/* * Copyright (C) 2011-2012 Freescale Semiconductor, Inc. */ /* * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. */ /* * Implementation based on rtc-ds1553.c */ /*! * @defgroup RTC Real Time Clock (RTC) Driver */ /*! * @file rtc-snvs.c * @brief Secure Real Time Clock (SRTC) interface in Freescale's SNVS module * * This file contains Real Time Clock interface for Linux. The Freescale * SNVS module's Low Power (LP) SRTC functionality is utilized in this driver, * in non-secure mode. * * @ingroup RTC */ #include #include #include #include #include #include #include #include #include #include #include /* Register definitions */ #define SNVS_HPSR 0x14 /* HP Status Register */ #define SNVS_LPCR 0x38 /* LP Control Register */ #define SNVS_LPSR 0x4C /* LP Status Register */ #define SNVS_LPSRTCMR 0x50 /* LP Secure Real Time Counter MSB Register */ #define SNVS_LPSRTCLR 0x54 /* LP Secure Real Time Counter LSB Register */ #define SNVS_LPTAR 0x58 /* LP Time Alarm Register */ #define SNVS_LPSMCMR 0x5C /* LP Secure Monotonic Counter MSB Register */ #define SNVS_LPSMCLR 0x60 /* LP Secure Monotonic Counter LSB Register */ #define SNVS_LPPGDR 0x64 /* LP Power Glitch Detector Register */ #define SNVS_LPGPR 0x68 /* LP General Purpose Register */ /* Bit Definitions */ #define SNVS_HPSR_SSM_ST_MASK 0x00000F00 #define SNVS_HPSR_SSM_ST_SHIFT 8 #define SNVS_LPCR_SRTC_ENV (1 << 0) #define SNVS_LPCR_LPTA_EN (1 << 1) #define SNVS_LPCR_LPWUI_EN (1 << 3) #define SNVS_LPCR_ALL_INT_EN (SNVS_LPCR_LPTA_EN | SNVS_LPCR_LPWUI_EN) #define SNVS_LPSR_LPTA (1 << 0) #define SNVS_LPPGDR_INIT 0x41736166 /* Other defines */ #define SSM_ST_CHECK 0x9 #define SSM_ST_NON_SECURE 0xB #define CNTR_TO_SECS_SH 15 /* Converts 47-bit counter to 32-bit seconds */ #define RTC_READ_TIME_47BIT _IOR('p', 0x20, unsigned long long) /* blocks until LPSCMR is set, returns difference */ #define RTC_WAIT_TIME_SET _IOR('p', 0x21, int64_t) struct rtc_drv_data { struct rtc_device *rtc; void __iomem *ioaddr; unsigned long baseaddr; int irq; bool irq_enable; }; static unsigned long rtc_status; static DEFINE_SPINLOCK(rtc_lock); DECLARE_COMPLETION(snvs_completion); static int64_t time_diff; /*! * LP counter register reads should always use this function. * This function reads 2 consective times from LP counter register * until the 2 values match. This is to avoid reading corrupt * value if the counter is in the middle of updating (TKT052983) */ static inline u32 rtc_read_lp_counter(void __iomem *counter_reg) { u64 read1, read2; u32 counter_sec; do { /* MSB */ read1 = __raw_readl(counter_reg); read1 <<= 32; /* LSB */ read1 |= __raw_readl(counter_reg + 4); /* MSB */ read2 = __raw_readl(counter_reg); read2 <<= 32; /* LSB */ read2 |= __raw_readl(counter_reg + 4); } while (read1 != read2); /* Convert 47-bit counter to 32-bit raw second count */ counter_sec = (u32) (read1 >> CNTR_TO_SECS_SH); return counter_sec; } /*! * This function does write synchronization for writes to the lp srtc block. * To take care of the asynchronous CKIL clock, all writes from the IP domain * will be synchronized to the CKIL domain. */ static inline void rtc_write_sync_lp(void __iomem *ioaddr) { unsigned int i, count1, count2, count3; /* Wait for 3 CKIL cycles */ for (i = 0; i < 3; i++) { /* TKT052983: Do consective reads of LSB of counter * to ensure integrity */ do { count1 = __raw_readl(ioaddr + SNVS_LPSRTCLR); count2 = __raw_readl(ioaddr + SNVS_LPSRTCLR); } while (count1 != count2); /* Now wait until counter value changes */ do { do { count2 = __raw_readl(ioaddr + SNVS_LPSRTCLR); count3 = __raw_readl(ioaddr + SNVS_LPSRTCLR); } while (count2 != count3); } while (count3 == count1); } } /*! * This function updates the RTC alarm registers and then clears all the * interrupt status bits. * * @param alrm the new alarm value to be updated in the RTC * * @return 0 if successful; non-zero otherwise. */ static int rtc_update_alarm(struct device *dev, struct rtc_time *alrm) { struct rtc_drv_data *pdata = dev_get_drvdata(dev); void __iomem *ioaddr = pdata->ioaddr; struct rtc_time alarm_tm, now_tm; unsigned long now, time, lp_cr; int ret; now = rtc_read_lp_counter(ioaddr + SNVS_LPSRTCMR); rtc_time_to_tm(now, &now_tm); alarm_tm.tm_year = now_tm.tm_year; alarm_tm.tm_mon = now_tm.tm_mon; alarm_tm.tm_mday = now_tm.tm_mday; alarm_tm.tm_hour = alrm->tm_hour; alarm_tm.tm_min = alrm->tm_min; alarm_tm.tm_sec = alrm->tm_sec; rtc_tm_to_time(&now_tm, &now); rtc_tm_to_time(&alarm_tm, &time); if (time < now) { time += 60 * 60 * 24; rtc_time_to_tm(time, &alarm_tm); } ret = rtc_tm_to_time(&alarm_tm, &time); /* Have to clear LPTA_EN before programming new alarm time in LPTAR */ lp_cr = __raw_readl(ioaddr + SNVS_LPCR); __raw_writel(lp_cr & ~SNVS_LPCR_LPTA_EN, ioaddr + SNVS_LPCR); rtc_write_sync_lp(ioaddr); __raw_writel(time, ioaddr + SNVS_LPTAR); /* clear alarm interrupt status bit */ __raw_writel(SNVS_LPSR_LPTA, ioaddr + SNVS_LPSR); return ret; } /*! * This function is the RTC interrupt service routine. * * @param irq RTC IRQ number * @param dev_id device ID which is not used * * @return IRQ_HANDLED as defined in the include/linux/interrupt.h file. */ static irqreturn_t snvs_rtc_interrupt(int irq, void *dev_id) { struct platform_device *pdev = dev_id; struct rtc_drv_data *pdata = platform_get_drvdata(pdev); void __iomem *ioaddr = pdata->ioaddr; u32 lp_status, lp_cr; u32 events = 0; lp_status = __raw_readl(ioaddr + SNVS_LPSR); lp_cr = __raw_readl(ioaddr + SNVS_LPCR); /* update irq data & counter */ if (lp_status & SNVS_LPSR_LPTA) { if (lp_cr & SNVS_LPCR_LPTA_EN) events |= (RTC_AF | RTC_IRQF); /* disable further lp alarm interrupts */ lp_cr &= ~(SNVS_LPCR_LPTA_EN | SNVS_LPCR_LPWUI_EN); } /* Update interrupt enables */ __raw_writel(lp_cr, ioaddr + SNVS_LPCR); /* If no interrupts are enabled, turn off interrupts in kernel */ if (((lp_cr & SNVS_LPCR_ALL_INT_EN) == 0) && (pdata->irq_enable)) { disable_irq_nosync(pdata->irq); pdata->irq_enable = false; } /* clear interrupt status */ __raw_writel(lp_status, ioaddr + SNVS_LPSR); rtc_write_sync_lp(ioaddr); rtc_update_irq(pdata->rtc, 1, events); return IRQ_HANDLED; } /*! * This function is used to open the RTC driver. * * @return 0 if successful; non-zero otherwise. */ static int snvs_rtc_open(struct device *dev) { if (test_and_set_bit(1, &rtc_status)) return -EBUSY; return 0; } /*! * clear all interrupts and release the IRQ */ static void snvs_rtc_release(struct device *dev) { rtc_status = 0; } /*! * This function reads the current RTC time into tm in Gregorian date. * * @param tm contains the RTC time value upon return * * @return 0 if successful; non-zero otherwise. */ static int snvs_rtc_read_time(struct device *dev, struct rtc_time *tm) { struct rtc_drv_data *pdata = dev_get_drvdata(dev); void __iomem *ioaddr = pdata->ioaddr; rtc_time_to_tm(rtc_read_lp_counter(ioaddr + SNVS_LPSRTCMR), tm); return 0; } /*! * This function sets the internal RTC time based on tm in Gregorian date. * * @param tm the time value to be set in the RTC * * @return 0 if successful; non-zero otherwise. */ static int snvs_rtc_set_time(struct device *dev, struct rtc_time *tm) { struct rtc_drv_data *pdata = dev_get_drvdata(dev); void __iomem *ioaddr = pdata->ioaddr; unsigned long time; int ret; u32 lp_cr; u64 old_time_47bit, new_time_47bit; ret = rtc_tm_to_time(tm, &time); if (ret != 0) return ret; old_time_47bit = (((u64) (__raw_readl(ioaddr + SNVS_LPSRTCMR) & ((0x1 << CNTR_TO_SECS_SH) - 1)) << 32) | ((u64) __raw_readl(ioaddr + SNVS_LPSRTCLR))); /* Disable RTC first */ lp_cr = __raw_readl(ioaddr + SNVS_LPCR) & ~SNVS_LPCR_SRTC_ENV; __raw_writel(lp_cr, ioaddr + SNVS_LPCR); while (__raw_readl(ioaddr + SNVS_LPCR) & SNVS_LPCR_SRTC_ENV) ; /* Write 32-bit time to 47-bit timer, leaving 15 LSBs blank */ __raw_writel(time << CNTR_TO_SECS_SH, ioaddr + SNVS_LPSRTCLR); __raw_writel(time >> (32 - CNTR_TO_SECS_SH), ioaddr + SNVS_LPSRTCMR); /* Enable RTC again */ __raw_writel(lp_cr | SNVS_LPCR_SRTC_ENV, ioaddr + SNVS_LPCR); while (!(__raw_readl(ioaddr + SNVS_LPCR) & SNVS_LPCR_SRTC_ENV)) ; rtc_write_sync_lp(ioaddr); new_time_47bit = (((u64) (__raw_readl(ioaddr + SNVS_LPSRTCMR) & ((0x1 << CNTR_TO_SECS_SH) - 1)) << 32) | ((u64) __raw_readl(ioaddr + SNVS_LPSRTCLR))); time_diff = new_time_47bit - old_time_47bit; /* signal all waiting threads that time changed */ complete_all(&snvs_completion); /* allow signalled threads to handle the time change notification */ schedule(); /* reinitialize completion variable */ INIT_COMPLETION(snvs_completion); return 0; } /*! * This function reads the current alarm value into the passed in \b alrm * argument. It updates the \b alrm's pending field value based on the whether * an alarm interrupt occurs or not. * * @param alrm contains the RTC alarm value upon return * * @return 0 if successful; non-zero otherwise. */ static int snvs_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm) { struct rtc_drv_data *pdata = dev_get_drvdata(dev); void __iomem *ioaddr = pdata->ioaddr; rtc_time_to_tm(__raw_readl(ioaddr + SNVS_LPTAR), &alrm->time); alrm->pending = ((__raw_readl(ioaddr + SNVS_LPSR) & SNVS_LPSR_LPTA) != 0) ? 1 : 0; return 0; } /*! * This function sets the RTC alarm based on passed in alrm. * * @param alrm the alarm value to be set in the RTC * * @return 0 if successful; non-zero otherwise. */ static int snvs_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm) { struct rtc_drv_data *pdata = dev_get_drvdata(dev); void __iomem *ioaddr = pdata->ioaddr; unsigned long lock_flags = 0; u32 lp_cr; int ret; if (rtc_valid_tm(&alrm->time)) { if (alrm->time.tm_sec > 59 || alrm->time.tm_hour > 23 || alrm->time.tm_min > 59) { return -EINVAL; } } spin_lock_irqsave(&rtc_lock, lock_flags); ret = rtc_update_alarm(dev, &alrm->time); if (ret) goto out; lp_cr = __raw_readl(ioaddr + SNVS_LPCR); if (alrm->enabled) lp_cr |= (SNVS_LPCR_LPTA_EN | SNVS_LPCR_LPWUI_EN); else lp_cr &= ~(SNVS_LPCR_LPTA_EN | SNVS_LPCR_LPWUI_EN); if (lp_cr & SNVS_LPCR_ALL_INT_EN) { if (!pdata->irq_enable) { enable_irq(pdata->irq); pdata->irq_enable = true; } } else { if (pdata->irq_enable) { disable_irq(pdata->irq); pdata->irq_enable = false; } } __raw_writel(lp_cr, ioaddr + SNVS_LPCR); out: rtc_write_sync_lp(ioaddr); spin_unlock_irqrestore(&rtc_lock, lock_flags); return ret; } /*! * This function is used to provide the content for the /proc/driver/rtc * file. * * @param seq buffer to hold the information that the driver wants to write * * @return The number of bytes written into the rtc file. */ static int snvs_rtc_proc(struct device *dev, struct seq_file *seq) { struct rtc_drv_data *pdata = dev_get_drvdata(dev); void __iomem *ioaddr = pdata->ioaddr; seq_printf(seq, "alarm_IRQ\t: %s\n", (((__raw_readl(ioaddr + SNVS_LPCR)) & SNVS_LPCR_LPTA_EN) != 0) ? "yes" : "no"); return 0; } static int snvs_rtc_alarm_irq_enable(struct device *dev, unsigned int enable) { struct rtc_drv_data *pdata = dev_get_drvdata(dev); void __iomem *ioaddr = pdata->ioaddr; u32 lp_cr; unsigned long lock_flags = 0; spin_lock_irqsave(&rtc_lock, lock_flags); if (enable) { if (!pdata->irq_enable) { enable_irq(pdata->irq); pdata->irq_enable = true; } lp_cr = __raw_readl(ioaddr + SNVS_LPCR); lp_cr |= (SNVS_LPCR_LPTA_EN | SNVS_LPCR_LPWUI_EN); __raw_writel(lp_cr, ioaddr + SNVS_LPCR); } else { lp_cr = __raw_readl(ioaddr + SNVS_LPCR); lp_cr &= ~(SNVS_LPCR_LPTA_EN | SNVS_LPCR_LPWUI_EN); if (((lp_cr & SNVS_LPCR_ALL_INT_EN) == 0) && (pdata->irq_enable)) { disable_irq(pdata->irq); pdata->irq_enable = false; } __raw_writel(lp_cr, ioaddr + SNVS_LPCR); } rtc_write_sync_lp(ioaddr); spin_unlock_irqrestore(&rtc_lock, lock_flags); return 0; } /*! * This function is used to support some ioctl calls directly. * Other ioctl calls are supported indirectly through the * arm/common/rtctime.c file. * * @param cmd ioctl command as defined in include/linux/rtc.h * @param arg value for the ioctl command * * @return 0 if successful or negative value otherwise. */ static int snvs_rtc_ioctl(struct device *dev, unsigned int cmd, unsigned long arg) { struct rtc_drv_data *pdata = dev_get_drvdata(dev); void __iomem *ioaddr = pdata->ioaddr; u64 time_47bit; int retVal; switch (cmd) { case RTC_READ_TIME_47BIT: time_47bit = (((u64) (__raw_readl(ioaddr + SNVS_LPSRTCMR) & ((0x1 << CNTR_TO_SECS_SH) - 1)) << 32) | ((u64) __raw_readl(ioaddr + SNVS_LPSRTCLR))); if (arg && copy_to_user((u64 *) arg, &time_47bit, sizeof(u64))) return -EFAULT; return 0; /* This IOCTL to be used by processes to be notified of time changes */ case RTC_WAIT_TIME_SET: /* don't block without releasing mutex first */ mutex_unlock(&pdata->rtc->ops_lock); /* sleep until awakened by SRTC driver when LPSCMR is changed */ wait_for_completion(&snvs_completion); /* relock mutex because rtc_dev_ioctl will unlock again */ retVal = mutex_lock_interruptible(&pdata->rtc->ops_lock); /* copy the new time difference = new time - previous time * to the user param. The difference is a signed value */ if (arg && copy_to_user((int64_t *) arg, &time_diff, sizeof(int64_t))) return -EFAULT; return retVal; } return -ENOIOCTLCMD; } /*! * The RTC driver structure */ static struct rtc_class_ops snvs_rtc_ops = { .open = snvs_rtc_open, .release = snvs_rtc_release, .read_time = snvs_rtc_read_time, .set_time = snvs_rtc_set_time, .read_alarm = snvs_rtc_read_alarm, .set_alarm = snvs_rtc_set_alarm, .proc = snvs_rtc_proc, .ioctl = snvs_rtc_ioctl, .alarm_irq_enable = snvs_rtc_alarm_irq_enable, }; /*! SNVS RTC Power management control */ static int snvs_rtc_probe(struct platform_device *pdev) { struct timespec tv; struct resource *res; struct rtc_device *rtc; struct rtc_drv_data *pdata = NULL; void __iomem *ioaddr; u32 lp_cr; int ret = 0; res = platform_get_resource(pdev, IORESOURCE_MEM, 0); if (!res) return -ENODEV; pdata = kzalloc(sizeof(*pdata), GFP_KERNEL); if (!pdata) return -ENOMEM; pdata->baseaddr = res->start; pdata->ioaddr = ioremap(pdata->baseaddr, 0xC00); ioaddr = pdata->ioaddr; pdata->irq = platform_get_irq(pdev, 0); platform_set_drvdata(pdev, pdata); /* Added to support sysfs wakealarm attribute */ pdev->dev.power.can_wakeup = 1; /* initialize glitch detect */ __raw_writel(SNVS_LPPGDR_INIT, ioaddr + SNVS_LPPGDR); udelay(100); /* clear lp interrupt status */ __raw_writel(0xFFFFFFFF, ioaddr + SNVS_LPSR); /* Enable RTC */ lp_cr = __raw_readl(ioaddr + SNVS_LPCR); if ((lp_cr & SNVS_LPCR_SRTC_ENV) == 0) __raw_writel(lp_cr | SNVS_LPCR_SRTC_ENV, ioaddr + SNVS_LPCR); udelay(100); __raw_writel(0xFFFFFFFF, ioaddr + SNVS_LPSR); udelay(100); if (pdata->irq >= 0) { if (request_irq(pdata->irq, snvs_rtc_interrupt, IRQF_SHARED, pdev->name, pdev) < 0) { dev_warn(&pdev->dev, "interrupt not available.\n"); pdata->irq = -1; } else { disable_irq(pdata->irq); pdata->irq_enable = false; } } rtc = rtc_device_register(pdev->name, &pdev->dev, &snvs_rtc_ops, THIS_MODULE); if (IS_ERR(rtc)) { ret = PTR_ERR(rtc); goto err_out; } pdata->rtc = rtc; tv.tv_nsec = 0; tv.tv_sec = rtc_read_lp_counter(ioaddr + SNVS_LPSRTCMR); /* Remove can_wakeup flag to add common power wakeup interface */ pdev->dev.power.can_wakeup = 0; /* By default, devices should wakeup if they can */ /* So snvs is set as "should wakeup" as it can */ device_init_wakeup(&pdev->dev, 1); return ret; err_out: iounmap(ioaddr); if (pdata->irq >= 0) free_irq(pdata->irq, pdev); kfree(pdata); return ret; } static int __exit snvs_rtc_remove(struct platform_device *pdev) { struct rtc_drv_data *pdata = platform_get_drvdata(pdev); rtc_device_unregister(pdata->rtc); if (pdata->irq >= 0) free_irq(pdata->irq, pdev); kfree(pdata); return 0; } /*! * This function is called to save the system time delta relative to * the SNVS RTC when enterring a low power state. This time delta is * then used on resume to adjust the system time to account for time * loss while suspended. * * @param pdev not used * @param state Power state to enter. * * @return The function always returns 0. */ static int snvs_rtc_suspend(struct platform_device *pdev, pm_message_t state) { struct rtc_drv_data *pdata = platform_get_drvdata(pdev); if (device_may_wakeup(&pdev->dev)) { enable_irq_wake(pdata->irq); } else { if (pdata->irq_enable) disable_irq(pdata->irq); } return 0; } /*! * This function is called to correct the system time based on the * current SNVS RTC time relative to the time delta saved during * suspend. * * @param pdev not used * * @return The function always returns 0. */ static int snvs_rtc_resume(struct platform_device *pdev) { struct rtc_drv_data *pdata = platform_get_drvdata(pdev); if (device_may_wakeup(&pdev->dev)) { disable_irq_wake(pdata->irq); } else { if (pdata->irq_enable) enable_irq(pdata->irq); } return 0; } /*! * Contains pointers to the power management callback functions. */ static struct platform_driver snvs_rtc_driver = { .driver = { .name = "snvs_rtc", }, .probe = snvs_rtc_probe, .remove = __exit_p(snvs_rtc_remove), .suspend = snvs_rtc_suspend, .resume = snvs_rtc_resume, }; /*! * This function creates the /proc/driver/rtc file and registers the device RTC * in the /dev/misc directory. It also reads the RTC value from external source * and setup the internal RTC properly. * * @return -1 if RTC is failed to initialize; 0 is successful. */ static int __init snvs_rtc_init(void) { return platform_driver_register(&snvs_rtc_driver); } /*! * This function removes the /proc/driver/rtc file and un-registers the * device RTC from the /dev/misc directory. */ static void __exit snvs_rtc_exit(void) { platform_driver_unregister(&snvs_rtc_driver); } module_init(snvs_rtc_init); module_exit(snvs_rtc_exit); MODULE_AUTHOR("Freescale Semiconductor, Inc."); MODULE_DESCRIPTION("SNVS Realtime Clock Driver (RTC)"); MODULE_LICENSE("GPL");