/* * intel_scu_ipc.c: Driver for the Intel SCU IPC mechanism * * (C) Copyright 2008-2010,2015 Intel Corporation * Author: Sreedhara DS (sreedhara.ds@intel.com) * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; version 2 * of the License. * * SCU running in ARC processor communicates with other entity running in IA * core through IPC mechanism which in turn messaging between IA core ad SCU. * SCU has two IPC mechanism IPC-1 and IPC-2. IPC-1 is used between IA32 and * SCU where IPC-2 is used between P-Unit and SCU. This driver delas with * IPC-1 Driver provides an API for power control unit registers (e.g. MSIC) * along with other APIs. */ #include #include #include #include #include #include #include #include #include #include #include /* IPC defines the following message types */ #define IPCMSG_WATCHDOG_TIMER 0xF8 /* Set Kernel Watchdog Threshold */ #define IPCMSG_BATTERY 0xEF /* Coulomb Counter Accumulator */ #define IPCMSG_FW_UPDATE 0xFE /* Firmware update */ #define IPCMSG_PCNTRL 0xFF /* Power controller unit read/write */ #define IPCMSG_FW_REVISION 0xF4 /* Get firmware revision */ /* Command id associated with message IPCMSG_PCNTRL */ #define IPC_CMD_PCNTRL_W 0 /* Register write */ #define IPC_CMD_PCNTRL_R 1 /* Register read */ #define IPC_CMD_PCNTRL_M 2 /* Register read-modify-write */ /* * IPC register summary * * IPC register blocks are memory mapped at fixed address of PCI BAR 0. * To read or write information to the SCU, driver writes to IPC-1 memory * mapped registers. The following is the IPC mechanism * * 1. IA core cDMI interface claims this transaction and converts it to a * Transaction Layer Packet (TLP) message which is sent across the cDMI. * * 2. South Complex cDMI block receives this message and writes it to * the IPC-1 register block, causing an interrupt to the SCU * * 3. SCU firmware decodes this interrupt and IPC message and the appropriate * message handler is called within firmware. */ #define IPC_WWBUF_SIZE 20 /* IPC Write buffer Size */ #define IPC_RWBUF_SIZE 20 /* IPC Read buffer Size */ #define IPC_IOC 0x100 /* IPC command register IOC bit */ #define PCI_DEVICE_ID_LINCROFT 0x082a #define PCI_DEVICE_ID_PENWELL 0x080e #define PCI_DEVICE_ID_CLOVERVIEW 0x08ea #define PCI_DEVICE_ID_TANGIER 0x11a0 /* intel scu ipc driver data */ struct intel_scu_ipc_pdata_t { u32 i2c_base; u32 i2c_len; u8 irq_mode; }; static struct intel_scu_ipc_pdata_t intel_scu_ipc_lincroft_pdata = { .i2c_base = 0xff12b000, .i2c_len = 0x10, .irq_mode = 0, }; /* Penwell and Cloverview */ static struct intel_scu_ipc_pdata_t intel_scu_ipc_penwell_pdata = { .i2c_base = 0xff12b000, .i2c_len = 0x10, .irq_mode = 1, }; static struct intel_scu_ipc_pdata_t intel_scu_ipc_tangier_pdata = { .i2c_base = 0xff00d000, .i2c_len = 0x10, .irq_mode = 0, }; struct intel_scu_ipc_dev { struct device *dev; void __iomem *ipc_base; void __iomem *i2c_base; struct completion cmd_complete; u8 irq_mode; }; static struct intel_scu_ipc_dev ipcdev; /* Only one for now */ /* * IPC Read Buffer (Read Only): * 16 byte buffer for receiving data from SCU, if IPC command * processing results in response data */ #define IPC_READ_BUFFER 0x90 #define IPC_I2C_CNTRL_ADDR 0 #define I2C_DATA_ADDR 0x04 static DEFINE_MUTEX(ipclock); /* lock used to prevent multiple call to SCU */ /* * Send ipc command * Command Register (Write Only): * A write to this register results in an interrupt to the SCU core processor * Format: * |rfu2(8) | size(8) | command id(4) | rfu1(3) | ioc(1) | command(8)| */ static inline void ipc_command(struct intel_scu_ipc_dev *scu, u32 cmd) { if (scu->irq_mode) { reinit_completion(&scu->cmd_complete); writel(cmd | IPC_IOC, scu->ipc_base); } writel(cmd, scu->ipc_base); } /* * Write ipc data * IPC Write Buffer (Write Only): * 16-byte buffer for sending data associated with IPC command to * SCU. Size of the data is specified in the IPC_COMMAND_REG register */ static inline void ipc_data_writel(struct intel_scu_ipc_dev *scu, u32 data, u32 offset) { writel(data, scu->ipc_base + 0x80 + offset); } /* * Status Register (Read Only): * Driver will read this register to get the ready/busy status of the IPC * block and error status of the IPC command that was just processed by SCU * Format: * |rfu3(8)|error code(8)|initiator id(8)|cmd id(4)|rfu1(2)|error(1)|busy(1)| */ static inline u8 ipc_read_status(struct intel_scu_ipc_dev *scu) { return __raw_readl(scu->ipc_base + 0x04); } /* Read ipc byte data */ static inline u8 ipc_data_readb(struct intel_scu_ipc_dev *scu, u32 offset) { return readb(scu->ipc_base + IPC_READ_BUFFER + offset); } /* Read ipc u32 data */ static inline u32 ipc_data_readl(struct intel_scu_ipc_dev *scu, u32 offset) { return readl(scu->ipc_base + IPC_READ_BUFFER + offset); } /* Wait till scu status is busy */ static inline int busy_loop(struct intel_scu_ipc_dev *scu) { u32 status = ipc_read_status(scu); u32 loop_count = 100000; /* break if scu doesn't reset busy bit after huge retry */ while ((status & BIT(0)) && --loop_count) { udelay(1); /* scu processing time is in few u secods */ status = ipc_read_status(scu); } if (status & BIT(0)) { dev_err(scu->dev, "IPC timed out"); return -ETIMEDOUT; } if (status & BIT(1)) return -EIO; return 0; } /* Wait till ipc ioc interrupt is received or timeout in 3 HZ */ static inline int ipc_wait_for_interrupt(struct intel_scu_ipc_dev *scu) { int status; if (!wait_for_completion_timeout(&scu->cmd_complete, 3 * HZ)) { dev_err(scu->dev, "IPC timed out\n"); return -ETIMEDOUT; } status = ipc_read_status(scu); if (status & BIT(1)) return -EIO; return 0; } static int intel_scu_ipc_check_status(struct intel_scu_ipc_dev *scu) { return scu->irq_mode ? ipc_wait_for_interrupt(scu) : busy_loop(scu); } /* Read/Write power control(PMIC in Langwell, MSIC in PenWell) registers */ static int pwr_reg_rdwr(u16 *addr, u8 *data, u32 count, u32 op, u32 id) { struct intel_scu_ipc_dev *scu = &ipcdev; int nc; u32 offset = 0; int err; u8 cbuf[IPC_WWBUF_SIZE]; u32 *wbuf = (u32 *)&cbuf; memset(cbuf, 0, sizeof(cbuf)); mutex_lock(&ipclock); if (scu->dev == NULL) { mutex_unlock(&ipclock); return -ENODEV; } for (nc = 0; nc < count; nc++, offset += 2) { cbuf[offset] = addr[nc]; cbuf[offset + 1] = addr[nc] >> 8; } if (id == IPC_CMD_PCNTRL_R) { for (nc = 0, offset = 0; nc < count; nc++, offset += 4) ipc_data_writel(scu, wbuf[nc], offset); ipc_command(scu, (count * 2) << 16 | id << 12 | 0 << 8 | op); } else if (id == IPC_CMD_PCNTRL_W) { for (nc = 0; nc < count; nc++, offset += 1) cbuf[offset] = data[nc]; for (nc = 0, offset = 0; nc < count; nc++, offset += 4) ipc_data_writel(scu, wbuf[nc], offset); ipc_command(scu, (count * 3) << 16 | id << 12 | 0 << 8 | op); } else if (id == IPC_CMD_PCNTRL_M) { cbuf[offset] = data[0]; cbuf[offset + 1] = data[1]; ipc_data_writel(scu, wbuf[0], 0); /* Write wbuff */ ipc_command(scu, 4 << 16 | id << 12 | 0 << 8 | op); } err = intel_scu_ipc_check_status(scu); if (!err && id == IPC_CMD_PCNTRL_R) { /* Read rbuf */ /* Workaround: values are read as 0 without memcpy_fromio */ memcpy_fromio(cbuf, scu->ipc_base + 0x90, 16); for (nc = 0; nc < count; nc++) data[nc] = ipc_data_readb(scu, nc); } mutex_unlock(&ipclock); return err; } /** * intel_scu_ipc_ioread8 - read a word via the SCU * @addr: register on SCU * @data: return pointer for read byte * * Read a single register. Returns 0 on success or an error code. All * locking between SCU accesses is handled for the caller. * * This function may sleep. */ int intel_scu_ipc_ioread8(u16 addr, u8 *data) { return pwr_reg_rdwr(&addr, data, 1, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_R); } EXPORT_SYMBOL(intel_scu_ipc_ioread8); /** * intel_scu_ipc_ioread16 - read a word via the SCU * @addr: register on SCU * @data: return pointer for read word * * Read a register pair. Returns 0 on success or an error code. All * locking between SCU accesses is handled for the caller. * * This function may sleep. */ int intel_scu_ipc_ioread16(u16 addr, u16 *data) { u16 x[2] = {addr, addr + 1}; return pwr_reg_rdwr(x, (u8 *)data, 2, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_R); } EXPORT_SYMBOL(intel_scu_ipc_ioread16); /** * intel_scu_ipc_ioread32 - read a dword via the SCU * @addr: register on SCU * @data: return pointer for read dword * * Read four registers. Returns 0 on success or an error code. All * locking between SCU accesses is handled for the caller. * * This function may sleep. */ int intel_scu_ipc_ioread32(u16 addr, u32 *data) { u16 x[4] = {addr, addr + 1, addr + 2, addr + 3}; return pwr_reg_rdwr(x, (u8 *)data, 4, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_R); } EXPORT_SYMBOL(intel_scu_ipc_ioread32); /** * intel_scu_ipc_iowrite8 - write a byte via the SCU * @addr: register on SCU * @data: byte to write * * Write a single register. Returns 0 on success or an error code. All * locking between SCU accesses is handled for the caller. * * This function may sleep. */ int intel_scu_ipc_iowrite8(u16 addr, u8 data) { return pwr_reg_rdwr(&addr, &data, 1, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_W); } EXPORT_SYMBOL(intel_scu_ipc_iowrite8); /** * intel_scu_ipc_iowrite16 - write a word via the SCU * @addr: register on SCU * @data: word to write * * Write two registers. Returns 0 on success or an error code. All * locking between SCU accesses is handled for the caller. * * This function may sleep. */ int intel_scu_ipc_iowrite16(u16 addr, u16 data) { u16 x[2] = {addr, addr + 1}; return pwr_reg_rdwr(x, (u8 *)&data, 2, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_W); } EXPORT_SYMBOL(intel_scu_ipc_iowrite16); /** * intel_scu_ipc_iowrite32 - write a dword via the SCU * @addr: register on SCU * @data: dword to write * * Write four registers. Returns 0 on success or an error code. All * locking between SCU accesses is handled for the caller. * * This function may sleep. */ int intel_scu_ipc_iowrite32(u16 addr, u32 data) { u16 x[4] = {addr, addr + 1, addr + 2, addr + 3}; return pwr_reg_rdwr(x, (u8 *)&data, 4, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_W); } EXPORT_SYMBOL(intel_scu_ipc_iowrite32); /** * intel_scu_ipc_readvv - read a set of registers * @addr: register list * @data: bytes to return * @len: length of array * * Read registers. Returns 0 on success or an error code. All * locking between SCU accesses is handled for the caller. * * The largest array length permitted by the hardware is 5 items. * * This function may sleep. */ int intel_scu_ipc_readv(u16 *addr, u8 *data, int len) { return pwr_reg_rdwr(addr, data, len, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_R); } EXPORT_SYMBOL(intel_scu_ipc_readv); /** * intel_scu_ipc_writev - write a set of registers * @addr: register list * @data: bytes to write * @len: length of array * * Write registers. Returns 0 on success or an error code. All * locking between SCU accesses is handled for the caller. * * The largest array length permitted by the hardware is 5 items. * * This function may sleep. * */ int intel_scu_ipc_writev(u16 *addr, u8 *data, int len) { return pwr_reg_rdwr(addr, data, len, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_W); } EXPORT_SYMBOL(intel_scu_ipc_writev); /** * intel_scu_ipc_update_register - r/m/w a register * @addr: register address * @bits: bits to update * @mask: mask of bits to update * * Read-modify-write power control unit register. The first data argument * must be register value and second is mask value * mask is a bitmap that indicates which bits to update. * 0 = masked. Don't modify this bit, 1 = modify this bit. * returns 0 on success or an error code. * * This function may sleep. Locking between SCU accesses is handled * for the caller. */ int intel_scu_ipc_update_register(u16 addr, u8 bits, u8 mask) { u8 data[2] = { bits, mask }; return pwr_reg_rdwr(&addr, data, 1, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_M); } EXPORT_SYMBOL(intel_scu_ipc_update_register); /** * intel_scu_ipc_simple_command - send a simple command * @cmd: command * @sub: sub type * * Issue a simple command to the SCU. Do not use this interface if * you must then access data as any data values may be overwritten * by another SCU access by the time this function returns. * * This function may sleep. Locking for SCU accesses is handled for * the caller. */ int intel_scu_ipc_simple_command(int cmd, int sub) { struct intel_scu_ipc_dev *scu = &ipcdev; int err; mutex_lock(&ipclock); if (scu->dev == NULL) { mutex_unlock(&ipclock); return -ENODEV; } ipc_command(scu, sub << 12 | cmd); err = intel_scu_ipc_check_status(scu); mutex_unlock(&ipclock); return err; } EXPORT_SYMBOL(intel_scu_ipc_simple_command); /** * intel_scu_ipc_command - command with data * @cmd: command * @sub: sub type * @in: input data * @inlen: input length in dwords * @out: output data * @outlein: output length in dwords * * Issue a command to the SCU which involves data transfers. Do the * data copies under the lock but leave it for the caller to interpret */ int intel_scu_ipc_command(int cmd, int sub, u32 *in, int inlen, u32 *out, int outlen) { struct intel_scu_ipc_dev *scu = &ipcdev; int i, err; mutex_lock(&ipclock); if (scu->dev == NULL) { mutex_unlock(&ipclock); return -ENODEV; } for (i = 0; i < inlen; i++) ipc_data_writel(scu, *in++, 4 * i); ipc_command(scu, (inlen << 16) | (sub << 12) | cmd); err = intel_scu_ipc_check_status(scu); if (!err) { for (i = 0; i < outlen; i++) *out++ = ipc_data_readl(scu, 4 * i); } mutex_unlock(&ipclock); return err; } EXPORT_SYMBOL(intel_scu_ipc_command); /* I2C commands */ #define IPC_I2C_WRITE 1 /* I2C Write command */ #define IPC_I2C_READ 2 /* I2C Read command */ /** * intel_scu_ipc_i2c_cntrl - I2C read/write operations * @addr: I2C address + command bits * @data: data to read/write * * Perform an an I2C read/write operation via the SCU. All locking is * handled for the caller. This function may sleep. * * Returns an error code or 0 on success. * * This has to be in the IPC driver for the locking. */ int intel_scu_ipc_i2c_cntrl(u32 addr, u32 *data) { struct intel_scu_ipc_dev *scu = &ipcdev; u32 cmd = 0; mutex_lock(&ipclock); if (scu->dev == NULL) { mutex_unlock(&ipclock); return -ENODEV; } cmd = (addr >> 24) & 0xFF; if (cmd == IPC_I2C_READ) { writel(addr, scu->i2c_base + IPC_I2C_CNTRL_ADDR); /* Write not getting updated without delay */ mdelay(1); *data = readl(scu->i2c_base + I2C_DATA_ADDR); } else if (cmd == IPC_I2C_WRITE) { writel(*data, scu->i2c_base + I2C_DATA_ADDR); mdelay(1); writel(addr, scu->i2c_base + IPC_I2C_CNTRL_ADDR); } else { dev_err(scu->dev, "intel_scu_ipc: I2C INVALID_CMD = 0x%x\n", cmd); mutex_unlock(&ipclock); return -EIO; } mutex_unlock(&ipclock); return 0; } EXPORT_SYMBOL(intel_scu_ipc_i2c_cntrl); /* * Interrupt handler gets called when ioc bit of IPC_COMMAND_REG set to 1 * When ioc bit is set to 1, caller api must wait for interrupt handler called * which in turn unlocks the caller api. Currently this is not used * * This is edge triggered so we need take no action to clear anything */ static irqreturn_t ioc(int irq, void *dev_id) { struct intel_scu_ipc_dev *scu = dev_id; if (scu->irq_mode) complete(&scu->cmd_complete); return IRQ_HANDLED; } /** * ipc_probe - probe an Intel SCU IPC * @pdev: the PCI device matching * @id: entry in the match table * * Enable and install an intel SCU IPC. This appears in the PCI space * but uses some hard coded addresses as well. */ static int ipc_probe(struct pci_dev *pdev, const struct pci_device_id *id) { int platform; /* Platform type */ int err; struct intel_scu_ipc_dev *scu = &ipcdev; struct intel_scu_ipc_pdata_t *pdata; platform = intel_mid_identify_cpu(); if (platform == 0) return -ENODEV; if (scu->dev) /* We support only one SCU */ return -EBUSY; pdata = (struct intel_scu_ipc_pdata_t *)id->driver_data; scu->dev = &pdev->dev; scu->irq_mode = pdata->irq_mode; err = pcim_enable_device(pdev); if (err) return err; err = pcim_iomap_regions(pdev, 1 << 0, pci_name(pdev)); if (err) return err; init_completion(&scu->cmd_complete); err = devm_request_irq(&pdev->dev, pdev->irq, ioc, 0, "intel_scu_ipc", scu); if (err) return err; scu->ipc_base = pcim_iomap_table(pdev)[0]; scu->i2c_base = ioremap_nocache(pdata->i2c_base, pdata->i2c_len); if (!scu->i2c_base) return -ENOMEM; intel_scu_devices_create(); pci_set_drvdata(pdev, scu); return 0; } /** * ipc_remove - remove a bound IPC device * @pdev: PCI device * * In practice the SCU is not removable but this function is also * called for each device on a module unload or cleanup which is the * path that will get used. * * Free up the mappings and release the PCI resources */ static void ipc_remove(struct pci_dev *pdev) { struct intel_scu_ipc_dev *scu = pci_get_drvdata(pdev); mutex_lock(&ipclock); scu->dev = NULL; mutex_unlock(&ipclock); iounmap(scu->i2c_base); intel_scu_devices_destroy(); } static const struct pci_device_id pci_ids[] = { { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_LINCROFT), (kernel_ulong_t)&intel_scu_ipc_lincroft_pdata, }, { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_PENWELL), (kernel_ulong_t)&intel_scu_ipc_penwell_pdata, }, { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_CLOVERVIEW), (kernel_ulong_t)&intel_scu_ipc_penwell_pdata, }, { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_TANGIER), (kernel_ulong_t)&intel_scu_ipc_tangier_pdata, }, { 0, } }; MODULE_DEVICE_TABLE(pci, pci_ids); static struct pci_driver ipc_driver = { .name = "intel_scu_ipc", .id_table = pci_ids, .probe = ipc_probe, .remove = ipc_remove, }; module_pci_driver(ipc_driver); MODULE_AUTHOR("Sreedhara DS "); MODULE_DESCRIPTION("Intel SCU IPC driver"); MODULE_LICENSE("GPL");