/* * Driver for the IDT RC32434 (Korina) on-chip ethernet controller. * * Copyright 2004 IDT Inc. (rischelp@idt.com) * Copyright 2006 Felix Fietkau * Copyright 2008 Florian Fainelli * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation; either version 2 of the License, or (at your * option) any later version. * * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN * NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 675 Mass Ave, Cambridge, MA 02139, USA. * * Writing to a DMA status register: * * When writing to the status register, you should mask the bit you have * been testing the status register with. Both Tx and Rx DMA registers * should stick to this procedure. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define DRV_NAME "korina" #define DRV_VERSION "0.10" #define DRV_RELDATE "04Mar2008" #define STATION_ADDRESS_HIGH(dev) (((dev)->dev_addr[0] << 8) | \ ((dev)->dev_addr[1])) #define STATION_ADDRESS_LOW(dev) (((dev)->dev_addr[2] << 24) | \ ((dev)->dev_addr[3] << 16) | \ ((dev)->dev_addr[4] << 8) | \ ((dev)->dev_addr[5])) #define MII_CLOCK 1250000 /* no more than 2.5MHz */ /* the following must be powers of two */ #define KORINA_NUM_RDS 64 /* number of receive descriptors */ #define KORINA_NUM_TDS 64 /* number of transmit descriptors */ /* KORINA_RBSIZE is the hardware's default maximum receive * frame size in bytes. Having this hardcoded means that there * is no support for MTU sizes greater than 1500. */ #define KORINA_RBSIZE 1536 /* size of one resource buffer = Ether MTU */ #define KORINA_RDS_MASK (KORINA_NUM_RDS - 1) #define KORINA_TDS_MASK (KORINA_NUM_TDS - 1) #define RD_RING_SIZE (KORINA_NUM_RDS * sizeof(struct dma_desc)) #define TD_RING_SIZE (KORINA_NUM_TDS * sizeof(struct dma_desc)) #define TX_TIMEOUT (6000 * HZ / 1000) enum chain_status { desc_filled, desc_empty }; #define IS_DMA_FINISHED(X) (((X) & (DMA_DESC_FINI)) != 0) #define IS_DMA_DONE(X) (((X) & (DMA_DESC_DONE)) != 0) #define RCVPKT_LENGTH(X) (((X) & ETH_RX_LEN) >> ETH_RX_LEN_BIT) /* Information that need to be kept for each board. */ struct korina_private { struct eth_regs *eth_regs; struct dma_reg *rx_dma_regs; struct dma_reg *tx_dma_regs; struct dma_desc *td_ring; /* transmit descriptor ring */ struct dma_desc *rd_ring; /* receive descriptor ring */ struct sk_buff *tx_skb[KORINA_NUM_TDS]; struct sk_buff *rx_skb[KORINA_NUM_RDS]; int rx_next_done; int rx_chain_head; int rx_chain_tail; enum chain_status rx_chain_status; int tx_next_done; int tx_chain_head; int tx_chain_tail; enum chain_status tx_chain_status; int tx_count; int tx_full; int rx_irq; int tx_irq; int ovr_irq; int und_irq; spinlock_t lock; /* NIC xmit lock */ int dma_halt_cnt; int dma_run_cnt; struct napi_struct napi; struct timer_list media_check_timer; struct mii_if_info mii_if; struct work_struct restart_task; struct net_device *dev; int phy_addr; }; extern unsigned int idt_cpu_freq; static inline void korina_start_dma(struct dma_reg *ch, u32 dma_addr) { writel(0, &ch->dmandptr); writel(dma_addr, &ch->dmadptr); } static inline void korina_abort_dma(struct net_device *dev, struct dma_reg *ch) { if (readl(&ch->dmac) & DMA_CHAN_RUN_BIT) { writel(0x10, &ch->dmac); while (!(readl(&ch->dmas) & DMA_STAT_HALT)) dev->trans_start = jiffies; writel(0, &ch->dmas); } writel(0, &ch->dmadptr); writel(0, &ch->dmandptr); } static inline void korina_chain_dma(struct dma_reg *ch, u32 dma_addr) { writel(dma_addr, &ch->dmandptr); } static void korina_abort_tx(struct net_device *dev) { struct korina_private *lp = netdev_priv(dev); korina_abort_dma(dev, lp->tx_dma_regs); } static void korina_abort_rx(struct net_device *dev) { struct korina_private *lp = netdev_priv(dev); korina_abort_dma(dev, lp->rx_dma_regs); } static void korina_start_rx(struct korina_private *lp, struct dma_desc *rd) { korina_start_dma(lp->rx_dma_regs, CPHYSADDR(rd)); } static void korina_chain_rx(struct korina_private *lp, struct dma_desc *rd) { korina_chain_dma(lp->rx_dma_regs, CPHYSADDR(rd)); } /* transmit packet */ static int korina_send_packet(struct sk_buff *skb, struct net_device *dev) { struct korina_private *lp = netdev_priv(dev); unsigned long flags; u32 length; u32 chain_prev, chain_next; struct dma_desc *td; spin_lock_irqsave(&lp->lock, flags); td = &lp->td_ring[lp->tx_chain_tail]; /* stop queue when full, drop pkts if queue already full */ if (lp->tx_count >= (KORINA_NUM_TDS - 2)) { lp->tx_full = 1; if (lp->tx_count == (KORINA_NUM_TDS - 2)) netif_stop_queue(dev); else { dev->stats.tx_dropped++; dev_kfree_skb_any(skb); spin_unlock_irqrestore(&lp->lock, flags); return NETDEV_TX_BUSY; } } lp->tx_count++; lp->tx_skb[lp->tx_chain_tail] = skb; length = skb->len; dma_cache_wback((u32)skb->data, skb->len); /* Setup the transmit descriptor. */ dma_cache_inv((u32) td, sizeof(*td)); td->ca = CPHYSADDR(skb->data); chain_prev = (lp->tx_chain_tail - 1) & KORINA_TDS_MASK; chain_next = (lp->tx_chain_tail + 1) & KORINA_TDS_MASK; if (readl(&(lp->tx_dma_regs->dmandptr)) == 0) { if (lp->tx_chain_status == desc_empty) { /* Update tail */ td->control = DMA_COUNT(length) | DMA_DESC_COF | DMA_DESC_IOF; /* Move tail */ lp->tx_chain_tail = chain_next; /* Write to NDPTR */ writel(CPHYSADDR(&lp->td_ring[lp->tx_chain_head]), &lp->tx_dma_regs->dmandptr); /* Move head to tail */ lp->tx_chain_head = lp->tx_chain_tail; } else { /* Update tail */ td->control = DMA_COUNT(length) | DMA_DESC_COF | DMA_DESC_IOF; /* Link to prev */ lp->td_ring[chain_prev].control &= ~DMA_DESC_COF; /* Link to prev */ lp->td_ring[chain_prev].link = CPHYSADDR(td); /* Move tail */ lp->tx_chain_tail = chain_next; /* Write to NDPTR */ writel(CPHYSADDR(&lp->td_ring[lp->tx_chain_head]), &(lp->tx_dma_regs->dmandptr)); /* Move head to tail */ lp->tx_chain_head = lp->tx_chain_tail; lp->tx_chain_status = desc_empty; } } else { if (lp->tx_chain_status == desc_empty) { /* Update tail */ td->control = DMA_COUNT(length) | DMA_DESC_COF | DMA_DESC_IOF; /* Move tail */ lp->tx_chain_tail = chain_next; lp->tx_chain_status = desc_filled; } else { /* Update tail */ td->control = DMA_COUNT(length) | DMA_DESC_COF | DMA_DESC_IOF; lp->td_ring[chain_prev].control &= ~DMA_DESC_COF; lp->td_ring[chain_prev].link = CPHYSADDR(td); lp->tx_chain_tail = chain_next; } } dma_cache_wback((u32) td, sizeof(*td)); dev->trans_start = jiffies; spin_unlock_irqrestore(&lp->lock, flags); return NETDEV_TX_OK; } static int mdio_read(struct net_device *dev, int mii_id, int reg) { struct korina_private *lp = netdev_priv(dev); int ret; mii_id = ((lp->rx_irq == 0x2c ? 1 : 0) << 8); writel(0, &lp->eth_regs->miimcfg); writel(0, &lp->eth_regs->miimcmd); writel(mii_id | reg, &lp->eth_regs->miimaddr); writel(ETH_MII_CMD_SCN, &lp->eth_regs->miimcmd); ret = (int)(readl(&lp->eth_regs->miimrdd)); return ret; } static void mdio_write(struct net_device *dev, int mii_id, int reg, int val) { struct korina_private *lp = netdev_priv(dev); mii_id = ((lp->rx_irq == 0x2c ? 1 : 0) << 8); writel(0, &lp->eth_regs->miimcfg); writel(1, &lp->eth_regs->miimcmd); writel(mii_id | reg, &lp->eth_regs->miimaddr); writel(ETH_MII_CMD_SCN, &lp->eth_regs->miimcmd); writel(val, &lp->eth_regs->miimwtd); } /* Ethernet Rx DMA interrupt */ static irqreturn_t korina_rx_dma_interrupt(int irq, void *dev_id) { struct net_device *dev = dev_id; struct korina_private *lp = netdev_priv(dev); u32 dmas, dmasm; irqreturn_t retval; dmas = readl(&lp->rx_dma_regs->dmas); if (dmas & (DMA_STAT_DONE | DMA_STAT_HALT | DMA_STAT_ERR)) { dmasm = readl(&lp->rx_dma_regs->dmasm); writel(dmasm | (DMA_STAT_DONE | DMA_STAT_HALT | DMA_STAT_ERR), &lp->rx_dma_regs->dmasm); napi_schedule(&lp->napi); if (dmas & DMA_STAT_ERR) printk(KERN_ERR "%s: DMA error\n", dev->name); retval = IRQ_HANDLED; } else retval = IRQ_NONE; return retval; } static int korina_rx(struct net_device *dev, int limit) { struct korina_private *lp = netdev_priv(dev); struct dma_desc *rd = &lp->rd_ring[lp->rx_next_done]; struct sk_buff *skb, *skb_new; u8 *pkt_buf; u32 devcs, pkt_len, dmas; int count; dma_cache_inv((u32)rd, sizeof(*rd)); for (count = 0; count < limit; count++) { skb = lp->rx_skb[lp->rx_next_done]; skb_new = NULL; devcs = rd->devcs; if ((KORINA_RBSIZE - (u32)DMA_COUNT(rd->control)) == 0) break; /* Update statistics counters */ if (devcs & ETH_RX_CRC) dev->stats.rx_crc_errors++; if (devcs & ETH_RX_LOR) dev->stats.rx_length_errors++; if (devcs & ETH_RX_LE) dev->stats.rx_length_errors++; if (devcs & ETH_RX_OVR) dev->stats.rx_fifo_errors++; if (devcs & ETH_RX_CV) dev->stats.rx_frame_errors++; if (devcs & ETH_RX_CES) dev->stats.rx_length_errors++; if (devcs & ETH_RX_MP) dev->stats.multicast++; if ((devcs & ETH_RX_LD) != ETH_RX_LD) { /* check that this is a whole packet * WARNING: DMA_FD bit incorrectly set * in Rc32434 (errata ref #077) */ dev->stats.rx_errors++; dev->stats.rx_dropped++; } else if ((devcs & ETH_RX_ROK)) { pkt_len = RCVPKT_LENGTH(devcs); /* must be the (first and) last * descriptor then */ pkt_buf = (u8 *)lp->rx_skb[lp->rx_next_done]->data; /* invalidate the cache */ dma_cache_inv((unsigned long)pkt_buf, pkt_len - 4); /* Malloc up new buffer. */ skb_new = netdev_alloc_skb_ip_align(dev, KORINA_RBSIZE); if (!skb_new) break; /* Do not count the CRC */ skb_put(skb, pkt_len - 4); skb->protocol = eth_type_trans(skb, dev); /* Pass the packet to upper layers */ netif_receive_skb(skb); dev->stats.rx_packets++; dev->stats.rx_bytes += pkt_len; /* Update the mcast stats */ if (devcs & ETH_RX_MP) dev->stats.multicast++; lp->rx_skb[lp->rx_next_done] = skb_new; } rd->devcs = 0; /* Restore descriptor's curr_addr */ if (skb_new) rd->ca = CPHYSADDR(skb_new->data); else rd->ca = CPHYSADDR(skb->data); rd->control = DMA_COUNT(KORINA_RBSIZE) | DMA_DESC_COD | DMA_DESC_IOD; lp->rd_ring[(lp->rx_next_done - 1) & KORINA_RDS_MASK].control &= ~DMA_DESC_COD; lp->rx_next_done = (lp->rx_next_done + 1) & KORINA_RDS_MASK; dma_cache_wback((u32)rd, sizeof(*rd)); rd = &lp->rd_ring[lp->rx_next_done]; writel(~DMA_STAT_DONE, &lp->rx_dma_regs->dmas); } dmas = readl(&lp->rx_dma_regs->dmas); if (dmas & DMA_STAT_HALT) { writel(~(DMA_STAT_HALT | DMA_STAT_ERR), &lp->rx_dma_regs->dmas); lp->dma_halt_cnt++; rd->devcs = 0; skb = lp->rx_skb[lp->rx_next_done]; rd->ca = CPHYSADDR(skb->data); dma_cache_wback((u32)rd, sizeof(*rd)); korina_chain_rx(lp, rd); } return count; } static int korina_poll(struct napi_struct *napi, int budget) { struct korina_private *lp = container_of(napi, struct korina_private, napi); struct net_device *dev = lp->dev; int work_done; work_done = korina_rx(dev, budget); if (work_done < budget) { napi_complete(napi); writel(readl(&lp->rx_dma_regs->dmasm) & ~(DMA_STAT_DONE | DMA_STAT_HALT | DMA_STAT_ERR), &lp->rx_dma_regs->dmasm); } return work_done; } /* * Set or clear the multicast filter for this adaptor. */ static void korina_multicast_list(struct net_device *dev) { struct korina_private *lp = netdev_priv(dev); unsigned long flags; struct netdev_hw_addr *ha; u32 recognise = ETH_ARC_AB; /* always accept broadcasts */ int i; /* Set promiscuous mode */ if (dev->flags & IFF_PROMISC) recognise |= ETH_ARC_PRO; else if ((dev->flags & IFF_ALLMULTI) || (netdev_mc_count(dev) > 4)) /* All multicast and broadcast */ recognise |= ETH_ARC_AM; /* Build the hash table */ if (netdev_mc_count(dev) > 4) { u16 hash_table[4]; u32 crc; for (i = 0; i < 4; i++) hash_table[i] = 0; netdev_for_each_mc_addr(ha, dev) { char *addrs = ha->addr; if (!(*addrs & 1)) continue; crc = ether_crc_le(6, addrs); crc >>= 26; hash_table[crc >> 4] |= 1 << (15 - (crc & 0xf)); } /* Accept filtered multicast */ recognise |= ETH_ARC_AFM; /* Fill the MAC hash tables with their values */ writel((u32)(hash_table[1] << 16 | hash_table[0]), &lp->eth_regs->ethhash0); writel((u32)(hash_table[3] << 16 | hash_table[2]), &lp->eth_regs->ethhash1); } spin_lock_irqsave(&lp->lock, flags); writel(recognise, &lp->eth_regs->etharc); spin_unlock_irqrestore(&lp->lock, flags); } static void korina_tx(struct net_device *dev) { struct korina_private *lp = netdev_priv(dev); struct dma_desc *td = &lp->td_ring[lp->tx_next_done]; u32 devcs; u32 dmas; spin_lock(&lp->lock); /* Process all desc that are done */ while (IS_DMA_FINISHED(td->control)) { if (lp->tx_full == 1) { netif_wake_queue(dev); lp->tx_full = 0; } devcs = lp->td_ring[lp->tx_next_done].devcs; if ((devcs & (ETH_TX_FD | ETH_TX_LD)) != (ETH_TX_FD | ETH_TX_LD)) { dev->stats.tx_errors++; dev->stats.tx_dropped++; /* Should never happen */ printk(KERN_ERR "%s: split tx ignored\n", dev->name); } else if (devcs & ETH_TX_TOK) { dev->stats.tx_packets++; dev->stats.tx_bytes += lp->tx_skb[lp->tx_next_done]->len; } else { dev->stats.tx_errors++; dev->stats.tx_dropped++; /* Underflow */ if (devcs & ETH_TX_UND) dev->stats.tx_fifo_errors++; /* Oversized frame */ if (devcs & ETH_TX_OF) dev->stats.tx_aborted_errors++; /* Excessive deferrals */ if (devcs & ETH_TX_ED) dev->stats.tx_carrier_errors++; /* Collisions: medium busy */ if (devcs & ETH_TX_EC) dev->stats.collisions++; /* Late collision */ if (devcs & ETH_TX_LC) dev->stats.tx_window_errors++; } /* We must always free the original skb */ if (lp->tx_skb[lp->tx_next_done]) { dev_kfree_skb_any(lp->tx_skb[lp->tx_next_done]); lp->tx_skb[lp->tx_next_done] = NULL; } lp->td_ring[lp->tx_next_done].control = DMA_DESC_IOF; lp->td_ring[lp->tx_next_done].devcs = ETH_TX_FD | ETH_TX_LD; lp->td_ring[lp->tx_next_done].link = 0; lp->td_ring[lp->tx_next_done].ca = 0; lp->tx_count--; /* Go on to next transmission */ lp->tx_next_done = (lp->tx_next_done + 1) & KORINA_TDS_MASK; td = &lp->td_ring[lp->tx_next_done]; } /* Clear the DMA status register */ dmas = readl(&lp->tx_dma_regs->dmas); writel(~dmas, &lp->tx_dma_regs->dmas); writel(readl(&lp->tx_dma_regs->dmasm) & ~(DMA_STAT_FINI | DMA_STAT_ERR), &lp->tx_dma_regs->dmasm); spin_unlock(&lp->lock); } static irqreturn_t korina_tx_dma_interrupt(int irq, void *dev_id) { struct net_device *dev = dev_id; struct korina_private *lp = netdev_priv(dev); u32 dmas, dmasm; irqreturn_t retval; dmas = readl(&lp->tx_dma_regs->dmas); if (dmas & (DMA_STAT_FINI | DMA_STAT_ERR)) { dmasm = readl(&lp->tx_dma_regs->dmasm); writel(dmasm | (DMA_STAT_FINI | DMA_STAT_ERR), &lp->tx_dma_regs->dmasm); korina_tx(dev); if (lp->tx_chain_status == desc_filled && (readl(&(lp->tx_dma_regs->dmandptr)) == 0)) { writel(CPHYSADDR(&lp->td_ring[lp->tx_chain_head]), &(lp->tx_dma_regs->dmandptr)); lp->tx_chain_status = desc_empty; lp->tx_chain_head = lp->tx_chain_tail; dev->trans_start = jiffies; } if (dmas & DMA_STAT_ERR) printk(KERN_ERR "%s: DMA error\n", dev->name); retval = IRQ_HANDLED; } else retval = IRQ_NONE; return retval; } static void korina_check_media(struct net_device *dev, unsigned int init_media) { struct korina_private *lp = netdev_priv(dev); mii_check_media(&lp->mii_if, 0, init_media); if (lp->mii_if.full_duplex) writel(readl(&lp->eth_regs->ethmac2) | ETH_MAC2_FD, &lp->eth_regs->ethmac2); else writel(readl(&lp->eth_regs->ethmac2) & ~ETH_MAC2_FD, &lp->eth_regs->ethmac2); } static void korina_poll_media(unsigned long data) { struct net_device *dev = (struct net_device *) data; struct korina_private *lp = netdev_priv(dev); korina_check_media(dev, 0); mod_timer(&lp->media_check_timer, jiffies + HZ); } static void korina_set_carrier(struct mii_if_info *mii) { if (mii->force_media) { /* autoneg is off: Link is always assumed to be up */ if (!netif_carrier_ok(mii->dev)) netif_carrier_on(mii->dev); } else /* Let MMI library update carrier status */ korina_check_media(mii->dev, 0); } static int korina_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) { struct korina_private *lp = netdev_priv(dev); struct mii_ioctl_data *data = if_mii(rq); int rc; if (!netif_running(dev)) return -EINVAL; spin_lock_irq(&lp->lock); rc = generic_mii_ioctl(&lp->mii_if, data, cmd, NULL); spin_unlock_irq(&lp->lock); korina_set_carrier(&lp->mii_if); return rc; } /* ethtool helpers */ static void netdev_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info) { struct korina_private *lp = netdev_priv(dev); strcpy(info->driver, DRV_NAME); strcpy(info->version, DRV_VERSION); strcpy(info->bus_info, lp->dev->name); } static int netdev_get_settings(struct net_device *dev, struct ethtool_cmd *cmd) { struct korina_private *lp = netdev_priv(dev); int rc; spin_lock_irq(&lp->lock); rc = mii_ethtool_gset(&lp->mii_if, cmd); spin_unlock_irq(&lp->lock); return rc; } static int netdev_set_settings(struct net_device *dev, struct ethtool_cmd *cmd) { struct korina_private *lp = netdev_priv(dev); int rc; spin_lock_irq(&lp->lock); rc = mii_ethtool_sset(&lp->mii_if, cmd); spin_unlock_irq(&lp->lock); korina_set_carrier(&lp->mii_if); return rc; } static u32 netdev_get_link(struct net_device *dev) { struct korina_private *lp = netdev_priv(dev); return mii_link_ok(&lp->mii_if); } static const struct ethtool_ops netdev_ethtool_ops = { .get_drvinfo = netdev_get_drvinfo, .get_settings = netdev_get_settings, .set_settings = netdev_set_settings, .get_link = netdev_get_link, }; static int korina_alloc_ring(struct net_device *dev) { struct korina_private *lp = netdev_priv(dev); struct sk_buff *skb; int i; /* Initialize the transmit descriptors */ for (i = 0; i < KORINA_NUM_TDS; i++) { lp->td_ring[i].control = DMA_DESC_IOF; lp->td_ring[i].devcs = ETH_TX_FD | ETH_TX_LD; lp->td_ring[i].ca = 0; lp->td_ring[i].link = 0; } lp->tx_next_done = lp->tx_chain_head = lp->tx_chain_tail = lp->tx_full = lp->tx_count = 0; lp->tx_chain_status = desc_empty; /* Initialize the receive descriptors */ for (i = 0; i < KORINA_NUM_RDS; i++) { skb = netdev_alloc_skb_ip_align(dev, KORINA_RBSIZE); if (!skb) return -ENOMEM; lp->rx_skb[i] = skb; lp->rd_ring[i].control = DMA_DESC_IOD | DMA_COUNT(KORINA_RBSIZE); lp->rd_ring[i].devcs = 0; lp->rd_ring[i].ca = CPHYSADDR(skb->data); lp->rd_ring[i].link = CPHYSADDR(&lp->rd_ring[i+1]); } /* loop back receive descriptors, so the last * descriptor points to the first one */ lp->rd_ring[i - 1].link = CPHYSADDR(&lp->rd_ring[0]); lp->rd_ring[i - 1].control |= DMA_DESC_COD; lp->rx_next_done = 0; lp->rx_chain_head = 0; lp->rx_chain_tail = 0; lp->rx_chain_status = desc_empty; return 0; } static void korina_free_ring(struct net_device *dev) { struct korina_private *lp = netdev_priv(dev); int i; for (i = 0; i < KORINA_NUM_RDS; i++) { lp->rd_ring[i].control = 0; if (lp->rx_skb[i]) dev_kfree_skb_any(lp->rx_skb[i]); lp->rx_skb[i] = NULL; } for (i = 0; i < KORINA_NUM_TDS; i++) { lp->td_ring[i].control = 0; if (lp->tx_skb[i]) dev_kfree_skb_any(lp->tx_skb[i]); lp->tx_skb[i] = NULL; } } /* * Initialize the RC32434 ethernet controller. */ static int korina_init(struct net_device *dev) { struct korina_private *lp = netdev_priv(dev); /* Disable DMA */ korina_abort_tx(dev); korina_abort_rx(dev); /* reset ethernet logic */ writel(0, &lp->eth_regs->ethintfc); while ((readl(&lp->eth_regs->ethintfc) & ETH_INT_FC_RIP)) dev->trans_start = jiffies; /* Enable Ethernet Interface */ writel(ETH_INT_FC_EN, &lp->eth_regs->ethintfc); /* Allocate rings */ if (korina_alloc_ring(dev)) { printk(KERN_ERR "%s: descriptor allocation failed\n", dev->name); korina_free_ring(dev); return -ENOMEM; } writel(0, &lp->rx_dma_regs->dmas); /* Start Rx DMA */ korina_start_rx(lp, &lp->rd_ring[0]); writel(readl(&lp->tx_dma_regs->dmasm) & ~(DMA_STAT_FINI | DMA_STAT_ERR), &lp->tx_dma_regs->dmasm); writel(readl(&lp->rx_dma_regs->dmasm) & ~(DMA_STAT_DONE | DMA_STAT_HALT | DMA_STAT_ERR), &lp->rx_dma_regs->dmasm); /* Accept only packets destined for this Ethernet device address */ writel(ETH_ARC_AB, &lp->eth_regs->etharc); /* Set all Ether station address registers to their initial values */ writel(STATION_ADDRESS_LOW(dev), &lp->eth_regs->ethsal0); writel(STATION_ADDRESS_HIGH(dev), &lp->eth_regs->ethsah0); writel(STATION_ADDRESS_LOW(dev), &lp->eth_regs->ethsal1); writel(STATION_ADDRESS_HIGH(dev), &lp->eth_regs->ethsah1); writel(STATION_ADDRESS_LOW(dev), &lp->eth_regs->ethsal2); writel(STATION_ADDRESS_HIGH(dev), &lp->eth_regs->ethsah2); writel(STATION_ADDRESS_LOW(dev), &lp->eth_regs->ethsal3); writel(STATION_ADDRESS_HIGH(dev), &lp->eth_regs->ethsah3); /* Frame Length Checking, Pad Enable, CRC Enable, Full Duplex set */ writel(ETH_MAC2_PE | ETH_MAC2_CEN | ETH_MAC2_FD, &lp->eth_regs->ethmac2); /* Back to back inter-packet-gap */ writel(0x15, &lp->eth_regs->ethipgt); /* Non - Back to back inter-packet-gap */ writel(0x12, &lp->eth_regs->ethipgr); /* Management Clock Prescaler Divisor * Clock independent setting */ writel(((idt_cpu_freq) / MII_CLOCK + 1) & ~1, &lp->eth_regs->ethmcp); /* don't transmit until fifo contains 48b */ writel(48, &lp->eth_regs->ethfifott); writel(ETH_MAC1_RE, &lp->eth_regs->ethmac1); napi_enable(&lp->napi); netif_start_queue(dev); return 0; } /* * Restart the RC32434 ethernet controller. */ static void korina_restart_task(struct work_struct *work) { struct korina_private *lp = container_of(work, struct korina_private, restart_task); struct net_device *dev = lp->dev; /* * Disable interrupts */ disable_irq(lp->rx_irq); disable_irq(lp->tx_irq); disable_irq(lp->ovr_irq); disable_irq(lp->und_irq); writel(readl(&lp->tx_dma_regs->dmasm) | DMA_STAT_FINI | DMA_STAT_ERR, &lp->tx_dma_regs->dmasm); writel(readl(&lp->rx_dma_regs->dmasm) | DMA_STAT_DONE | DMA_STAT_HALT | DMA_STAT_ERR, &lp->rx_dma_regs->dmasm); korina_free_ring(dev); napi_disable(&lp->napi); if (korina_init(dev) < 0) { printk(KERN_ERR "%s: cannot restart device\n", dev->name); return; } korina_multicast_list(dev); enable_irq(lp->und_irq); enable_irq(lp->ovr_irq); enable_irq(lp->tx_irq); enable_irq(lp->rx_irq); } static void korina_clear_and_restart(struct net_device *dev, u32 value) { struct korina_private *lp = netdev_priv(dev); netif_stop_queue(dev); writel(value, &lp->eth_regs->ethintfc); schedule_work(&lp->restart_task); } /* Ethernet Tx Underflow interrupt */ static irqreturn_t korina_und_interrupt(int irq, void *dev_id) { struct net_device *dev = dev_id; struct korina_private *lp = netdev_priv(dev); unsigned int und; spin_lock(&lp->lock); und = readl(&lp->eth_regs->ethintfc); if (und & ETH_INT_FC_UND) korina_clear_and_restart(dev, und & ~ETH_INT_FC_UND); spin_unlock(&lp->lock); return IRQ_HANDLED; } static void korina_tx_timeout(struct net_device *dev) { struct korina_private *lp = netdev_priv(dev); schedule_work(&lp->restart_task); } /* Ethernet Rx Overflow interrupt */ static irqreturn_t korina_ovr_interrupt(int irq, void *dev_id) { struct net_device *dev = dev_id; struct korina_private *lp = netdev_priv(dev); unsigned int ovr; spin_lock(&lp->lock); ovr = readl(&lp->eth_regs->ethintfc); if (ovr & ETH_INT_FC_OVR) korina_clear_and_restart(dev, ovr & ~ETH_INT_FC_OVR); spin_unlock(&lp->lock); return IRQ_HANDLED; } #ifdef CONFIG_NET_POLL_CONTROLLER static void korina_poll_controller(struct net_device *dev) { disable_irq(dev->irq); korina_tx_dma_interrupt(dev->irq, dev); enable_irq(dev->irq); } #endif static int korina_open(struct net_device *dev) { struct korina_private *lp = netdev_priv(dev); int ret; /* Initialize */ ret = korina_init(dev); if (ret < 0) { printk(KERN_ERR "%s: cannot open device\n", dev->name); goto out; } /* Install the interrupt handler * that handles the Done Finished * Ovr and Und Events */ ret = request_irq(lp->rx_irq, korina_rx_dma_interrupt, IRQF_DISABLED, "Korina ethernet Rx", dev); if (ret < 0) { printk(KERN_ERR "%s: unable to get Rx DMA IRQ %d\n", dev->name, lp->rx_irq); goto err_release; } ret = request_irq(lp->tx_irq, korina_tx_dma_interrupt, IRQF_DISABLED, "Korina ethernet Tx", dev); if (ret < 0) { printk(KERN_ERR "%s: unable to get Tx DMA IRQ %d\n", dev->name, lp->tx_irq); goto err_free_rx_irq; } /* Install handler for overrun error. */ ret = request_irq(lp->ovr_irq, korina_ovr_interrupt, IRQF_DISABLED, "Ethernet Overflow", dev); if (ret < 0) { printk(KERN_ERR "%s: unable to get OVR IRQ %d\n", dev->name, lp->ovr_irq); goto err_free_tx_irq; } /* Install handler for underflow error. */ ret = request_irq(lp->und_irq, korina_und_interrupt, IRQF_DISABLED, "Ethernet Underflow", dev); if (ret < 0) { printk(KERN_ERR "%s: unable to get UND IRQ %d\n", dev->name, lp->und_irq); goto err_free_ovr_irq; } mod_timer(&lp->media_check_timer, jiffies + 1); out: return ret; err_free_ovr_irq: free_irq(lp->ovr_irq, dev); err_free_tx_irq: free_irq(lp->tx_irq, dev); err_free_rx_irq: free_irq(lp->rx_irq, dev); err_release: korina_free_ring(dev); goto out; } static int korina_close(struct net_device *dev) { struct korina_private *lp = netdev_priv(dev); u32 tmp; del_timer(&lp->media_check_timer); /* Disable interrupts */ disable_irq(lp->rx_irq); disable_irq(lp->tx_irq); disable_irq(lp->ovr_irq); disable_irq(lp->und_irq); korina_abort_tx(dev); tmp = readl(&lp->tx_dma_regs->dmasm); tmp = tmp | DMA_STAT_FINI | DMA_STAT_ERR; writel(tmp, &lp->tx_dma_regs->dmasm); korina_abort_rx(dev); tmp = readl(&lp->rx_dma_regs->dmasm); tmp = tmp | DMA_STAT_DONE | DMA_STAT_HALT | DMA_STAT_ERR; writel(tmp, &lp->rx_dma_regs->dmasm); korina_free_ring(dev); napi_disable(&lp->napi); cancel_work_sync(&lp->restart_task); free_irq(lp->rx_irq, dev); free_irq(lp->tx_irq, dev); free_irq(lp->ovr_irq, dev); free_irq(lp->und_irq, dev); return 0; } static const struct net_device_ops korina_netdev_ops = { .ndo_open = korina_open, .ndo_stop = korina_close, .ndo_start_xmit = korina_send_packet, .ndo_set_multicast_list = korina_multicast_list, .ndo_tx_timeout = korina_tx_timeout, .ndo_do_ioctl = korina_ioctl, .ndo_change_mtu = eth_change_mtu, .ndo_validate_addr = eth_validate_addr, .ndo_set_mac_address = eth_mac_addr, #ifdef CONFIG_NET_POLL_CONTROLLER .ndo_poll_controller = korina_poll_controller, #endif }; static int korina_probe(struct platform_device *pdev) { struct korina_device *bif = platform_get_drvdata(pdev); struct korina_private *lp; struct net_device *dev; struct resource *r; int rc; dev = alloc_etherdev(sizeof(struct korina_private)); if (!dev) { printk(KERN_ERR DRV_NAME ": alloc_etherdev failed\n"); return -ENOMEM; } SET_NETDEV_DEV(dev, &pdev->dev); lp = netdev_priv(dev); bif->dev = dev; memcpy(dev->dev_addr, bif->mac, 6); lp->rx_irq = platform_get_irq_byname(pdev, "korina_rx"); lp->tx_irq = platform_get_irq_byname(pdev, "korina_tx"); lp->ovr_irq = platform_get_irq_byname(pdev, "korina_ovr"); lp->und_irq = platform_get_irq_byname(pdev, "korina_und"); r = platform_get_resource_byname(pdev, IORESOURCE_MEM, "korina_regs"); dev->base_addr = r->start; lp->eth_regs = ioremap_nocache(r->start, resource_size(r)); if (!lp->eth_regs) { printk(KERN_ERR DRV_NAME ": cannot remap registers\n"); rc = -ENXIO; goto probe_err_out; } r = platform_get_resource_byname(pdev, IORESOURCE_MEM, "korina_dma_rx"); lp->rx_dma_regs = ioremap_nocache(r->start, resource_size(r)); if (!lp->rx_dma_regs) { printk(KERN_ERR DRV_NAME ": cannot remap Rx DMA registers\n"); rc = -ENXIO; goto probe_err_dma_rx; } r = platform_get_resource_byname(pdev, IORESOURCE_MEM, "korina_dma_tx"); lp->tx_dma_regs = ioremap_nocache(r->start, resource_size(r)); if (!lp->tx_dma_regs) { printk(KERN_ERR DRV_NAME ": cannot remap Tx DMA registers\n"); rc = -ENXIO; goto probe_err_dma_tx; } lp->td_ring = kmalloc(TD_RING_SIZE + RD_RING_SIZE, GFP_KERNEL); if (!lp->td_ring) { printk(KERN_ERR DRV_NAME ": cannot allocate descriptors\n"); rc = -ENXIO; goto probe_err_td_ring; } dma_cache_inv((unsigned long)(lp->td_ring), TD_RING_SIZE + RD_RING_SIZE); /* now convert TD_RING pointer to KSEG1 */ lp->td_ring = (struct dma_desc *)KSEG1ADDR(lp->td_ring); lp->rd_ring = &lp->td_ring[KORINA_NUM_TDS]; spin_lock_init(&lp->lock); /* just use the rx dma irq */ dev->irq = lp->rx_irq; lp->dev = dev; dev->netdev_ops = &korina_netdev_ops; dev->ethtool_ops = &netdev_ethtool_ops; dev->watchdog_timeo = TX_TIMEOUT; netif_napi_add(dev, &lp->napi, korina_poll, 64); lp->phy_addr = (((lp->rx_irq == 0x2c? 1:0) << 8) | 0x05); lp->mii_if.dev = dev; lp->mii_if.mdio_read = mdio_read; lp->mii_if.mdio_write = mdio_write; lp->mii_if.phy_id = lp->phy_addr; lp->mii_if.phy_id_mask = 0x1f; lp->mii_if.reg_num_mask = 0x1f; rc = register_netdev(dev); if (rc < 0) { printk(KERN_ERR DRV_NAME ": cannot register net device: %d\n", rc); goto probe_err_register; } setup_timer(&lp->media_check_timer, korina_poll_media, (unsigned long) dev); INIT_WORK(&lp->restart_task, korina_restart_task); printk(KERN_INFO "%s: " DRV_NAME "-" DRV_VERSION " " DRV_RELDATE "\n", dev->name); out: return rc; probe_err_register: kfree(lp->td_ring); probe_err_td_ring: iounmap(lp->tx_dma_regs); probe_err_dma_tx: iounmap(lp->rx_dma_regs); probe_err_dma_rx: iounmap(lp->eth_regs); probe_err_out: free_netdev(dev); goto out; } static int korina_remove(struct platform_device *pdev) { struct korina_device *bif = platform_get_drvdata(pdev); struct korina_private *lp = netdev_priv(bif->dev); iounmap(lp->eth_regs); iounmap(lp->rx_dma_regs); iounmap(lp->tx_dma_regs); platform_set_drvdata(pdev, NULL); unregister_netdev(bif->dev); free_netdev(bif->dev); return 0; } static struct platform_driver korina_driver = { .driver.name = "korina", .probe = korina_probe, .remove = korina_remove, }; static int __init korina_init_module(void) { return platform_driver_register(&korina_driver); } static void korina_cleanup_module(void) { return platform_driver_unregister(&korina_driver); } module_init(korina_init_module); module_exit(korina_cleanup_module); MODULE_AUTHOR("Philip Rischel "); MODULE_AUTHOR("Felix Fietkau "); MODULE_AUTHOR("Florian Fainelli "); MODULE_DESCRIPTION("IDT RC32434 (Korina) Ethernet driver"); MODULE_LICENSE("GPL");