/****************************************************************************** * * Copyright(c) 2009-2014 Realtek Corporation. * * This program is free software; you can redistribute it and/or modify it * under the terms of version 2 of the GNU General Public License as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * The full GNU General Public License is included in this distribution in the * file called LICENSE. * * Contact Information: * wlanfae * Realtek Corporation, No. 2, Innovation Road II, Hsinchu Science Park, * Hsinchu 300, Taiwan. * * Larry Finger * *****************************************************************************/ #include "../wifi.h" #include "../efuse.h" #include "../base.h" #include "../regd.h" #include "../cam.h" #include "../ps.h" #include "../pci.h" #include "reg.h" #include "def.h" #include "phy.h" #include "../rtl8723com/phy_common.h" #include "dm.h" #include "../rtl8723com/dm_common.h" #include "fw.h" #include "../rtl8723com/fw_common.h" #include "led.h" #include "hw.h" #include "../pwrseqcmd.h" #include "pwrseq.h" #include "../btcoexist/rtl_btc.h" #define LLT_CONFIG 5 static void _rtl8723be_return_beacon_queue_skb(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); struct rtl8192_tx_ring *ring = &rtlpci->tx_ring[BEACON_QUEUE]; unsigned long flags; spin_lock_irqsave(&rtlpriv->locks.irq_th_lock, flags); while (skb_queue_len(&ring->queue)) { struct rtl_tx_desc *entry = &ring->desc[ring->idx]; struct sk_buff *skb = __skb_dequeue(&ring->queue); pci_unmap_single(rtlpci->pdev, rtlpriv->cfg->ops->get_desc( (u8 *)entry, true, HW_DESC_TXBUFF_ADDR), skb->len, PCI_DMA_TODEVICE); kfree_skb(skb); ring->idx = (ring->idx + 1) % ring->entries; } spin_unlock_irqrestore(&rtlpriv->locks.irq_th_lock, flags); } static void _rtl8723be_set_bcn_ctrl_reg(struct ieee80211_hw *hw, u8 set_bits, u8 clear_bits) { struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); struct rtl_priv *rtlpriv = rtl_priv(hw); rtlpci->reg_bcn_ctrl_val |= set_bits; rtlpci->reg_bcn_ctrl_val &= ~clear_bits; rtl_write_byte(rtlpriv, REG_BCN_CTRL, (u8)rtlpci->reg_bcn_ctrl_val); } static void _rtl8723be_stop_tx_beacon(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); u8 tmp1byte; tmp1byte = rtl_read_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2); rtl_write_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2, tmp1byte & (~BIT(6))); rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 1, 0x64); tmp1byte = rtl_read_byte(rtlpriv, REG_TBTT_PROHIBIT + 2); tmp1byte &= ~(BIT(0)); rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 2, tmp1byte); } static void _rtl8723be_resume_tx_beacon(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); u8 tmp1byte; tmp1byte = rtl_read_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2); rtl_write_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2, tmp1byte | BIT(6)); rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 1, 0xff); tmp1byte = rtl_read_byte(rtlpriv, REG_TBTT_PROHIBIT + 2); tmp1byte |= BIT(1); rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 2, tmp1byte); } static void _rtl8723be_enable_bcn_sub_func(struct ieee80211_hw *hw) { _rtl8723be_set_bcn_ctrl_reg(hw, 0, BIT(1)); } static void _rtl8723be_disable_bcn_sub_func(struct ieee80211_hw *hw) { _rtl8723be_set_bcn_ctrl_reg(hw, BIT(1), 0); } static void _rtl8723be_set_fw_clock_on(struct ieee80211_hw *hw, u8 rpwm_val, bool b_need_turn_off_ckk) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw)); bool b_support_remote_wake_up; u32 count = 0, isr_regaddr, content; bool b_schedule_timer = b_need_turn_off_ckk; rtlpriv->cfg->ops->get_hw_reg(hw, HAL_DEF_WOWLAN, (u8 *)(&b_support_remote_wake_up)); if (!rtlhal->fw_ready) return; if (!rtlpriv->psc.fw_current_inpsmode) return; while (1) { spin_lock_bh(&rtlpriv->locks.fw_ps_lock); if (rtlhal->fw_clk_change_in_progress) { while (rtlhal->fw_clk_change_in_progress) { spin_unlock_bh(&rtlpriv->locks.fw_ps_lock); count++; udelay(100); if (count > 1000) return; spin_lock_bh(&rtlpriv->locks.fw_ps_lock); } spin_unlock_bh(&rtlpriv->locks.fw_ps_lock); } else { rtlhal->fw_clk_change_in_progress = false; spin_unlock_bh(&rtlpriv->locks.fw_ps_lock); break; } } if (IS_IN_LOW_POWER_STATE(rtlhal->fw_ps_state)) { rtlpriv->cfg->ops->get_hw_reg(hw, HW_VAR_SET_RPWM, (u8 *)(&rpwm_val)); if (FW_PS_IS_ACK(rpwm_val)) { isr_regaddr = REG_HISR; content = rtl_read_dword(rtlpriv, isr_regaddr); while (!(content & IMR_CPWM) && (count < 500)) { udelay(50); count++; content = rtl_read_dword(rtlpriv, isr_regaddr); } if (content & IMR_CPWM) { rtl_write_word(rtlpriv, isr_regaddr, 0x0100); rtlhal->fw_ps_state = FW_PS_STATE_RF_ON; RT_TRACE(rtlpriv, COMP_POWER, DBG_LOUD, "Receive CPWM INT!!! Set pHalData->FwPSState = %X\n", rtlhal->fw_ps_state); } } spin_lock_bh(&rtlpriv->locks.fw_ps_lock); rtlhal->fw_clk_change_in_progress = false; spin_unlock_bh(&rtlpriv->locks.fw_ps_lock); if (b_schedule_timer) mod_timer(&rtlpriv->works.fw_clockoff_timer, jiffies + MSECS(10)); } else { spin_lock_bh(&rtlpriv->locks.fw_ps_lock); rtlhal->fw_clk_change_in_progress = false; spin_unlock_bh(&rtlpriv->locks.fw_ps_lock); } } static void _rtl8723be_set_fw_clock_off(struct ieee80211_hw *hw, u8 rpwm_val) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw)); struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); struct rtl8192_tx_ring *ring; enum rf_pwrstate rtstate; bool b_schedule_timer = false; u8 queue; if (!rtlhal->fw_ready) return; if (!rtlpriv->psc.fw_current_inpsmode) return; if (!rtlhal->allow_sw_to_change_hwclc) return; rtlpriv->cfg->ops->get_hw_reg(hw, HW_VAR_RF_STATE, (u8 *)(&rtstate)); if (rtstate == ERFOFF || rtlpriv->psc.inactive_pwrstate == ERFOFF) return; for (queue = 0; queue < RTL_PCI_MAX_TX_QUEUE_COUNT; queue++) { ring = &rtlpci->tx_ring[queue]; if (skb_queue_len(&ring->queue)) { b_schedule_timer = true; break; } } if (b_schedule_timer) { mod_timer(&rtlpriv->works.fw_clockoff_timer, jiffies + MSECS(10)); return; } if (FW_PS_STATE(rtlhal->fw_ps_state) != FW_PS_STATE_RF_OFF_LOW_PWR) { spin_lock_bh(&rtlpriv->locks.fw_ps_lock); if (!rtlhal->fw_clk_change_in_progress) { rtlhal->fw_clk_change_in_progress = true; spin_unlock_bh(&rtlpriv->locks.fw_ps_lock); rtlhal->fw_ps_state = FW_PS_STATE(rpwm_val); rtl_write_word(rtlpriv, REG_HISR, 0x0100); rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_SET_RPWM, (u8 *)(&rpwm_val)); spin_lock_bh(&rtlpriv->locks.fw_ps_lock); rtlhal->fw_clk_change_in_progress = false; spin_unlock_bh(&rtlpriv->locks.fw_ps_lock); } else { spin_unlock_bh(&rtlpriv->locks.fw_ps_lock); mod_timer(&rtlpriv->works.fw_clockoff_timer, jiffies + MSECS(10)); } } } static void _rtl8723be_set_fw_ps_rf_on(struct ieee80211_hw *hw) { u8 rpwm_val = 0; rpwm_val |= (FW_PS_STATE_RF_OFF | FW_PS_ACK); _rtl8723be_set_fw_clock_on(hw, rpwm_val, true); } static void _rtl8723be_fwlps_leave(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw)); struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw)); bool fw_current_inps = false; u8 rpwm_val = 0, fw_pwrmode = FW_PS_ACTIVE_MODE; if (ppsc->low_power_enable) { rpwm_val = (FW_PS_STATE_ALL_ON | FW_PS_ACK);/* RF on */ _rtl8723be_set_fw_clock_on(hw, rpwm_val, false); rtlhal->allow_sw_to_change_hwclc = false; rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_H2C_FW_PWRMODE, (u8 *)(&fw_pwrmode)); rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_FW_PSMODE_STATUS, (u8 *)(&fw_current_inps)); } else { rpwm_val = FW_PS_STATE_ALL_ON; /* RF on */ rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_SET_RPWM, (u8 *)(&rpwm_val)); rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_H2C_FW_PWRMODE, (u8 *)(&fw_pwrmode)); rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_FW_PSMODE_STATUS, (u8 *)(&fw_current_inps)); } } static void _rtl8723be_fwlps_enter(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw)); struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw)); bool fw_current_inps = true; u8 rpwm_val; if (ppsc->low_power_enable) { rpwm_val = FW_PS_STATE_RF_OFF_LOW_PWR; /* RF off */ rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_FW_PSMODE_STATUS, (u8 *)(&fw_current_inps)); rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_H2C_FW_PWRMODE, (u8 *)(&ppsc->fwctrl_psmode)); rtlhal->allow_sw_to_change_hwclc = true; _rtl8723be_set_fw_clock_off(hw, rpwm_val); } else { rpwm_val = FW_PS_STATE_RF_OFF; /* RF off */ rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_FW_PSMODE_STATUS, (u8 *)(&fw_current_inps)); rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_H2C_FW_PWRMODE, (u8 *)(&ppsc->fwctrl_psmode)); rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_SET_RPWM, (u8 *)(&rpwm_val)); } } void rtl8723be_get_hw_reg(struct ieee80211_hw *hw, u8 variable, u8 *val) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw)); struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); switch (variable) { case HW_VAR_RCR: *((u32 *)(val)) = rtlpci->receive_config; break; case HW_VAR_RF_STATE: *((enum rf_pwrstate *)(val)) = ppsc->rfpwr_state; break; case HW_VAR_FWLPS_RF_ON:{ enum rf_pwrstate rfState; u32 val_rcr; rtlpriv->cfg->ops->get_hw_reg(hw, HW_VAR_RF_STATE, (u8 *)(&rfState)); if (rfState == ERFOFF) { *((bool *)(val)) = true; } else { val_rcr = rtl_read_dword(rtlpriv, REG_RCR); val_rcr &= 0x00070000; if (val_rcr) *((bool *)(val)) = false; else *((bool *)(val)) = true; } } break; case HW_VAR_FW_PSMODE_STATUS: *((bool *)(val)) = ppsc->fw_current_inpsmode; break; case HW_VAR_CORRECT_TSF:{ u64 tsf; u32 *ptsf_low = (u32 *)&tsf; u32 *ptsf_high = ((u32 *)&tsf) + 1; *ptsf_high = rtl_read_dword(rtlpriv, (REG_TSFTR + 4)); *ptsf_low = rtl_read_dword(rtlpriv, REG_TSFTR); *((u64 *)(val)) = tsf; } break; default: RT_TRACE(rtlpriv, COMP_ERR, DBG_LOUD, "switch case not process %x\n", variable); break; } } static void _rtl8723be_download_rsvd_page(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); u8 tmp_regcr, tmp_reg422, bcnvalid_reg; u8 count = 0, dlbcn_count = 0; bool b_recover = false; tmp_regcr = rtl_read_byte(rtlpriv, REG_CR + 1); rtl_write_byte(rtlpriv, REG_CR + 1, (tmp_regcr | BIT(0))); _rtl8723be_set_bcn_ctrl_reg(hw, 0, BIT(3)); _rtl8723be_set_bcn_ctrl_reg(hw, BIT(4), 0); tmp_reg422 = rtl_read_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2); rtl_write_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2, tmp_reg422 & (~BIT(6))); if (tmp_reg422 & BIT(6)) b_recover = true; do { bcnvalid_reg = rtl_read_byte(rtlpriv, REG_TDECTRL + 2); rtl_write_byte(rtlpriv, REG_TDECTRL + 2, (bcnvalid_reg | BIT(0))); _rtl8723be_return_beacon_queue_skb(hw); rtl8723be_set_fw_rsvdpagepkt(hw, 0); bcnvalid_reg = rtl_read_byte(rtlpriv, REG_TDECTRL + 2); count = 0; while (!(bcnvalid_reg & BIT(0)) && count < 20) { count++; udelay(10); bcnvalid_reg = rtl_read_byte(rtlpriv, REG_TDECTRL + 2); } dlbcn_count++; } while (!(bcnvalid_reg & BIT(0)) && dlbcn_count < 5); if (bcnvalid_reg & BIT(0)) rtl_write_byte(rtlpriv, REG_TDECTRL + 2, BIT(0)); _rtl8723be_set_bcn_ctrl_reg(hw, BIT(3), 0); _rtl8723be_set_bcn_ctrl_reg(hw, 0, BIT(4)); if (b_recover) rtl_write_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2, tmp_reg422); tmp_regcr = rtl_read_byte(rtlpriv, REG_CR + 1); rtl_write_byte(rtlpriv, REG_CR + 1, (tmp_regcr & ~(BIT(0)))); } void rtl8723be_set_hw_reg(struct ieee80211_hw *hw, u8 variable, u8 *val) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); struct rtl_mac *mac = rtl_mac(rtl_priv(hw)); struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw)); struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw)); u8 idx; switch (variable) { case HW_VAR_ETHER_ADDR: for (idx = 0; idx < ETH_ALEN; idx++) rtl_write_byte(rtlpriv, (REG_MACID + idx), val[idx]); break; case HW_VAR_BASIC_RATE:{ u16 b_rate_cfg = ((u16 *)val)[0]; u8 rate_index = 0; b_rate_cfg = b_rate_cfg & 0x15f; b_rate_cfg |= 0x01; rtl_write_byte(rtlpriv, REG_RRSR, b_rate_cfg & 0xff); rtl_write_byte(rtlpriv, REG_RRSR + 1, (b_rate_cfg >> 8) & 0xff); while (b_rate_cfg > 0x1) { b_rate_cfg = (b_rate_cfg >> 1); rate_index++; } rtl_write_byte(rtlpriv, REG_INIRTS_RATE_SEL, rate_index); } break; case HW_VAR_BSSID: for (idx = 0; idx < ETH_ALEN; idx++) rtl_write_byte(rtlpriv, (REG_BSSID + idx), val[idx]); break; case HW_VAR_SIFS: rtl_write_byte(rtlpriv, REG_SIFS_CTX + 1, val[0]); rtl_write_byte(rtlpriv, REG_SIFS_TRX + 1, val[1]); rtl_write_byte(rtlpriv, REG_SPEC_SIFS + 1, val[0]); rtl_write_byte(rtlpriv, REG_MAC_SPEC_SIFS + 1, val[0]); if (!mac->ht_enable) rtl_write_word(rtlpriv, REG_RESP_SIFS_OFDM, 0x0e0e); else rtl_write_word(rtlpriv, REG_RESP_SIFS_OFDM, *((u16 *)val)); break; case HW_VAR_SLOT_TIME:{ u8 e_aci; RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD, "HW_VAR_SLOT_TIME %x\n", val[0]); rtl_write_byte(rtlpriv, REG_SLOT, val[0]); for (e_aci = 0; e_aci < AC_MAX; e_aci++) { rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_AC_PARAM, (u8 *)(&e_aci)); } } break; case HW_VAR_ACK_PREAMBLE:{ u8 reg_tmp; u8 short_preamble = (bool)(*(u8 *)val); reg_tmp = rtl_read_byte(rtlpriv, REG_TRXPTCL_CTL + 2); if (short_preamble) { reg_tmp |= 0x02; rtl_write_byte(rtlpriv, REG_TRXPTCL_CTL + 2, reg_tmp); } else { reg_tmp &= 0xFD; rtl_write_byte(rtlpriv, REG_TRXPTCL_CTL + 2, reg_tmp); } } break; case HW_VAR_WPA_CONFIG: rtl_write_byte(rtlpriv, REG_SECCFG, *((u8 *)val)); break; case HW_VAR_AMPDU_MIN_SPACE:{ u8 min_spacing_to_set; u8 sec_min_space; min_spacing_to_set = *((u8 *)val); if (min_spacing_to_set <= 7) { sec_min_space = 0; if (min_spacing_to_set < sec_min_space) min_spacing_to_set = sec_min_space; mac->min_space_cfg = ((mac->min_space_cfg & 0xf8) | min_spacing_to_set); *val = min_spacing_to_set; RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD, "Set HW_VAR_AMPDU_MIN_SPACE: %#x\n", mac->min_space_cfg); rtl_write_byte(rtlpriv, REG_AMPDU_MIN_SPACE, mac->min_space_cfg); } } break; case HW_VAR_SHORTGI_DENSITY:{ u8 density_to_set; density_to_set = *((u8 *)val); mac->min_space_cfg |= (density_to_set << 3); RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD, "Set HW_VAR_SHORTGI_DENSITY: %#x\n", mac->min_space_cfg); rtl_write_byte(rtlpriv, REG_AMPDU_MIN_SPACE, mac->min_space_cfg); } break; case HW_VAR_AMPDU_FACTOR:{ u8 regtoset_normal[4] = {0x41, 0xa8, 0x72, 0xb9}; u8 factor_toset; u8 *p_regtoset = NULL; u8 index = 0; p_regtoset = regtoset_normal; factor_toset = *((u8 *)val); if (factor_toset <= 3) { factor_toset = (1 << (factor_toset + 2)); if (factor_toset > 0xf) factor_toset = 0xf; for (index = 0; index < 4; index++) { if ((p_regtoset[index] & 0xf0) > (factor_toset << 4)) p_regtoset[index] = (p_regtoset[index] & 0x0f) | (factor_toset << 4); if ((p_regtoset[index] & 0x0f) > factor_toset) p_regtoset[index] = (p_regtoset[index] & 0xf0) | (factor_toset); rtl_write_byte(rtlpriv, (REG_AGGLEN_LMT + index), p_regtoset[index]); } RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD, "Set HW_VAR_AMPDU_FACTOR: %#x\n", factor_toset); } } break; case HW_VAR_AC_PARAM:{ u8 e_aci = *((u8 *)val); rtl8723_dm_init_edca_turbo(hw); if (rtlpci->acm_method != EACMWAY2_SW) rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_ACM_CTRL, (u8 *)(&e_aci)); } break; case HW_VAR_ACM_CTRL:{ u8 e_aci = *((u8 *)val); union aci_aifsn *p_aci_aifsn = (union aci_aifsn *)(&(mac->ac[0].aifs)); u8 acm = p_aci_aifsn->f.acm; u8 acm_ctrl = rtl_read_byte(rtlpriv, REG_ACMHWCTRL); acm_ctrl = acm_ctrl | ((rtlpci->acm_method == 2) ? 0x0 : 0x1); if (acm) { switch (e_aci) { case AC0_BE: acm_ctrl |= ACMHW_BEQEN; break; case AC2_VI: acm_ctrl |= ACMHW_VIQEN; break; case AC3_VO: acm_ctrl |= ACMHW_VOQEN; break; default: RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING, "HW_VAR_ACM_CTRL acm set failed: eACI is %d\n", acm); break; } } else { switch (e_aci) { case AC0_BE: acm_ctrl &= (~ACMHW_BEQEN); break; case AC2_VI: acm_ctrl &= (~ACMHW_VIQEN); break; case AC3_VO: acm_ctrl &= (~ACMHW_VOQEN); break; default: RT_TRACE(rtlpriv, COMP_ERR, DBG_LOUD, "switch case not process\n"); break; } } RT_TRACE(rtlpriv, COMP_QOS, DBG_TRACE, "SetHwReg8190pci(): [HW_VAR_ACM_CTRL] Write 0x%X\n", acm_ctrl); rtl_write_byte(rtlpriv, REG_ACMHWCTRL, acm_ctrl); } break; case HW_VAR_RCR: rtl_write_dword(rtlpriv, REG_RCR, ((u32 *)(val))[0]); rtlpci->receive_config = ((u32 *)(val))[0]; break; case HW_VAR_RETRY_LIMIT:{ u8 retry_limit = ((u8 *)(val))[0]; rtl_write_word(rtlpriv, REG_RL, retry_limit << RETRY_LIMIT_SHORT_SHIFT | retry_limit << RETRY_LIMIT_LONG_SHIFT); } break; case HW_VAR_DUAL_TSF_RST: rtl_write_byte(rtlpriv, REG_DUAL_TSF_RST, (BIT(0) | BIT(1))); break; case HW_VAR_EFUSE_BYTES: rtlefuse->efuse_usedbytes = *((u16 *)val); break; case HW_VAR_EFUSE_USAGE: rtlefuse->efuse_usedpercentage = *((u8 *)val); break; case HW_VAR_IO_CMD: rtl8723be_phy_set_io_cmd(hw, (*(enum io_type *)val)); break; case HW_VAR_SET_RPWM:{ u8 rpwm_val; rpwm_val = rtl_read_byte(rtlpriv, REG_PCIE_HRPWM); udelay(1); if (rpwm_val & BIT(7)) { rtl_write_byte(rtlpriv, REG_PCIE_HRPWM, (*(u8 *)val)); } else { rtl_write_byte(rtlpriv, REG_PCIE_HRPWM, ((*(u8 *)val) | BIT(7))); } } break; case HW_VAR_H2C_FW_PWRMODE: rtl8723be_set_fw_pwrmode_cmd(hw, (*(u8 *)val)); break; case HW_VAR_FW_PSMODE_STATUS: ppsc->fw_current_inpsmode = *((bool *)val); break; case HW_VAR_RESUME_CLK_ON: _rtl8723be_set_fw_ps_rf_on(hw); break; case HW_VAR_FW_LPS_ACTION:{ bool b_enter_fwlps = *((bool *)val); if (b_enter_fwlps) _rtl8723be_fwlps_enter(hw); else _rtl8723be_fwlps_leave(hw); } break; case HW_VAR_H2C_FW_JOINBSSRPT:{ u8 mstatus = (*(u8 *)val); if (mstatus == RT_MEDIA_CONNECT) { rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_AID, NULL); _rtl8723be_download_rsvd_page(hw); } rtl8723be_set_fw_media_status_rpt_cmd(hw, mstatus); } break; case HW_VAR_H2C_FW_P2P_PS_OFFLOAD: rtl8723be_set_p2p_ps_offload_cmd(hw, (*(u8 *)val)); break; case HW_VAR_AID:{ u16 u2btmp; u2btmp = rtl_read_word(rtlpriv, REG_BCN_PSR_RPT); u2btmp &= 0xC000; rtl_write_word(rtlpriv, REG_BCN_PSR_RPT, (u2btmp | mac->assoc_id)); } break; case HW_VAR_CORRECT_TSF:{ u8 btype_ibss = ((u8 *)(val))[0]; if (btype_ibss) _rtl8723be_stop_tx_beacon(hw); _rtl8723be_set_bcn_ctrl_reg(hw, 0, BIT(3)); rtl_write_dword(rtlpriv, REG_TSFTR, (u32) (mac->tsf & 0xffffffff)); rtl_write_dword(rtlpriv, REG_TSFTR + 4, (u32) ((mac->tsf >> 32) & 0xffffffff)); _rtl8723be_set_bcn_ctrl_reg(hw, BIT(3), 0); if (btype_ibss) _rtl8723be_resume_tx_beacon(hw); } break; case HW_VAR_KEEP_ALIVE:{ u8 array[2]; array[0] = 0xff; array[1] = *((u8 *)val); rtl8723be_fill_h2c_cmd(hw, H2C_8723B_KEEP_ALIVE_CTRL, 2, array); } break; default: RT_TRACE(rtlpriv, COMP_ERR, DBG_LOUD, "switch case not process %x\n", variable); break; } } static bool _rtl8723be_llt_write(struct ieee80211_hw *hw, u32 address, u32 data) { struct rtl_priv *rtlpriv = rtl_priv(hw); bool status = true; long count = 0; u32 value = _LLT_INIT_ADDR(address) | _LLT_INIT_DATA(data) | _LLT_OP(_LLT_WRITE_ACCESS); rtl_write_dword(rtlpriv, REG_LLT_INIT, value); do { value = rtl_read_dword(rtlpriv, REG_LLT_INIT); if (_LLT_NO_ACTIVE == _LLT_OP_VALUE(value)) break; if (count > POLLING_LLT_THRESHOLD) { RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, "Failed to polling write LLT done at address %d!\n", address); status = false; break; } } while (++count); return status; } static bool _rtl8723be_llt_table_init(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); unsigned short i; u8 txpktbuf_bndy; u8 maxPage; bool status; maxPage = 255; txpktbuf_bndy = 245; rtl_write_dword(rtlpriv, REG_TRXFF_BNDY, (0x27FF0000 | txpktbuf_bndy)); rtl_write_byte(rtlpriv, REG_TDECTRL + 1, txpktbuf_bndy); rtl_write_byte(rtlpriv, REG_TXPKTBUF_BCNQ_BDNY, txpktbuf_bndy); rtl_write_byte(rtlpriv, REG_TXPKTBUF_MGQ_BDNY, txpktbuf_bndy); rtl_write_byte(rtlpriv, 0x45D, txpktbuf_bndy); rtl_write_byte(rtlpriv, REG_PBP, 0x31); rtl_write_byte(rtlpriv, REG_RX_DRVINFO_SZ, 0x4); for (i = 0; i < (txpktbuf_bndy - 1); i++) { status = _rtl8723be_llt_write(hw, i, i + 1); if (!status) return status; } status = _rtl8723be_llt_write(hw, (txpktbuf_bndy - 1), 0xFF); if (!status) return status; for (i = txpktbuf_bndy; i < maxPage; i++) { status = _rtl8723be_llt_write(hw, i, (i + 1)); if (!status) return status; } status = _rtl8723be_llt_write(hw, maxPage, txpktbuf_bndy); if (!status) return status; rtl_write_dword(rtlpriv, REG_RQPN, 0x80e40808); rtl_write_byte(rtlpriv, REG_RQPN_NPQ, 0x00); return true; } static void _rtl8723be_gen_refresh_led_state(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_pci_priv *pcipriv = rtl_pcipriv(hw); struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw)); struct rtl_led *pled0 = &(pcipriv->ledctl.sw_led0); if (rtlpriv->rtlhal.up_first_time) return; if (ppsc->rfoff_reason == RF_CHANGE_BY_IPS) rtl8723be_sw_led_on(hw, pled0); else if (ppsc->rfoff_reason == RF_CHANGE_BY_INIT) rtl8723be_sw_led_on(hw, pled0); else rtl8723be_sw_led_off(hw, pled0); } static bool _rtl8723be_init_mac(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); struct rtl_hal *rtlhal = rtl_hal(rtlpriv); unsigned char bytetmp; unsigned short wordtmp; rtl_write_byte(rtlpriv, REG_RSV_CTRL, 0x00); /*Auto Power Down to CHIP-off State*/ bytetmp = rtl_read_byte(rtlpriv, REG_APS_FSMCO + 1) & (~BIT(7)); rtl_write_byte(rtlpriv, REG_APS_FSMCO + 1, bytetmp); /* HW Power on sequence */ if (!rtl_hal_pwrseqcmdparsing(rtlpriv, PWR_CUT_ALL_MSK, PWR_FAB_ALL_MSK, PWR_INTF_PCI_MSK, RTL8723_NIC_ENABLE_FLOW)) { RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "init MAC Fail as power on failure\n"); return false; } bytetmp = rtl_read_byte(rtlpriv, REG_MULTI_FUNC_CTRL); rtl_write_byte(rtlpriv, REG_MULTI_FUNC_CTRL, bytetmp | BIT(3)); bytetmp = rtl_read_byte(rtlpriv, REG_APS_FSMCO) | BIT(4); rtl_write_byte(rtlpriv, REG_APS_FSMCO, bytetmp); bytetmp = rtl_read_byte(rtlpriv, REG_CR); bytetmp = 0xff; rtl_write_byte(rtlpriv, REG_CR, bytetmp); mdelay(2); bytetmp = rtl_read_byte(rtlpriv, REG_HWSEQ_CTRL); bytetmp |= 0x7f; rtl_write_byte(rtlpriv, REG_HWSEQ_CTRL, bytetmp); mdelay(2); bytetmp = rtl_read_byte(rtlpriv, REG_SYS_CFG + 3); if (bytetmp & BIT(0)) { bytetmp = rtl_read_byte(rtlpriv, 0x7c); rtl_write_byte(rtlpriv, 0x7c, bytetmp | BIT(6)); } bytetmp = rtl_read_byte(rtlpriv, REG_SYS_CLKR); rtl_write_byte(rtlpriv, REG_SYS_CLKR, bytetmp | BIT(3)); bytetmp = rtl_read_byte(rtlpriv, REG_GPIO_MUXCFG + 1); rtl_write_byte(rtlpriv, REG_GPIO_MUXCFG + 1, bytetmp & (~BIT(4))); rtl_write_word(rtlpriv, REG_CR, 0x2ff); if (!rtlhal->mac_func_enable) { if (_rtl8723be_llt_table_init(hw) == false) return false; } rtl_write_dword(rtlpriv, REG_HISR, 0xffffffff); rtl_write_dword(rtlpriv, REG_HISRE, 0xffffffff); /* Enable FW Beamformer Interrupt */ bytetmp = rtl_read_byte(rtlpriv, REG_FWIMR + 3); rtl_write_byte(rtlpriv, REG_FWIMR + 3, bytetmp | BIT(6)); wordtmp = rtl_read_word(rtlpriv, REG_TRXDMA_CTRL); wordtmp &= 0xf; wordtmp |= 0xF5B1; rtl_write_word(rtlpriv, REG_TRXDMA_CTRL, wordtmp); rtl_write_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 1, 0x1F); rtl_write_dword(rtlpriv, REG_RCR, rtlpci->receive_config); rtl_write_word(rtlpriv, REG_RXFLTMAP2, 0xFFFF); rtl_write_dword(rtlpriv, REG_TCR, rtlpci->transmit_config); rtl_write_dword(rtlpriv, REG_BCNQ_DESA, ((u64) rtlpci->tx_ring[BEACON_QUEUE].dma) & DMA_BIT_MASK(32)); rtl_write_dword(rtlpriv, REG_MGQ_DESA, (u64) rtlpci->tx_ring[MGNT_QUEUE].dma & DMA_BIT_MASK(32)); rtl_write_dword(rtlpriv, REG_VOQ_DESA, (u64) rtlpci->tx_ring[VO_QUEUE].dma & DMA_BIT_MASK(32)); rtl_write_dword(rtlpriv, REG_VIQ_DESA, (u64) rtlpci->tx_ring[VI_QUEUE].dma & DMA_BIT_MASK(32)); rtl_write_dword(rtlpriv, REG_BEQ_DESA, (u64) rtlpci->tx_ring[BE_QUEUE].dma & DMA_BIT_MASK(32)); rtl_write_dword(rtlpriv, REG_BKQ_DESA, (u64) rtlpci->tx_ring[BK_QUEUE].dma & DMA_BIT_MASK(32)); rtl_write_dword(rtlpriv, REG_HQ_DESA, (u64) rtlpci->tx_ring[HIGH_QUEUE].dma & DMA_BIT_MASK(32)); rtl_write_dword(rtlpriv, REG_RX_DESA, (u64) rtlpci->rx_ring[RX_MPDU_QUEUE].dma & DMA_BIT_MASK(32)); bytetmp = rtl_read_byte(rtlpriv, REG_PCIE_CTRL_REG + 3); rtl_write_byte(rtlpriv, REG_PCIE_CTRL_REG + 3, bytetmp | 0x77); rtl_write_dword(rtlpriv, REG_INT_MIG, 0); rtl_write_dword(rtlpriv, REG_MCUTST_1, 0x0); rtl_write_byte(rtlpriv, REG_SECONDARY_CCA_CTRL, 0x3); /* <20130114, Kordan> The following setting is * only for DPDT and Fixed board type. * TODO: A better solution is configure it * according EFUSE during the run-time. */ rtl_set_bbreg(hw, 0x64, BIT(20), 0x0);/* 0x66[4]=0 */ rtl_set_bbreg(hw, 0x64, BIT(24), 0x0);/* 0x66[8]=0 */ rtl_set_bbreg(hw, 0x40, BIT(4), 0x0)/* 0x40[4]=0 */; rtl_set_bbreg(hw, 0x40, BIT(3), 0x1)/* 0x40[3]=1 */; rtl_set_bbreg(hw, 0x4C, BIT(24) | BIT(23), 0x2)/* 0x4C[24:23]=10 */; rtl_set_bbreg(hw, 0x944, BIT(1) | BIT(0), 0x3)/* 0x944[1:0]=11 */; rtl_set_bbreg(hw, 0x930, MASKBYTE0, 0x77)/* 0x930[7:0]=77 */; rtl_set_bbreg(hw, 0x38, BIT(11), 0x1)/* 0x38[11]=1 */; bytetmp = rtl_read_byte(rtlpriv, REG_RXDMA_CONTROL); rtl_write_byte(rtlpriv, REG_RXDMA_CONTROL, bytetmp & (~BIT(2))); _rtl8723be_gen_refresh_led_state(hw); return true; } static void _rtl8723be_hw_configure(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); u32 reg_rrsr; reg_rrsr = RATE_ALL_CCK | RATE_ALL_OFDM_AG; /* Init value for RRSR. */ rtl_write_dword(rtlpriv, REG_RRSR, reg_rrsr); /* ARFB table 9 for 11ac 5G 2SS */ rtl_write_dword(rtlpriv, REG_ARFR0 + 4, 0xfffff000); /* ARFB table 10 for 11ac 5G 1SS */ rtl_write_dword(rtlpriv, REG_ARFR1 + 4, 0x003ff000); /* CF-End setting. */ rtl_write_word(rtlpriv, REG_FWHW_TXQ_CTRL, 0x1F00); /* 0x456 = 0x70, sugguested by Zhilin */ rtl_write_byte(rtlpriv, REG_AMPDU_MAX_TIME, 0x70); /* Set retry limit */ rtl_write_word(rtlpriv, REG_RL, 0x0707); /* Set Data / Response auto rate fallack retry count */ rtl_write_dword(rtlpriv, REG_DARFRC, 0x01000000); rtl_write_dword(rtlpriv, REG_DARFRC + 4, 0x07060504); rtl_write_dword(rtlpriv, REG_RARFRC, 0x01000000); rtl_write_dword(rtlpriv, REG_RARFRC + 4, 0x07060504); rtlpci->reg_bcn_ctrl_val = 0x1d; rtl_write_byte(rtlpriv, REG_BCN_CTRL, rtlpci->reg_bcn_ctrl_val); /* TBTT prohibit hold time. Suggested by designer TimChen. */ rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 1, 0xff); /* 8 ms */ rtl_write_word(rtlpriv, REG_NAV_PROT_LEN, 0x0040); /*For Rx TP. Suggested by SD1 Richard. Added by tynli. 2010.04.12.*/ rtl_write_dword(rtlpriv, REG_FAST_EDCA_CTRL, 0x03086666); rtl_write_byte(rtlpriv, REG_HT_SINGLE_AMPDU, 0x80); rtl_write_byte(rtlpriv, REG_RX_PKT_LIMIT, 0x20); rtl_write_byte(rtlpriv, REG_MAX_AGGR_NUM, 0x1F); } static u8 _rtl8723be_dbi_read(struct rtl_priv *rtlpriv, u16 addr) { u16 read_addr = addr & 0xfffc; u8 ret = 0, tmp = 0, count = 0; rtl_write_word(rtlpriv, REG_DBI_ADDR, read_addr); rtl_write_byte(rtlpriv, REG_DBI_FLAG, 0x2); tmp = rtl_read_byte(rtlpriv, REG_DBI_FLAG); count = 0; while (tmp && count < 20) { udelay(10); tmp = rtl_read_byte(rtlpriv, REG_DBI_FLAG); count++; } if (0 == tmp) { read_addr = REG_DBI_RDATA + addr % 4; ret = rtl_read_byte(rtlpriv, read_addr); } return ret; } static void _rtl8723be_dbi_write(struct rtl_priv *rtlpriv, u16 addr, u8 data) { u8 tmp = 0, count = 0; u16 write_addr = 0, remainder = addr % 4; /* Write DBI 1Byte Data */ write_addr = REG_DBI_WDATA + remainder; rtl_write_byte(rtlpriv, write_addr, data); /* Write DBI 2Byte Address & Write Enable */ write_addr = (addr & 0xfffc) | (BIT(0) << (remainder + 12)); rtl_write_word(rtlpriv, REG_DBI_ADDR, write_addr); /* Write DBI Write Flag */ rtl_write_byte(rtlpriv, REG_DBI_FLAG, 0x1); tmp = rtl_read_byte(rtlpriv, REG_DBI_FLAG); count = 0; while (tmp && count < 20) { udelay(10); tmp = rtl_read_byte(rtlpriv, REG_DBI_FLAG); count++; } } static u16 _rtl8723be_mdio_read(struct rtl_priv *rtlpriv, u8 addr) { u16 ret = 0; u8 tmp = 0, count = 0; rtl_write_byte(rtlpriv, REG_MDIO_CTL, addr | BIT(6)); tmp = rtl_read_byte(rtlpriv, REG_MDIO_CTL) & BIT(6); count = 0; while (tmp && count < 20) { udelay(10); tmp = rtl_read_byte(rtlpriv, REG_MDIO_CTL) & BIT(6); count++; } if (0 == tmp) ret = rtl_read_word(rtlpriv, REG_MDIO_RDATA); return ret; } static void _rtl8723be_mdio_write(struct rtl_priv *rtlpriv, u8 addr, u16 data) { u8 tmp = 0, count = 0; rtl_write_word(rtlpriv, REG_MDIO_WDATA, data); rtl_write_byte(rtlpriv, REG_MDIO_CTL, addr | BIT(5)); tmp = rtl_read_byte(rtlpriv, REG_MDIO_CTL) & BIT(5); count = 0; while (tmp && count < 20) { udelay(10); tmp = rtl_read_byte(rtlpriv, REG_MDIO_CTL) & BIT(5); count++; } } static void _rtl8723be_enable_aspm_back_door(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); u8 tmp8 = 0; u16 tmp16 = 0; /* Overwrite following ePHY parameter for * some platform compatibility issue, * especially when CLKReq is enabled, 2012.11.09. */ tmp16 = _rtl8723be_mdio_read(rtlpriv, 0x01); if (tmp16 != 0x0663) _rtl8723be_mdio_write(rtlpriv, 0x01, 0x0663); tmp16 = _rtl8723be_mdio_read(rtlpriv, 0x04); if (tmp16 != 0x7544) _rtl8723be_mdio_write(rtlpriv, 0x04, 0x7544); tmp16 = _rtl8723be_mdio_read(rtlpriv, 0x06); if (tmp16 != 0xB880) _rtl8723be_mdio_write(rtlpriv, 0x06, 0xB880); tmp16 = _rtl8723be_mdio_read(rtlpriv, 0x07); if (tmp16 != 0x4000) _rtl8723be_mdio_write(rtlpriv, 0x07, 0x4000); tmp16 = _rtl8723be_mdio_read(rtlpriv, 0x08); if (tmp16 != 0x9003) _rtl8723be_mdio_write(rtlpriv, 0x08, 0x9003); tmp16 = _rtl8723be_mdio_read(rtlpriv, 0x09); if (tmp16 != 0x0D03) _rtl8723be_mdio_write(rtlpriv, 0x09, 0x0D03); tmp16 = _rtl8723be_mdio_read(rtlpriv, 0x0A); if (tmp16 != 0x4037) _rtl8723be_mdio_write(rtlpriv, 0x0A, 0x4037); tmp16 = _rtl8723be_mdio_read(rtlpriv, 0x0B); if (tmp16 != 0x0070) _rtl8723be_mdio_write(rtlpriv, 0x0B, 0x0070); /* Configuration Space offset 0x70f BIT7 is used to control L0S */ tmp8 = _rtl8723be_dbi_read(rtlpriv, 0x70f); _rtl8723be_dbi_write(rtlpriv, 0x70f, tmp8 | BIT(7)); /* Configuration Space offset 0x719 Bit3 is for L1 * BIT4 is for clock request */ tmp8 = _rtl8723be_dbi_read(rtlpriv, 0x719); _rtl8723be_dbi_write(rtlpriv, 0x719, tmp8 | BIT(3) | BIT(4)); } void rtl8723be_enable_hw_security_config(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); u8 sec_reg_value; RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "PairwiseEncAlgorithm = %d GroupEncAlgorithm = %d\n", rtlpriv->sec.pairwise_enc_algorithm, rtlpriv->sec.group_enc_algorithm); if (rtlpriv->cfg->mod_params->sw_crypto || rtlpriv->sec.use_sw_sec) { RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG, "not open hw encryption\n"); return; } sec_reg_value = SCR_TXENCENABLE | SCR_RXDECENABLE; if (rtlpriv->sec.use_defaultkey) { sec_reg_value |= SCR_TXUSEDK; sec_reg_value |= SCR_RXUSEDK; } sec_reg_value |= (SCR_RXBCUSEDK | SCR_TXBCUSEDK); rtl_write_byte(rtlpriv, REG_CR + 1, 0x02); RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG, "The SECR-value %x\n", sec_reg_value); rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_WPA_CONFIG, &sec_reg_value); } static void _rtl8723be_poweroff_adapter(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw)); u8 u1b_tmp; rtlhal->mac_func_enable = false; /* Combo (PCIe + USB) Card and PCIe-MF Card */ /* 1. Run LPS WL RFOFF flow */ rtl_hal_pwrseqcmdparsing(rtlpriv, PWR_CUT_ALL_MSK, PWR_FAB_ALL_MSK, PWR_INTF_PCI_MSK, RTL8723_NIC_LPS_ENTER_FLOW); /* 2. 0x1F[7:0] = 0 */ /* turn off RF */ /* rtl_write_byte(rtlpriv, REG_RF_CTRL, 0x00); */ if ((rtl_read_byte(rtlpriv, REG_MCUFWDL) & BIT(7)) && rtlhal->fw_ready) { rtl8723be_firmware_selfreset(hw); } /* Reset MCU. Suggested by Filen. */ u1b_tmp = rtl_read_byte(rtlpriv, REG_SYS_FUNC_EN + 1); rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN + 1, (u1b_tmp & (~BIT(2)))); /* g. MCUFWDL 0x80[1:0]=0 */ /* reset MCU ready status */ rtl_write_byte(rtlpriv, REG_MCUFWDL, 0x00); /* HW card disable configuration. */ rtl_hal_pwrseqcmdparsing(rtlpriv, PWR_CUT_ALL_MSK, PWR_FAB_ALL_MSK, PWR_INTF_PCI_MSK, RTL8723_NIC_DISABLE_FLOW); /* Reset MCU IO Wrapper */ u1b_tmp = rtl_read_byte(rtlpriv, REG_RSV_CTRL + 1); rtl_write_byte(rtlpriv, REG_RSV_CTRL + 1, (u1b_tmp & (~BIT(0)))); u1b_tmp = rtl_read_byte(rtlpriv, REG_RSV_CTRL + 1); rtl_write_byte(rtlpriv, REG_RSV_CTRL + 1, u1b_tmp | BIT(0)); /* 7. RSV_CTRL 0x1C[7:0] = 0x0E */ /* lock ISO/CLK/Power control register */ rtl_write_byte(rtlpriv, REG_RSV_CTRL, 0x0e); } static bool _rtl8723be_check_pcie_dma_hang(struct rtl_priv *rtlpriv) { u8 tmp; /* write reg 0x350 Bit[26]=1. Enable debug port. */ tmp = rtl_read_byte(rtlpriv, REG_DBI_CTRL + 3); if (!(tmp & BIT(2))) { rtl_write_byte(rtlpriv, REG_DBI_CTRL + 3, (tmp | BIT(2))); mdelay(100); /* Suggested by DD Justin_tsai. */ } /* read reg 0x350 Bit[25] if 1 : RX hang * read reg 0x350 Bit[24] if 1 : TX hang */ tmp = rtl_read_byte(rtlpriv, REG_DBI_CTRL + 3); if ((tmp & BIT(0)) || (tmp & BIT(1))) { RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "CheckPcieDMAHang8723BE(): true!!\n"); return true; } return false; } static void _rtl8723be_reset_pcie_interface_dma(struct rtl_priv *rtlpriv, bool mac_power_on) { u8 tmp; bool release_mac_rx_pause; u8 backup_pcie_dma_pause; RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "ResetPcieInterfaceDMA8723BE()\n"); /* Revise Note: Follow the document "PCIe RX DMA Hang Reset Flow_v03" * released by SD1 Alan. * 2013.05.07, by tynli. */ /* 1. disable register write lock * write 0x1C bit[1:0] = 2'h0 * write 0xCC bit[2] = 1'b1 */ tmp = rtl_read_byte(rtlpriv, REG_RSV_CTRL); tmp &= ~(BIT(1) | BIT(0)); rtl_write_byte(rtlpriv, REG_RSV_CTRL, tmp); tmp = rtl_read_byte(rtlpriv, REG_PMC_DBG_CTRL2); tmp |= BIT(2); rtl_write_byte(rtlpriv, REG_PMC_DBG_CTRL2, tmp); /* 2. Check and pause TRX DMA * write 0x284 bit[18] = 1'b1 * write 0x301 = 0xFF */ tmp = rtl_read_byte(rtlpriv, REG_RXDMA_CONTROL); if (tmp & BIT(2)) { /* Already pause before the function for another purpose. */ release_mac_rx_pause = false; } else { rtl_write_byte(rtlpriv, REG_RXDMA_CONTROL, (tmp | BIT(2))); release_mac_rx_pause = true; } backup_pcie_dma_pause = rtl_read_byte(rtlpriv, REG_PCIE_CTRL_REG + 1); if (backup_pcie_dma_pause != 0xFF) rtl_write_byte(rtlpriv, REG_PCIE_CTRL_REG + 1, 0xFF); if (mac_power_on) { /* 3. reset TRX function * write 0x100 = 0x00 */ rtl_write_byte(rtlpriv, REG_CR, 0); } /* 4. Reset PCIe DMA * write 0x003 bit[0] = 0 */ tmp = rtl_read_byte(rtlpriv, REG_SYS_FUNC_EN + 1); tmp &= ~(BIT(0)); rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN + 1, tmp); /* 5. Enable PCIe DMA * write 0x003 bit[0] = 1 */ tmp = rtl_read_byte(rtlpriv, REG_SYS_FUNC_EN + 1); tmp |= BIT(0); rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN + 1, tmp); if (mac_power_on) { /* 6. enable TRX function * write 0x100 = 0xFF */ rtl_write_byte(rtlpriv, REG_CR, 0xFF); /* We should init LLT & RQPN and * prepare Tx/Rx descrptor address later * because MAC function is reset. */ } /* 7. Restore PCIe autoload down bit * write 0xF8 bit[17] = 1'b1 */ tmp = rtl_read_byte(rtlpriv, REG_MAC_PHY_CTRL_NORMAL + 2); tmp |= BIT(1); rtl_write_byte(rtlpriv, REG_MAC_PHY_CTRL_NORMAL + 2, tmp); /* In MAC power on state, BB and RF maybe in ON state, * if we release TRx DMA here * it will cause packets to be started to Tx/Rx, * so we release Tx/Rx DMA later. */ if (!mac_power_on) { /* 8. release TRX DMA * write 0x284 bit[18] = 1'b0 * write 0x301 = 0x00 */ if (release_mac_rx_pause) { tmp = rtl_read_byte(rtlpriv, REG_RXDMA_CONTROL); rtl_write_byte(rtlpriv, REG_RXDMA_CONTROL, (tmp & (~BIT(2)))); } rtl_write_byte(rtlpriv, REG_PCIE_CTRL_REG + 1, backup_pcie_dma_pause); } /* 9. lock system register * write 0xCC bit[2] = 1'b0 */ tmp = rtl_read_byte(rtlpriv, REG_PMC_DBG_CTRL2); tmp &= ~(BIT(2)); rtl_write_byte(rtlpriv, REG_PMC_DBG_CTRL2, tmp); } int rtl8723be_hw_init(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw)); struct rtl_mac *mac = rtl_mac(rtl_priv(hw)); struct rtl_phy *rtlphy = &(rtlpriv->phy); struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw)); struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); bool rtstatus = true; int err; u8 tmp_u1b; unsigned long flags; /* reenable interrupts to not interfere with other devices */ local_save_flags(flags); local_irq_enable(); rtlhal->fw_ready = false; rtlpriv->rtlhal.being_init_adapter = true; rtlpriv->intf_ops->disable_aspm(hw); tmp_u1b = rtl_read_byte(rtlpriv, REG_CR); if (tmp_u1b != 0 && tmp_u1b != 0xea) { rtlhal->mac_func_enable = true; } else { rtlhal->mac_func_enable = false; rtlhal->fw_ps_state = FW_PS_STATE_ALL_ON; } if (_rtl8723be_check_pcie_dma_hang(rtlpriv)) { _rtl8723be_reset_pcie_interface_dma(rtlpriv, rtlhal->mac_func_enable); rtlhal->mac_func_enable = false; } if (rtlhal->mac_func_enable) { _rtl8723be_poweroff_adapter(hw); rtlhal->mac_func_enable = false; } rtstatus = _rtl8723be_init_mac(hw); if (!rtstatus) { RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, "Init MAC failed\n"); err = 1; goto exit; } tmp_u1b = rtl_read_byte(rtlpriv, REG_SYS_CFG); rtl_write_byte(rtlpriv, REG_SYS_CFG, tmp_u1b & 0x7F); err = rtl8723_download_fw(hw, true, FW_8723B_POLLING_TIMEOUT_COUNT); if (err) { RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING, "Failed to download FW. Init HW without FW now..\n"); err = 1; goto exit; } rtlhal->fw_ready = true; rtlhal->last_hmeboxnum = 0; rtl8723be_phy_mac_config(hw); /* because last function modify RCR, so we update * rcr var here, or TP will unstable for receive_config * is wrong, RX RCR_ACRC32 will cause TP unstable & Rx * RCR_APP_ICV will cause mac80211 unassoc for cisco 1252 */ rtlpci->receive_config = rtl_read_dword(rtlpriv, REG_RCR); rtlpci->receive_config &= ~(RCR_ACRC32 | RCR_AICV); rtl_write_dword(rtlpriv, REG_RCR, rtlpci->receive_config); rtl8723be_phy_bb_config(hw); rtl8723be_phy_rf_config(hw); rtlphy->rfreg_chnlval[0] = rtl_get_rfreg(hw, (enum radio_path)0, RF_CHNLBW, RFREG_OFFSET_MASK); rtlphy->rfreg_chnlval[1] = rtl_get_rfreg(hw, (enum radio_path)1, RF_CHNLBW, RFREG_OFFSET_MASK); rtlphy->rfreg_chnlval[0] &= 0xFFF03FF; rtlphy->rfreg_chnlval[0] |= (BIT(10) | BIT(11)); _rtl8723be_hw_configure(hw); rtlhal->mac_func_enable = true; rtl_cam_reset_all_entry(hw); rtl8723be_enable_hw_security_config(hw); ppsc->rfpwr_state = ERFON; rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_ETHER_ADDR, mac->mac_addr); _rtl8723be_enable_aspm_back_door(hw); rtlpriv->intf_ops->enable_aspm(hw); rtl8723be_bt_hw_init(hw); if (ppsc->rfpwr_state == ERFON) { rtl8723be_phy_set_rfpath_switch(hw, 1); /* when use 1ant NIC, iqk will disturb BT music * root cause is not clear now, is something * related with 'mdelay' and Reg[0x948] */ if (rtlpriv->btcoexist.btc_info.ant_num == ANT_X2 || !rtlpriv->cfg->ops->get_btc_status()) { rtl8723be_phy_iq_calibrate(hw, false); rtlphy->iqk_initialized = true; } rtl8723be_dm_check_txpower_tracking(hw); rtl8723be_phy_lc_calibrate(hw); } rtl_write_byte(rtlpriv, REG_NAV_UPPER, ((30000 + 127) / 128)); /* Release Rx DMA. */ tmp_u1b = rtl_read_byte(rtlpriv, REG_RXDMA_CONTROL); if (tmp_u1b & BIT(2)) { /* Release Rx DMA if needed */ tmp_u1b &= (~BIT(2)); rtl_write_byte(rtlpriv, REG_RXDMA_CONTROL, tmp_u1b); } /* Release Tx/Rx PCIE DMA. */ rtl_write_byte(rtlpriv, REG_PCIE_CTRL_REG + 1, 0); rtl8723be_dm_init(hw); exit: local_irq_restore(flags); rtlpriv->rtlhal.being_init_adapter = false; return err; } static enum version_8723e _rtl8723be_read_chip_version(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_phy *rtlphy = &(rtlpriv->phy); enum version_8723e version = VERSION_UNKNOWN; u32 value32; value32 = rtl_read_dword(rtlpriv, REG_SYS_CFG1); if ((value32 & (CHIP_8723B)) != CHIP_8723B) RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "unkown chip version\n"); else version = (enum version_8723e)CHIP_8723B; rtlphy->rf_type = RF_1T1R; /* treat rtl8723be chip as MP version in default */ version = (enum version_8723e)(version | NORMAL_CHIP); value32 = rtl_read_dword(rtlpriv, REG_SYS_CFG); /* cut version */ version |= (enum version_8723e)(value32 & CHIP_VER_RTL_MASK); /* Manufacture */ if (((value32 & EXT_VENDOR_ID) >> 18) == 0x01) version = (enum version_8723e)(version | CHIP_VENDOR_SMIC); RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "Chip RF Type: %s\n", (rtlphy->rf_type == RF_2T2R) ? "RF_2T2R" : "RF_1T1R"); return version; } static int _rtl8723be_set_media_status(struct ieee80211_hw *hw, enum nl80211_iftype type) { struct rtl_priv *rtlpriv = rtl_priv(hw); u8 bt_msr = rtl_read_byte(rtlpriv, MSR) & 0xfc; enum led_ctl_mode ledaction = LED_CTL_NO_LINK; u8 mode = MSR_NOLINK; switch (type) { case NL80211_IFTYPE_UNSPECIFIED: mode = MSR_NOLINK; RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE, "Set Network type to NO LINK!\n"); break; case NL80211_IFTYPE_ADHOC: case NL80211_IFTYPE_MESH_POINT: mode = MSR_ADHOC; RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE, "Set Network type to Ad Hoc!\n"); break; case NL80211_IFTYPE_STATION: mode = MSR_INFRA; ledaction = LED_CTL_LINK; RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE, "Set Network type to STA!\n"); break; case NL80211_IFTYPE_AP: mode = MSR_AP; ledaction = LED_CTL_LINK; RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE, "Set Network type to AP!\n"); break; default: RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, "Network type %d not support!\n", type); return 1; } /* MSR_INFRA == Link in infrastructure network; * MSR_ADHOC == Link in ad hoc network; * Therefore, check link state is necessary. * * MSR_AP == AP mode; link state is not cared here. */ if (mode != MSR_AP && rtlpriv->mac80211.link_state < MAC80211_LINKED) { mode = MSR_NOLINK; ledaction = LED_CTL_NO_LINK; } if (mode == MSR_NOLINK || mode == MSR_INFRA) { _rtl8723be_stop_tx_beacon(hw); _rtl8723be_enable_bcn_sub_func(hw); } else if (mode == MSR_ADHOC || mode == MSR_AP) { _rtl8723be_resume_tx_beacon(hw); _rtl8723be_disable_bcn_sub_func(hw); } else { RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING, "Set HW_VAR_MEDIA_STATUS: No such media status(%x).\n", mode); } rtl_write_byte(rtlpriv, MSR, bt_msr | mode); rtlpriv->cfg->ops->led_control(hw, ledaction); if (mode == MSR_AP) rtl_write_byte(rtlpriv, REG_BCNTCFG + 1, 0x00); else rtl_write_byte(rtlpriv, REG_BCNTCFG + 1, 0x66); return 0; } void rtl8723be_set_check_bssid(struct ieee80211_hw *hw, bool check_bssid) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); u32 reg_rcr = rtlpci->receive_config; if (rtlpriv->psc.rfpwr_state != ERFON) return; if (check_bssid) { reg_rcr |= (RCR_CBSSID_DATA | RCR_CBSSID_BCN); rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_RCR, (u8 *)(®_rcr)); _rtl8723be_set_bcn_ctrl_reg(hw, 0, BIT(4)); } else if (!check_bssid) { reg_rcr &= (~(RCR_CBSSID_DATA | RCR_CBSSID_BCN)); _rtl8723be_set_bcn_ctrl_reg(hw, BIT(4), 0); rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_RCR, (u8 *)(®_rcr)); } } int rtl8723be_set_network_type(struct ieee80211_hw *hw, enum nl80211_iftype type) { struct rtl_priv *rtlpriv = rtl_priv(hw); if (_rtl8723be_set_media_status(hw, type)) return -EOPNOTSUPP; if (rtlpriv->mac80211.link_state == MAC80211_LINKED) { if (type != NL80211_IFTYPE_AP) rtl8723be_set_check_bssid(hw, true); } else { rtl8723be_set_check_bssid(hw, false); } return 0; } /* don't set REG_EDCA_BE_PARAM here * because mac80211 will send pkt when scan */ void rtl8723be_set_qos(struct ieee80211_hw *hw, int aci) { struct rtl_priv *rtlpriv = rtl_priv(hw); rtl8723_dm_init_edca_turbo(hw); switch (aci) { case AC1_BK: rtl_write_dword(rtlpriv, REG_EDCA_BK_PARAM, 0xa44f); break; case AC0_BE: break; case AC2_VI: rtl_write_dword(rtlpriv, REG_EDCA_VI_PARAM, 0x5e4322); break; case AC3_VO: rtl_write_dword(rtlpriv, REG_EDCA_VO_PARAM, 0x2f3222); break; default: RT_ASSERT(false, "invalid aci: %d !\n", aci); break; } } void rtl8723be_enable_interrupt(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); rtl_write_dword(rtlpriv, REG_HIMR, rtlpci->irq_mask[0] & 0xFFFFFFFF); rtl_write_dword(rtlpriv, REG_HIMRE, rtlpci->irq_mask[1] & 0xFFFFFFFF); rtlpci->irq_enabled = true; /*enable system interrupt*/ rtl_write_dword(rtlpriv, REG_HSIMR, rtlpci->sys_irq_mask & 0xFFFFFFFF); } void rtl8723be_disable_interrupt(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); rtl_write_dword(rtlpriv, REG_HIMR, IMR_DISABLED); rtl_write_dword(rtlpriv, REG_HIMRE, IMR_DISABLED); rtlpci->irq_enabled = false; /*synchronize_irq(rtlpci->pdev->irq);*/ } void rtl8723be_card_disable(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw)); struct rtl_mac *mac = rtl_mac(rtl_priv(hw)); enum nl80211_iftype opmode; mac->link_state = MAC80211_NOLINK; opmode = NL80211_IFTYPE_UNSPECIFIED; _rtl8723be_set_media_status(hw, opmode); if (rtlpriv->rtlhal.driver_is_goingto_unload || ppsc->rfoff_reason > RF_CHANGE_BY_PS) rtlpriv->cfg->ops->led_control(hw, LED_CTL_POWER_OFF); RT_SET_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_HALT_NIC); _rtl8723be_poweroff_adapter(hw); /* after power off we should do iqk again */ rtlpriv->phy.iqk_initialized = false; } void rtl8723be_interrupt_recognized(struct ieee80211_hw *hw, u32 *p_inta, u32 *p_intb) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); *p_inta = rtl_read_dword(rtlpriv, ISR) & rtlpci->irq_mask[0]; rtl_write_dword(rtlpriv, ISR, *p_inta); *p_intb = rtl_read_dword(rtlpriv, REG_HISRE) & rtlpci->irq_mask[1]; rtl_write_dword(rtlpriv, REG_HISRE, *p_intb); } void rtl8723be_set_beacon_related_registers(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_mac *mac = rtl_mac(rtl_priv(hw)); u16 bcn_interval, atim_window; bcn_interval = mac->beacon_interval; atim_window = 2; /*FIX MERGE */ rtl8723be_disable_interrupt(hw); rtl_write_word(rtlpriv, REG_ATIMWND, atim_window); rtl_write_word(rtlpriv, REG_BCN_INTERVAL, bcn_interval); rtl_write_word(rtlpriv, REG_BCNTCFG, 0x660f); rtl_write_byte(rtlpriv, REG_RXTSF_OFFSET_CCK, 0x18); rtl_write_byte(rtlpriv, REG_RXTSF_OFFSET_OFDM, 0x18); rtl_write_byte(rtlpriv, 0x606, 0x30); rtl8723be_enable_interrupt(hw); } void rtl8723be_set_beacon_interval(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_mac *mac = rtl_mac(rtl_priv(hw)); u16 bcn_interval = mac->beacon_interval; RT_TRACE(rtlpriv, COMP_BEACON, DBG_DMESG, "beacon_interval:%d\n", bcn_interval); rtl8723be_disable_interrupt(hw); rtl_write_word(rtlpriv, REG_BCN_INTERVAL, bcn_interval); rtl8723be_enable_interrupt(hw); } void rtl8723be_update_interrupt_mask(struct ieee80211_hw *hw, u32 add_msr, u32 rm_msr) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); RT_TRACE(rtlpriv, COMP_INTR, DBG_LOUD, "add_msr:%x, rm_msr:%x\n", add_msr, rm_msr); if (add_msr) rtlpci->irq_mask[0] |= add_msr; if (rm_msr) rtlpci->irq_mask[0] &= (~rm_msr); rtl8723be_disable_interrupt(hw); rtl8723be_enable_interrupt(hw); } static u8 _rtl8723be_get_chnl_group(u8 chnl) { u8 group; if (chnl < 3) group = 0; else if (chnl < 9) group = 1; else group = 2; return group; } static void _rtl8723be_read_power_value_fromprom(struct ieee80211_hw *hw, struct txpower_info_2g *pw2g, struct txpower_info_5g *pw5g, bool autoload_fail, u8 *hwinfo) { struct rtl_priv *rtlpriv = rtl_priv(hw); u32 path, addr = EEPROM_TX_PWR_INX, group, cnt = 0; RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "hal_ReadPowerValueFromPROM8723BE(): PROMContent[0x%x]=0x%x\n", (addr + 1), hwinfo[addr + 1]); if (0xFF == hwinfo[addr + 1]) /*YJ,add,120316*/ autoload_fail = true; if (autoload_fail) { RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "auto load fail : Use Default value!\n"); for (path = 0; path < MAX_RF_PATH; path++) { /* 2.4G default value */ for (group = 0 ; group < MAX_CHNL_GROUP_24G; group++) { pw2g->index_cck_base[path][group] = 0x2D; pw2g->index_bw40_base[path][group] = 0x2D; } for (cnt = 0; cnt < MAX_TX_COUNT; cnt++) { if (cnt == 0) { pw2g->bw20_diff[path][0] = 0x02; pw2g->ofdm_diff[path][0] = 0x04; } else { pw2g->bw20_diff[path][cnt] = 0xFE; pw2g->bw40_diff[path][cnt] = 0xFE; pw2g->cck_diff[path][cnt] = 0xFE; pw2g->ofdm_diff[path][cnt] = 0xFE; } } } return; } for (path = 0; path < MAX_RF_PATH; path++) { /*2.4G default value*/ for (group = 0; group < MAX_CHNL_GROUP_24G; group++) { pw2g->index_cck_base[path][group] = hwinfo[addr++]; if (pw2g->index_cck_base[path][group] == 0xFF) pw2g->index_cck_base[path][group] = 0x2D; } for (group = 0; group < MAX_CHNL_GROUP_24G - 1; group++) { pw2g->index_bw40_base[path][group] = hwinfo[addr++]; if (pw2g->index_bw40_base[path][group] == 0xFF) pw2g->index_bw40_base[path][group] = 0x2D; } for (cnt = 0; cnt < MAX_TX_COUNT; cnt++) { if (cnt == 0) { pw2g->bw40_diff[path][cnt] = 0; if (hwinfo[addr] == 0xFF) { pw2g->bw20_diff[path][cnt] = 0x02; } else { pw2g->bw20_diff[path][cnt] = (hwinfo[addr] & 0xf0) >> 4; /*bit sign number to 8 bit sign number*/ if (pw2g->bw20_diff[path][cnt] & BIT(3)) pw2g->bw20_diff[path][cnt] |= 0xF0; } if (hwinfo[addr] == 0xFF) { pw2g->ofdm_diff[path][cnt] = 0x04; } else { pw2g->ofdm_diff[path][cnt] = (hwinfo[addr] & 0x0f); /*bit sign number to 8 bit sign number*/ if (pw2g->ofdm_diff[path][cnt] & BIT(3)) pw2g->ofdm_diff[path][cnt] |= 0xF0; } pw2g->cck_diff[path][cnt] = 0; addr++; } else { if (hwinfo[addr] == 0xFF) { pw2g->bw40_diff[path][cnt] = 0xFE; } else { pw2g->bw40_diff[path][cnt] = (hwinfo[addr] & 0xf0) >> 4; if (pw2g->bw40_diff[path][cnt] & BIT(3)) pw2g->bw40_diff[path][cnt] |= 0xF0; } if (hwinfo[addr] == 0xFF) { pw2g->bw20_diff[path][cnt] = 0xFE; } else { pw2g->bw20_diff[path][cnt] = (hwinfo[addr] & 0x0f); if (pw2g->bw20_diff[path][cnt] & BIT(3)) pw2g->bw20_diff[path][cnt] |= 0xF0; } addr++; if (hwinfo[addr] == 0xFF) { pw2g->ofdm_diff[path][cnt] = 0xFE; } else { pw2g->ofdm_diff[path][cnt] = (hwinfo[addr] & 0xf0) >> 4; if (pw2g->ofdm_diff[path][cnt] & BIT(3)) pw2g->ofdm_diff[path][cnt] |= 0xF0; } if (hwinfo[addr] == 0xFF) pw2g->cck_diff[path][cnt] = 0xFE; else { pw2g->cck_diff[path][cnt] = (hwinfo[addr] & 0x0f); if (pw2g->cck_diff[path][cnt] & BIT(3)) pw2g->cck_diff[path][cnt] |= 0xF0; } addr++; } } /*5G default value*/ for (group = 0; group < MAX_CHNL_GROUP_5G; group++) { pw5g->index_bw40_base[path][group] = hwinfo[addr++]; if (pw5g->index_bw40_base[path][group] == 0xFF) pw5g->index_bw40_base[path][group] = 0xFE; } for (cnt = 0; cnt < MAX_TX_COUNT; cnt++) { if (cnt == 0) { pw5g->bw40_diff[path][cnt] = 0; if (hwinfo[addr] == 0xFF) { pw5g->bw20_diff[path][cnt] = 0; } else { pw5g->bw20_diff[path][0] = (hwinfo[addr] & 0xf0) >> 4; if (pw5g->bw20_diff[path][cnt] & BIT(3)) pw5g->bw20_diff[path][cnt] |= 0xF0; } if (hwinfo[addr] == 0xFF) pw5g->ofdm_diff[path][cnt] = 0x04; else { pw5g->ofdm_diff[path][0] = (hwinfo[addr] & 0x0f); if (pw5g->ofdm_diff[path][cnt] & BIT(3)) pw5g->ofdm_diff[path][cnt] |= 0xF0; } addr++; } else { if (hwinfo[addr] == 0xFF) { pw5g->bw40_diff[path][cnt] = 0xFE; } else { pw5g->bw40_diff[path][cnt] = (hwinfo[addr] & 0xf0) >> 4; if (pw5g->bw40_diff[path][cnt] & BIT(3)) pw5g->bw40_diff[path][cnt] |= 0xF0; } if (hwinfo[addr] == 0xFF) { pw5g->bw20_diff[path][cnt] = 0xFE; } else { pw5g->bw20_diff[path][cnt] = (hwinfo[addr] & 0x0f); if (pw5g->bw20_diff[path][cnt] & BIT(3)) pw5g->bw20_diff[path][cnt] |= 0xF0; } addr++; } } if (hwinfo[addr] == 0xFF) { pw5g->ofdm_diff[path][1] = 0xFE; pw5g->ofdm_diff[path][2] = 0xFE; } else { pw5g->ofdm_diff[path][1] = (hwinfo[addr] & 0xf0) >> 4; pw5g->ofdm_diff[path][2] = (hwinfo[addr] & 0x0f); } addr++; if (hwinfo[addr] == 0xFF) pw5g->ofdm_diff[path][3] = 0xFE; else pw5g->ofdm_diff[path][3] = (hwinfo[addr] & 0x0f); addr++; for (cnt = 1; cnt < MAX_TX_COUNT; cnt++) { if (pw5g->ofdm_diff[path][cnt] == 0xFF) pw5g->ofdm_diff[path][cnt] = 0xFE; else if (pw5g->ofdm_diff[path][cnt] & BIT(3)) pw5g->ofdm_diff[path][cnt] |= 0xF0; } } } static void _rtl8723be_read_txpower_info_from_hwpg(struct ieee80211_hw *hw, bool autoload_fail, u8 *hwinfo) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw)); struct txpower_info_2g pw2g; struct txpower_info_5g pw5g; u8 rf_path, index; u8 i; _rtl8723be_read_power_value_fromprom(hw, &pw2g, &pw5g, autoload_fail, hwinfo); for (rf_path = 0; rf_path < 2; rf_path++) { for (i = 0; i < 14; i++) { index = _rtl8723be_get_chnl_group(i+1); rtlefuse->txpwrlevel_cck[rf_path][i] = pw2g.index_cck_base[rf_path][index]; rtlefuse->txpwrlevel_ht40_1s[rf_path][i] = pw2g.index_bw40_base[rf_path][index]; } for (i = 0; i < MAX_TX_COUNT; i++) { rtlefuse->txpwr_ht20diff[rf_path][i] = pw2g.bw20_diff[rf_path][i]; rtlefuse->txpwr_ht40diff[rf_path][i] = pw2g.bw40_diff[rf_path][i]; rtlefuse->txpwr_legacyhtdiff[rf_path][i] = pw2g.ofdm_diff[rf_path][i]; } for (i = 0; i < 14; i++) { RTPRINT(rtlpriv, FINIT, INIT_TXPOWER, "RF(%d)-Ch(%d) [CCK / HT40_1S ] = [0x%x / 0x%x ]\n", rf_path, i, rtlefuse->txpwrlevel_cck[rf_path][i], rtlefuse->txpwrlevel_ht40_1s[rf_path][i]); } } if (!autoload_fail) rtlefuse->eeprom_thermalmeter = hwinfo[EEPROM_THERMAL_METER_88E]; else rtlefuse->eeprom_thermalmeter = EEPROM_DEFAULT_THERMALMETER; if (rtlefuse->eeprom_thermalmeter == 0xff || autoload_fail) { rtlefuse->apk_thermalmeterignore = true; rtlefuse->eeprom_thermalmeter = EEPROM_DEFAULT_THERMALMETER; } rtlefuse->thermalmeter[0] = rtlefuse->eeprom_thermalmeter; RTPRINT(rtlpriv, FINIT, INIT_TXPOWER, "thermalmeter = 0x%x\n", rtlefuse->eeprom_thermalmeter); if (!autoload_fail) { rtlefuse->eeprom_regulatory = hwinfo[EEPROM_RF_BOARD_OPTION_88E] & 0x07;/*bit0~2*/ if (hwinfo[EEPROM_RF_BOARD_OPTION_88E] == 0xFF) rtlefuse->eeprom_regulatory = 0; } else { rtlefuse->eeprom_regulatory = 0; } RTPRINT(rtlpriv, FINIT, INIT_TXPOWER, "eeprom_regulatory = 0x%x\n", rtlefuse->eeprom_regulatory); } static void _rtl8723be_read_adapter_info(struct ieee80211_hw *hw, bool pseudo_test) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw)); struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw)); u16 i, usvalue; u8 hwinfo[HWSET_MAX_SIZE]; u16 eeprom_id; bool is_toshiba_smid1 = false; bool is_toshiba_smid2 = false; bool is_samsung_smid = false; bool is_lenovo_smid = false; u16 toshiba_smid1[] = { 0x6151, 0x6152, 0x6154, 0x6155, 0x6177, 0x6178, 0x6179, 0x6180, 0x7151, 0x7152, 0x7154, 0x7155, 0x7177, 0x7178, 0x7179, 0x7180, 0x8151, 0x8152, 0x8154, 0x8155, 0x8181, 0x8182, 0x8184, 0x8185, 0x9151, 0x9152, 0x9154, 0x9155, 0x9181, 0x9182, 0x9184, 0x9185 }; u16 toshiba_smid2[] = { 0x6181, 0x6184, 0x6185, 0x7181, 0x7182, 0x7184, 0x7185, 0x8181, 0x8182, 0x8184, 0x8185, 0x9181, 0x9182, 0x9184, 0x9185 }; u16 samsung_smid[] = { 0x6191, 0x6192, 0x6193, 0x7191, 0x7192, 0x7193, 0x8191, 0x8192, 0x8193, 0x9191, 0x9192, 0x9193 }; u16 lenovo_smid[] = { 0x8195, 0x9195, 0x7194, 0x8200, 0x8201, 0x8202, 0x9199, 0x9200 }; if (pseudo_test) { /* needs to be added */ return; } if (rtlefuse->epromtype == EEPROM_BOOT_EFUSE) { rtl_efuse_shadow_map_update(hw); memcpy(hwinfo, &rtlefuse->efuse_map[EFUSE_INIT_MAP][0], HWSET_MAX_SIZE); } else if (rtlefuse->epromtype == EEPROM_93C46) { RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, "RTL819X Not boot from eeprom, check it !!"); } RT_PRINT_DATA(rtlpriv, COMP_INIT, DBG_DMESG, ("MAP\n"), hwinfo, HWSET_MAX_SIZE); eeprom_id = *((u16 *)&hwinfo[0]); if (eeprom_id != RTL8723BE_EEPROM_ID) { RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING, "EEPROM ID(%#x) is invalid!!\n", eeprom_id); rtlefuse->autoload_failflag = true; } else { RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "Autoload OK\n"); rtlefuse->autoload_failflag = false; } if (rtlefuse->autoload_failflag) return; rtlefuse->eeprom_vid = *(u16 *)&hwinfo[EEPROM_VID]; rtlefuse->eeprom_did = *(u16 *)&hwinfo[EEPROM_DID]; rtlefuse->eeprom_svid = *(u16 *)&hwinfo[EEPROM_SVID]; rtlefuse->eeprom_smid = *(u16 *)&hwinfo[EEPROM_SMID]; RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "EEPROMId = 0x%4x\n", eeprom_id); RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "EEPROM VID = 0x%4x\n", rtlefuse->eeprom_vid); RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "EEPROM DID = 0x%4x\n", rtlefuse->eeprom_did); RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "EEPROM SVID = 0x%4x\n", rtlefuse->eeprom_svid); RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "EEPROM SMID = 0x%4x\n", rtlefuse->eeprom_smid); for (i = 0; i < 6; i += 2) { usvalue = *(u16 *)&hwinfo[EEPROM_MAC_ADDR + i]; *((u16 *)(&rtlefuse->dev_addr[i])) = usvalue; } RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "dev_addr: %pM\n", rtlefuse->dev_addr); /*parse xtal*/ rtlefuse->crystalcap = hwinfo[EEPROM_XTAL_8723BE]; if (rtlefuse->crystalcap == 0xFF) rtlefuse->crystalcap = 0x20; _rtl8723be_read_txpower_info_from_hwpg(hw, rtlefuse->autoload_failflag, hwinfo); rtl8723be_read_bt_coexist_info_from_hwpg(hw, rtlefuse->autoload_failflag, hwinfo); rtlefuse->eeprom_channelplan = hwinfo[EEPROM_CHANNELPLAN]; rtlefuse->eeprom_version = *(u16 *)&hwinfo[EEPROM_VERSION]; rtlefuse->txpwr_fromeprom = true; rtlefuse->eeprom_oemid = hwinfo[EEPROM_CUSTOMER_ID]; RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "EEPROM Customer ID: 0x%2x\n", rtlefuse->eeprom_oemid); /* set channel plan from efuse */ rtlefuse->channel_plan = rtlefuse->eeprom_channelplan; if (rtlhal->oem_id == RT_CID_DEFAULT) { /* Does this one have a Toshiba SMID from group 1? */ for (i = 0; i < sizeof(toshiba_smid1) / sizeof(u16); i++) { if (rtlefuse->eeprom_smid == toshiba_smid1[i]) { is_toshiba_smid1 = true; break; } } /* Does this one have a Toshiba SMID from group 2? */ for (i = 0; i < sizeof(toshiba_smid2) / sizeof(u16); i++) { if (rtlefuse->eeprom_smid == toshiba_smid2[i]) { is_toshiba_smid2 = true; break; } } /* Does this one have a Samsung SMID? */ for (i = 0; i < sizeof(samsung_smid) / sizeof(u16); i++) { if (rtlefuse->eeprom_smid == samsung_smid[i]) { is_samsung_smid = true; break; } } /* Does this one have a Lenovo SMID? */ for (i = 0; i < sizeof(lenovo_smid) / sizeof(u16); i++) { if (rtlefuse->eeprom_smid == lenovo_smid[i]) { is_lenovo_smid = true; break; } } switch (rtlefuse->eeprom_oemid) { case EEPROM_CID_DEFAULT: if (rtlefuse->eeprom_did == 0x8176) { if (rtlefuse->eeprom_svid == 0x10EC && is_toshiba_smid1) { rtlhal->oem_id = RT_CID_TOSHIBA; } else if (rtlefuse->eeprom_svid == 0x1025) { rtlhal->oem_id = RT_CID_819X_ACER; } else if (rtlefuse->eeprom_svid == 0x10EC && is_samsung_smid) { rtlhal->oem_id = RT_CID_819X_SAMSUNG; } else if (rtlefuse->eeprom_svid == 0x10EC && is_lenovo_smid) { rtlhal->oem_id = RT_CID_819X_LENOVO; } else if ((rtlefuse->eeprom_svid == 0x10EC && rtlefuse->eeprom_smid == 0x8197) || (rtlefuse->eeprom_svid == 0x10EC && rtlefuse->eeprom_smid == 0x9196)) { rtlhal->oem_id = RT_CID_819X_CLEVO; } else if ((rtlefuse->eeprom_svid == 0x1028 && rtlefuse->eeprom_smid == 0x8194) || (rtlefuse->eeprom_svid == 0x1028 && rtlefuse->eeprom_smid == 0x8198) || (rtlefuse->eeprom_svid == 0x1028 && rtlefuse->eeprom_smid == 0x9197) || (rtlefuse->eeprom_svid == 0x1028 && rtlefuse->eeprom_smid == 0x9198)) { rtlhal->oem_id = RT_CID_819X_DELL; } else if ((rtlefuse->eeprom_svid == 0x103C && rtlefuse->eeprom_smid == 0x1629)) { rtlhal->oem_id = RT_CID_819X_HP; } else if ((rtlefuse->eeprom_svid == 0x1A32 && rtlefuse->eeprom_smid == 0x2315)) { rtlhal->oem_id = RT_CID_819X_QMI; } else if ((rtlefuse->eeprom_svid == 0x10EC && rtlefuse->eeprom_smid == 0x8203)) { rtlhal->oem_id = RT_CID_819X_PRONETS; } else if ((rtlefuse->eeprom_svid == 0x1043 && rtlefuse->eeprom_smid == 0x84B5)) { rtlhal->oem_id = RT_CID_819X_EDIMAX_ASUS; } else { rtlhal->oem_id = RT_CID_DEFAULT; } } else if (rtlefuse->eeprom_did == 0x8178) { if (rtlefuse->eeprom_svid == 0x10EC && is_toshiba_smid2) rtlhal->oem_id = RT_CID_TOSHIBA; else if (rtlefuse->eeprom_svid == 0x1025) rtlhal->oem_id = RT_CID_819X_ACER; else if ((rtlefuse->eeprom_svid == 0x10EC && rtlefuse->eeprom_smid == 0x8186)) rtlhal->oem_id = RT_CID_819X_PRONETS; else if ((rtlefuse->eeprom_svid == 0x1043 && rtlefuse->eeprom_smid == 0x84B6)) rtlhal->oem_id = RT_CID_819X_EDIMAX_ASUS; else rtlhal->oem_id = RT_CID_DEFAULT; } else { rtlhal->oem_id = RT_CID_DEFAULT; } break; case EEPROM_CID_TOSHIBA: rtlhal->oem_id = RT_CID_TOSHIBA; break; case EEPROM_CID_CCX: rtlhal->oem_id = RT_CID_CCX; break; case EEPROM_CID_QMI: rtlhal->oem_id = RT_CID_819X_QMI; break; case EEPROM_CID_WHQL: break; default: rtlhal->oem_id = RT_CID_DEFAULT; break; } } } static void _rtl8723be_hal_customized_behavior(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_pci_priv *pcipriv = rtl_pcipriv(hw); struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw)); pcipriv->ledctl.led_opendrain = true; switch (rtlhal->oem_id) { case RT_CID_819X_HP: pcipriv->ledctl.led_opendrain = true; break; case RT_CID_819X_LENOVO: case RT_CID_DEFAULT: case RT_CID_TOSHIBA: case RT_CID_CCX: case RT_CID_819X_ACER: case RT_CID_WHQL: default: break; } RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "RT Customized ID: 0x%02X\n", rtlhal->oem_id); } void rtl8723be_read_eeprom_info(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw)); struct rtl_phy *rtlphy = &(rtlpriv->phy); struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw)); u8 tmp_u1b; rtlhal->version = _rtl8723be_read_chip_version(hw); if (get_rf_type(rtlphy) == RF_1T1R) rtlpriv->dm.rfpath_rxenable[0] = true; else rtlpriv->dm.rfpath_rxenable[0] = rtlpriv->dm.rfpath_rxenable[1] = true; RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "VersionID = 0x%4x\n", rtlhal->version); tmp_u1b = rtl_read_byte(rtlpriv, REG_9346CR); if (tmp_u1b & BIT(4)) { RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "Boot from EEPROM\n"); rtlefuse->epromtype = EEPROM_93C46; } else { RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "Boot from EFUSE\n"); rtlefuse->epromtype = EEPROM_BOOT_EFUSE; } if (tmp_u1b & BIT(5)) { RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "Autoload OK\n"); rtlefuse->autoload_failflag = false; _rtl8723be_read_adapter_info(hw, false); } else { RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, "Autoload ERR!!\n"); } _rtl8723be_hal_customized_behavior(hw); } static u8 _rtl8723be_mrate_idx_to_arfr_id(struct ieee80211_hw *hw, u8 rate_index) { u8 ret = 0; switch (rate_index) { case RATR_INX_WIRELESS_NGB: ret = 1; break; case RATR_INX_WIRELESS_N: case RATR_INX_WIRELESS_NG: ret = 5; break; case RATR_INX_WIRELESS_NB: ret = 3; break; case RATR_INX_WIRELESS_GB: ret = 6; break; case RATR_INX_WIRELESS_G: ret = 7; break; case RATR_INX_WIRELESS_B: ret = 8; break; default: ret = 0; break; } return ret; } static void rtl8723be_update_hal_rate_mask(struct ieee80211_hw *hw, struct ieee80211_sta *sta, u8 rssi_level) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_phy *rtlphy = &(rtlpriv->phy); struct rtl_mac *mac = rtl_mac(rtl_priv(hw)); struct rtl_sta_info *sta_entry = NULL; u32 ratr_bitmap; u8 ratr_index; u8 curtxbw_40mhz = (sta->ht_cap.cap & IEEE80211_HT_CAP_SUP_WIDTH_20_40) ? 1 : 0; u8 curshortgi_40mhz = (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_40) ? 1 : 0; u8 curshortgi_20mhz = (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_20) ? 1 : 0; enum wireless_mode wirelessmode = 0; bool shortgi = false; u8 rate_mask[7]; u8 macid = 0; sta_entry = (struct rtl_sta_info *)sta->drv_priv; wirelessmode = sta_entry->wireless_mode; if (mac->opmode == NL80211_IFTYPE_STATION || mac->opmode == NL80211_IFTYPE_MESH_POINT) curtxbw_40mhz = mac->bw_40; else if (mac->opmode == NL80211_IFTYPE_AP || mac->opmode == NL80211_IFTYPE_ADHOC) macid = sta->aid + 1; ratr_bitmap = sta->supp_rates[0]; if (mac->opmode == NL80211_IFTYPE_ADHOC) ratr_bitmap = 0xfff; ratr_bitmap |= (sta->ht_cap.mcs.rx_mask[1] << 20 | sta->ht_cap.mcs.rx_mask[0] << 12); switch (wirelessmode) { case WIRELESS_MODE_B: ratr_index = RATR_INX_WIRELESS_B; if (ratr_bitmap & 0x0000000c) ratr_bitmap &= 0x0000000d; else ratr_bitmap &= 0x0000000f; break; case WIRELESS_MODE_G: ratr_index = RATR_INX_WIRELESS_GB; if (rssi_level == 1) ratr_bitmap &= 0x00000f00; else if (rssi_level == 2) ratr_bitmap &= 0x00000ff0; else ratr_bitmap &= 0x00000ff5; break; case WIRELESS_MODE_N_24G: case WIRELESS_MODE_N_5G: ratr_index = RATR_INX_WIRELESS_NGB; if (rtlphy->rf_type == RF_1T1R) { if (curtxbw_40mhz) { if (rssi_level == 1) ratr_bitmap &= 0x000f0000; else if (rssi_level == 2) ratr_bitmap &= 0x000ff000; else ratr_bitmap &= 0x000ff015; } else { if (rssi_level == 1) ratr_bitmap &= 0x000f0000; else if (rssi_level == 2) ratr_bitmap &= 0x000ff000; else ratr_bitmap &= 0x000ff005; } } else { if (curtxbw_40mhz) { if (rssi_level == 1) ratr_bitmap &= 0x0f8f0000; else if (rssi_level == 2) ratr_bitmap &= 0x0f8ff000; else ratr_bitmap &= 0x0f8ff015; } else { if (rssi_level == 1) ratr_bitmap &= 0x0f8f0000; else if (rssi_level == 2) ratr_bitmap &= 0x0f8ff000; else ratr_bitmap &= 0x0f8ff005; } } if ((curtxbw_40mhz && curshortgi_40mhz) || (!curtxbw_40mhz && curshortgi_20mhz)) { if (macid == 0) shortgi = true; else if (macid == 1) shortgi = false; } break; default: ratr_index = RATR_INX_WIRELESS_NGB; if (rtlphy->rf_type == RF_1T2R) ratr_bitmap &= 0x000ff0ff; else ratr_bitmap &= 0x0f0ff0ff; break; } sta_entry->ratr_index = ratr_index; RT_TRACE(rtlpriv, COMP_RATR, DBG_DMESG, "ratr_bitmap :%x\n", ratr_bitmap); *(u32 *)&rate_mask = (ratr_bitmap & 0x0fffffff) | (ratr_index << 28); rate_mask[0] = macid; rate_mask[1] = _rtl8723be_mrate_idx_to_arfr_id(hw, ratr_index) | (shortgi ? 0x80 : 0x00); rate_mask[2] = curtxbw_40mhz; rate_mask[3] = (u8)(ratr_bitmap & 0x000000ff); rate_mask[4] = (u8)((ratr_bitmap & 0x0000ff00) >> 8); rate_mask[5] = (u8)((ratr_bitmap & 0x00ff0000) >> 16); rate_mask[6] = (u8)((ratr_bitmap & 0xff000000) >> 24); RT_TRACE(rtlpriv, COMP_RATR, DBG_DMESG, "Rate_index:%x, ratr_val:%x, %x:%x:%x:%x:%x:%x:%x\n", ratr_index, ratr_bitmap, rate_mask[0], rate_mask[1], rate_mask[2], rate_mask[3], rate_mask[4], rate_mask[5], rate_mask[6]); rtl8723be_fill_h2c_cmd(hw, H2C_8723B_RA_MASK, 7, rate_mask); _rtl8723be_set_bcn_ctrl_reg(hw, BIT(3), 0); } void rtl8723be_update_hal_rate_tbl(struct ieee80211_hw *hw, struct ieee80211_sta *sta, u8 rssi_level) { struct rtl_priv *rtlpriv = rtl_priv(hw); if (rtlpriv->dm.useramask) rtl8723be_update_hal_rate_mask(hw, sta, rssi_level); } void rtl8723be_update_channel_access_setting(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_mac *mac = rtl_mac(rtl_priv(hw)); u16 sifs_timer; rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_SLOT_TIME, &mac->slot_time); if (!mac->ht_enable) sifs_timer = 0x0a0a; else sifs_timer = 0x0e0e; rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_SIFS, (u8 *)&sifs_timer); } bool rtl8723be_gpio_radio_on_off_checking(struct ieee80211_hw *hw, u8 *valid) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw)); struct rtl_phy *rtlphy = &(rtlpriv->phy); enum rf_pwrstate e_rfpowerstate_toset, cur_rfstate; u8 u1tmp; bool b_actuallyset = false; if (rtlpriv->rtlhal.being_init_adapter) return false; if (ppsc->swrf_processing) return false; spin_lock(&rtlpriv->locks.rf_ps_lock); if (ppsc->rfchange_inprogress) { spin_unlock(&rtlpriv->locks.rf_ps_lock); return false; } else { ppsc->rfchange_inprogress = true; spin_unlock(&rtlpriv->locks.rf_ps_lock); } cur_rfstate = ppsc->rfpwr_state; rtl_write_byte(rtlpriv, REG_GPIO_IO_SEL_2, rtl_read_byte(rtlpriv, REG_GPIO_IO_SEL_2) & ~(BIT(1))); u1tmp = rtl_read_byte(rtlpriv, REG_GPIO_PIN_CTRL_2); if (rtlphy->polarity_ctl) e_rfpowerstate_toset = (u1tmp & BIT(1)) ? ERFOFF : ERFON; else e_rfpowerstate_toset = (u1tmp & BIT(1)) ? ERFON : ERFOFF; if ((ppsc->hwradiooff) && (e_rfpowerstate_toset == ERFON)) { RT_TRACE(rtlpriv, COMP_RF, DBG_DMESG, "GPIOChangeRF - HW Radio ON, RF ON\n"); e_rfpowerstate_toset = ERFON; ppsc->hwradiooff = false; b_actuallyset = true; } else if (!ppsc->hwradiooff && (e_rfpowerstate_toset == ERFOFF)) { RT_TRACE(rtlpriv, COMP_RF, DBG_DMESG, "GPIOChangeRF - HW Radio OFF, RF OFF\n"); e_rfpowerstate_toset = ERFOFF; ppsc->hwradiooff = true; b_actuallyset = true; } if (b_actuallyset) { spin_lock(&rtlpriv->locks.rf_ps_lock); ppsc->rfchange_inprogress = false; spin_unlock(&rtlpriv->locks.rf_ps_lock); } else { if (ppsc->reg_rfps_level & RT_RF_OFF_LEVL_HALT_NIC) RT_SET_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_HALT_NIC); spin_lock(&rtlpriv->locks.rf_ps_lock); ppsc->rfchange_inprogress = false; spin_unlock(&rtlpriv->locks.rf_ps_lock); } *valid = 1; return !ppsc->hwradiooff; } void rtl8723be_set_key(struct ieee80211_hw *hw, u32 key_index, u8 *p_macaddr, bool is_group, u8 enc_algo, bool is_wepkey, bool clear_all) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_mac *mac = rtl_mac(rtl_priv(hw)); struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw)); u8 *macaddr = p_macaddr; u32 entry_id = 0; bool is_pairwise = false; static u8 cam_const_addr[4][6] = { {0x00, 0x00, 0x00, 0x00, 0x00, 0x00}, {0x00, 0x00, 0x00, 0x00, 0x00, 0x01}, {0x00, 0x00, 0x00, 0x00, 0x00, 0x02}, {0x00, 0x00, 0x00, 0x00, 0x00, 0x03} }; static u8 cam_const_broad[] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }; if (clear_all) { u8 idx = 0; u8 cam_offset = 0; u8 clear_number = 5; RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG, "clear_all\n"); for (idx = 0; idx < clear_number; idx++) { rtl_cam_mark_invalid(hw, cam_offset + idx); rtl_cam_empty_entry(hw, cam_offset + idx); if (idx < 5) { memset(rtlpriv->sec.key_buf[idx], 0, MAX_KEY_LEN); rtlpriv->sec.key_len[idx] = 0; } } } else { switch (enc_algo) { case WEP40_ENCRYPTION: enc_algo = CAM_WEP40; break; case WEP104_ENCRYPTION: enc_algo = CAM_WEP104; break; case TKIP_ENCRYPTION: enc_algo = CAM_TKIP; break; case AESCCMP_ENCRYPTION: enc_algo = CAM_AES; break; default: RT_TRACE(rtlpriv, COMP_ERR, DBG_LOUD, "switch case not process\n"); enc_algo = CAM_TKIP; break; } if (is_wepkey || rtlpriv->sec.use_defaultkey) { macaddr = cam_const_addr[key_index]; entry_id = key_index; } else { if (is_group) { macaddr = cam_const_broad; entry_id = key_index; } else { if (mac->opmode == NL80211_IFTYPE_AP) { entry_id = rtl_cam_get_free_entry(hw, p_macaddr); if (entry_id >= TOTAL_CAM_ENTRY) { RT_TRACE(rtlpriv, COMP_SEC, DBG_EMERG, "Can not find free hw security cam entry\n"); return; } } else { entry_id = CAM_PAIRWISE_KEY_POSITION; } key_index = PAIRWISE_KEYIDX; is_pairwise = true; } } if (rtlpriv->sec.key_len[key_index] == 0) { RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG, "delete one entry, entry_id is %d\n", entry_id); if (mac->opmode == NL80211_IFTYPE_AP) rtl_cam_del_entry(hw, p_macaddr); rtl_cam_delete_one_entry(hw, p_macaddr, entry_id); } else { RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG, "add one entry\n"); if (is_pairwise) { RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG, "set Pairwiase key\n"); rtl_cam_add_one_entry(hw, macaddr, key_index, entry_id, enc_algo, CAM_CONFIG_NO_USEDK, rtlpriv->sec.key_buf[key_index]); } else { RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG, "set group key\n"); if (mac->opmode == NL80211_IFTYPE_ADHOC) { rtl_cam_add_one_entry(hw, rtlefuse->dev_addr, PAIRWISE_KEYIDX, CAM_PAIRWISE_KEY_POSITION, enc_algo, CAM_CONFIG_NO_USEDK, rtlpriv->sec.key_buf [entry_id]); } rtl_cam_add_one_entry(hw, macaddr, key_index, entry_id, enc_algo, CAM_CONFIG_NO_USEDK, rtlpriv->sec.key_buf[entry_id]); } } } } void rtl8723be_read_bt_coexist_info_from_hwpg(struct ieee80211_hw *hw, bool auto_load_fail, u8 *hwinfo) { struct rtl_priv *rtlpriv = rtl_priv(hw); u8 value; u32 tmpu_32; if (!auto_load_fail) { tmpu_32 = rtl_read_dword(rtlpriv, REG_MULTI_FUNC_CTRL); if (tmpu_32 & BIT(18)) rtlpriv->btcoexist.btc_info.btcoexist = 1; else rtlpriv->btcoexist.btc_info.btcoexist = 0; value = hwinfo[EEPROM_RF_BT_SETTING_8723B]; rtlpriv->btcoexist.btc_info.bt_type = BT_RTL8723B; rtlpriv->btcoexist.btc_info.ant_num = (value & 0x1); } else { rtlpriv->btcoexist.btc_info.btcoexist = 0; rtlpriv->btcoexist.btc_info.bt_type = BT_RTL8723B; rtlpriv->btcoexist.btc_info.ant_num = ANT_X2; } } void rtl8723be_bt_reg_init(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); /* 0:Low, 1:High, 2:From Efuse. */ rtlpriv->btcoexist.reg_bt_iso = 2; /* 0:Idle, 1:None-SCO, 2:SCO, 3:From Counter. */ rtlpriv->btcoexist.reg_bt_sco = 3; /* 0:Disable BT control A-MPDU, 1:Enable BT control A-MPDU. */ rtlpriv->btcoexist.reg_bt_sco = 0; } void rtl8723be_bt_hw_init(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); if (rtlpriv->cfg->ops->get_btc_status()) rtlpriv->btcoexist.btc_ops->btc_init_hw_config(rtlpriv); } void rtl8723be_suspend(struct ieee80211_hw *hw) { } void rtl8723be_resume(struct ieee80211_hw *hw) { }