_ASYNC1; else return -EINVAL; if (!g_ipu_clk_enabled) clk_enable(g_ipu_clk); spin_lock_irqsave(&ipu_lock, lock_flags); for (i = 0; i < 8; i++) __raw_writel((constk[2*i] & 0x1ff) | ((constk[2*i+1] & 0x1ff) << 16), DP_GAMMA_C(flow, i)); for (i = 0; i < 4; i++) __raw_writel((slopek[4*i] & 0xff) | ((slopek[4*i+1] & 0xff) << 8) | ((slopek[4*i+2] & 0xff) << 16) | ((slopek[4*i+3] & 0xff) << 24), DP_GAMMA_S(flow, i)); reg = __raw_readl(DP_COM_CONF(flow)); if (enable) { if ((bg_csc_type == RGB2YUV) || (bg_csc_type == YUV2YUV)) reg |= DP_COM_CONF_GAMMA_YUV_EN; else reg &= ~DP_COM_CONF_GAMMA_YUV_EN; __raw_writel(reg | DP_COM_CONF_GAMMA_EN, DP_COM_CONF(flow)); } else __raw_writel(reg & ~DP_COM_CONF_GAMMA_EN, DP_COM_CONF(flow)); reg = __raw_readl(IPU_SRM_PRI2) | 0x8; __raw_writel(reg, IPU_SRM_PRI2); spin_unlock_irqrestore(&ipu_lock, lock_flags); if (!g_ipu_clk_enabled) clk_disable(g_ipu_clk); return 0; } EXPORT_SYMBOL(ipu_disp_set_gamma_correction); /*! * This function sets the window position of the foreground or background plane. * modes. * * @param channel Input parameter for the logical channel ID. * * @param x_pos The X coordinate position to place window at. * The position is relative to the top left corner. * * @param y_pos The Y coordinate position to place window at. * The position is relative to the top left corner. * * @return Returns 0 on success or negative error code on fail */ int32_t ipu_disp_set_window_pos(ipu_channel_t channel, int16_t x_pos, int16_t y_pos) { u32 reg; unsigned long lock_flags; uint32_t flow = 0; if (channel == MEM_FG_SYNC) flow = DP_SYNC; else if (channel == MEM_FG_ASYNC0) flow = DP_ASYNC0; else if (channel == MEM_FG_ASYNC1) flow = DP_ASYNC1; else return -EINVAL; if (!g_ipu_clk_enabled) clk_enable(g_ipu_clk); spin_lock_irqsave(&ipu_lock, lock_flags); __raw_writel((x_pos << 16) | y_pos, DP_FG_POS(flow)); reg = __raw_readl(IPU_SRM_PRI2) | 0x8; __raw_writel(reg, IPU_SRM_PRI2); spin_unlock_irqrestore(&ipu_lock, lock_flags); if (!g_ipu_clk_enabled) clk_disable(g_ipu_clk); return 0; } EXPORT_SYMBOL(ipu_disp_set_window_pos); int32_t ipu_disp_get_window_pos(ipu_channel_t channel, int16_t *x_pos, int16_t *y_pos) { u32 reg; unsigned long lock_flags; uint32_t flow = 0; if (channel == MEM_FG_SYNC) flow = DP_SYNC; else if (channel == MEM_FG_ASYNC0) flow = DP_ASYNC0; else if (channel == MEM_FG_ASYNC1) flow = DP_ASYNC1; else return -EINVAL; if (!g_ipu_clk_enabled) clk_enable(g_ipu_clk); spin_lock_irqsave(&ipu_lock, lock_flags); reg = __raw_readl(DP_FG_POS(flow)); *x_pos = (reg >> 16) & 0x7FF; *y_pos = reg & 0x7FF; spin_unlock_irqrestore(&ipu_lock, lock_flags); if (!g_ipu_clk_enabled) clk_disable(g_ipu_clk); return 0; } EXPORT_SYMBOL(ipu_disp_get_window_pos); void ipu_disp_direct_write(ipu_channel_t channel, u32 value, u32 offset) { if (channel == DIRECT_ASYNC0) __raw_writel(value, ipu_disp_base[0] + offset); else if (channel == DIRECT_ASYNC1) __raw_writel(value, ipu_disp_base[1] + offset); } EXPORT_SYMBOL(ipu_disp_direct_write); void ipu_reset_disp_panel(void) { uint32_t tmp; tmp = __raw_readl(DI_GENERAL(1)); __raw_writel(tmp | 0x08, DI_GENERAL(1)); msleep(10); /* tRES >= 100us */ tmp = __raw_readl(DI_GENERAL(1)); __raw_writel(tmp & ~0x08, DI_GENERAL(1)); msleep(60); return; } EXPORT_SYMBOL(ipu_reset_disp_panel);