/* * HighPoint RR3xxx/4xxx controller driver for Linux * Copyright (C) 2006-2015 HighPoint Technologies, Inc. All Rights Reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; version 2 of the License. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * Please report bugs/comments/suggestions to linux@highpoint-tech.com * * For more information, visit http://www.highpoint-tech.com */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "hptiop.h" MODULE_AUTHOR("HighPoint Technologies, Inc."); MODULE_DESCRIPTION("HighPoint RocketRAID 3xxx/4xxx Controller Driver"); static char driver_name[] = "hptiop"; static const char driver_name_long[] = "RocketRAID 3xxx/4xxx Controller driver"; static const char driver_ver[] = "v1.10.0"; static int iop_send_sync_msg(struct hptiop_hba *hba, u32 msg, u32 millisec); static void hptiop_finish_scsi_req(struct hptiop_hba *hba, u32 tag, struct hpt_iop_request_scsi_command *req); static void hptiop_host_request_callback_itl(struct hptiop_hba *hba, u32 tag); static void hptiop_iop_request_callback_itl(struct hptiop_hba *hba, u32 tag); static void hptiop_message_callback(struct hptiop_hba *hba, u32 msg); static int iop_wait_ready_itl(struct hptiop_hba *hba, u32 millisec) { u32 req = 0; int i; for (i = 0; i < millisec; i++) { req = readl(&hba->u.itl.iop->inbound_queue); if (req != IOPMU_QUEUE_EMPTY) break; msleep(1); } if (req != IOPMU_QUEUE_EMPTY) { writel(req, &hba->u.itl.iop->outbound_queue); readl(&hba->u.itl.iop->outbound_intstatus); return 0; } return -1; } static int iop_wait_ready_mv(struct hptiop_hba *hba, u32 millisec) { return iop_send_sync_msg(hba, IOPMU_INBOUND_MSG0_NOP, millisec); } static int iop_wait_ready_mvfrey(struct hptiop_hba *hba, u32 millisec) { return iop_send_sync_msg(hba, IOPMU_INBOUND_MSG0_NOP, millisec); } static void hptiop_request_callback_itl(struct hptiop_hba *hba, u32 tag) { if (tag & IOPMU_QUEUE_ADDR_HOST_BIT) hptiop_host_request_callback_itl(hba, tag & ~IOPMU_QUEUE_ADDR_HOST_BIT); else hptiop_iop_request_callback_itl(hba, tag); } static void hptiop_drain_outbound_queue_itl(struct hptiop_hba *hba) { u32 req; while ((req = readl(&hba->u.itl.iop->outbound_queue)) != IOPMU_QUEUE_EMPTY) { if (req & IOPMU_QUEUE_MASK_HOST_BITS) hptiop_request_callback_itl(hba, req); else { struct hpt_iop_request_header __iomem * p; p = (struct hpt_iop_request_header __iomem *) ((char __iomem *)hba->u.itl.iop + req); if (readl(&p->flags) & IOP_REQUEST_FLAG_SYNC_REQUEST) { if (readl(&p->context)) hptiop_request_callback_itl(hba, req); else writel(1, &p->context); } else hptiop_request_callback_itl(hba, req); } } } static int iop_intr_itl(struct hptiop_hba *hba) { struct hpt_iopmu_itl __iomem *iop = hba->u.itl.iop; void __iomem *plx = hba->u.itl.plx; u32 status; int ret = 0; if (plx && readl(plx + 0x11C5C) & 0xf) writel(1, plx + 0x11C60); status = readl(&iop->outbound_intstatus); if (status & IOPMU_OUTBOUND_INT_MSG0) { u32 msg = readl(&iop->outbound_msgaddr0); dprintk("received outbound msg %x\n", msg); writel(IOPMU_OUTBOUND_INT_MSG0, &iop->outbound_intstatus); hptiop_message_callback(hba, msg); ret = 1; } if (status & IOPMU_OUTBOUND_INT_POSTQUEUE) { hptiop_drain_outbound_queue_itl(hba); ret = 1; } return ret; } static u64 mv_outbound_read(struct hpt_iopmu_mv __iomem *mu) { u32 outbound_tail = readl(&mu->outbound_tail); u32 outbound_head = readl(&mu->outbound_head); if (outbound_tail != outbound_head) { u64 p; memcpy_fromio(&p, &mu->outbound_q[mu->outbound_tail], 8); outbound_tail++; if (outbound_tail == MVIOP_QUEUE_LEN) outbound_tail = 0; writel(outbound_tail, &mu->outbound_tail); return p; } else return 0; } static void mv_inbound_write(u64 p, struct hptiop_hba *hba) { u32 inbound_head = readl(&hba->u.mv.mu->inbound_head); u32 head = inbound_head + 1; if (head == MVIOP_QUEUE_LEN) head = 0; memcpy_toio(&hba->u.mv.mu->inbound_q[inbound_head], &p, 8); writel(head, &hba->u.mv.mu->inbound_head); writel(MVIOP_MU_INBOUND_INT_POSTQUEUE, &hba->u.mv.regs->inbound_doorbell); } static void hptiop_request_callback_mv(struct hptiop_hba *hba, u64 tag) { u32 req_type = (tag >> 5) & 0x7; struct hpt_iop_request_scsi_command *req; dprintk("hptiop_request_callback_mv: tag=%llx\n", tag); BUG_ON((tag & MVIOP_MU_QUEUE_REQUEST_RETURN_CONTEXT) == 0); switch (req_type) { case IOP_REQUEST_TYPE_GET_CONFIG: case IOP_REQUEST_TYPE_SET_CONFIG: hba->msg_done = 1; break; case IOP_REQUEST_TYPE_SCSI_COMMAND: req = hba->reqs[tag >> 8].req_virt; if (likely(tag & MVIOP_MU_QUEUE_REQUEST_RESULT_BIT)) req->header.result = cpu_to_le32(IOP_RESULT_SUCCESS); hptiop_finish_scsi_req(hba, tag>>8, req); break; default: break; } } static int iop_intr_mv(struct hptiop_hba *hba) { u32 status; int ret = 0; status = readl(&hba->u.mv.regs->outbound_doorbell); writel(~status, &hba->u.mv.regs->outbound_doorbell); if (status & MVIOP_MU_OUTBOUND_INT_MSG) { u32 msg; msg = readl(&hba->u.mv.mu->outbound_msg); dprintk("received outbound msg %x\n", msg); hptiop_message_callback(hba, msg); ret = 1; } if (status & MVIOP_MU_OUTBOUND_INT_POSTQUEUE) { u64 tag; while ((tag = mv_outbound_read(hba->u.mv.mu))) hptiop_request_callback_mv(hba, tag); ret = 1; } return ret; } static void hptiop_request_callback_mvfrey(struct hptiop_hba *hba, u32 _tag) { u32 req_type = _tag & 0xf; struct hpt_iop_request_scsi_command *req; switch (req_type) { case IOP_REQUEST_TYPE_GET_CONFIG: case IOP_REQUEST_TYPE_SET_CONFIG: hba->msg_done = 1; break; case IOP_REQUEST_TYPE_SCSI_COMMAND: req = hba->reqs[(_tag >> 4) & 0xff].req_virt; if (likely(_tag & IOPMU_QUEUE_REQUEST_RESULT_BIT)) req->header.result = IOP_RESULT_SUCCESS; hptiop_finish_scsi_req(hba, (_tag >> 4) & 0xff, req); break; default: break; } } static int iop_intr_mvfrey(struct hptiop_hba *hba) { u32 _tag, status, cptr, cur_rptr; int ret = 0; if (hba->initialized) writel(0, &(hba->u.mvfrey.mu->pcie_f0_int_enable)); status = readl(&(hba->u.mvfrey.mu->f0_doorbell)); if (status) { writel(status, &(hba->u.mvfrey.mu->f0_doorbell)); if (status & CPU_TO_F0_DRBL_MSG_BIT) { u32 msg = readl(&(hba->u.mvfrey.mu->cpu_to_f0_msg_a)); dprintk("received outbound msg %x\n", msg); hptiop_message_callback(hba, msg); } ret = 1; } status = readl(&(hba->u.mvfrey.mu->isr_cause)); if (status) { writel(status, &(hba->u.mvfrey.mu->isr_cause)); do { cptr = *hba->u.mvfrey.outlist_cptr & 0xff; cur_rptr = hba->u.mvfrey.outlist_rptr; while (cur_rptr != cptr) { cur_rptr++; if (cur_rptr == hba->u.mvfrey.list_count) cur_rptr = 0; _tag = hba->u.mvfrey.outlist[cur_rptr].val; BUG_ON(!(_tag & IOPMU_QUEUE_MASK_HOST_BITS)); hptiop_request_callback_mvfrey(hba, _tag); ret = 1; } hba->u.mvfrey.outlist_rptr = cur_rptr; } while (cptr != (*hba->u.mvfrey.outlist_cptr & 0xff)); } if (hba->initialized) writel(0x1010, &(hba->u.mvfrey.mu->pcie_f0_int_enable)); return ret; } static int iop_send_sync_request_itl(struct hptiop_hba *hba, void __iomem *_req, u32 millisec) { struct hpt_iop_request_header __iomem *req = _req; u32 i; writel(readl(&req->flags) | IOP_REQUEST_FLAG_SYNC_REQUEST, &req->flags); writel(0, &req->context); writel((unsigned long)req - (unsigned long)hba->u.itl.iop, &hba->u.itl.iop->inbound_queue); readl(&hba->u.itl.iop->outbound_intstatus); for (i = 0; i < millisec; i++) { iop_intr_itl(hba); if (readl(&req->context)) return 0; msleep(1); } return -1; } static int iop_send_sync_request_mv(struct hptiop_hba *hba, u32 size_bits, u32 millisec) { struct hpt_iop_request_header *reqhdr = hba->u.mv.internal_req; u32 i; hba->msg_done = 0; reqhdr->flags |= cpu_to_le32(IOP_REQUEST_FLAG_SYNC_REQUEST); mv_inbound_write(hba->u.mv.internal_req_phy | MVIOP_MU_QUEUE_ADDR_HOST_BIT | size_bits, hba); for (i = 0; i < millisec; i++) { iop_intr_mv(hba); if (hba->msg_done) return 0; msleep(1); } return -1; } static int iop_send_sync_request_mvfrey(struct hptiop_hba *hba, u32 size_bits, u32 millisec) { struct hpt_iop_request_header *reqhdr = hba->u.mvfrey.internal_req.req_virt; u32 i; hba->msg_done = 0; reqhdr->flags |= cpu_to_le32(IOP_REQUEST_FLAG_SYNC_REQUEST); hba->ops->post_req(hba, &(hba->u.mvfrey.internal_req)); for (i = 0; i < millisec; i++) { iop_intr_mvfrey(hba); if (hba->msg_done) break; msleep(1); } return hba->msg_done ? 0 : -1; } static void hptiop_post_msg_itl(struct hptiop_hba *hba, u32 msg) { writel(msg, &hba->u.itl.iop->inbound_msgaddr0); readl(&hba->u.itl.iop->outbound_intstatus); } static void hptiop_post_msg_mv(struct hptiop_hba *hba, u32 msg) { writel(msg, &hba->u.mv.mu->inbound_msg); writel(MVIOP_MU_INBOUND_INT_MSG, &hba->u.mv.regs->inbound_doorbell); readl(&hba->u.mv.regs->inbound_doorbell); } static void hptiop_post_msg_mvfrey(struct hptiop_hba *hba, u32 msg) { writel(msg, &(hba->u.mvfrey.mu->f0_to_cpu_msg_a)); readl(&(hba->u.mvfrey.mu->f0_to_cpu_msg_a)); } static int iop_send_sync_msg(struct hptiop_hba *hba, u32 msg, u32 millisec) { u32 i; hba->msg_done = 0; hba->ops->disable_intr(hba); hba->ops->post_msg(hba, msg); for (i = 0; i < millisec; i++) { spin_lock_irq(hba->host->host_lock); hba->ops->iop_intr(hba); spin_unlock_irq(hba->host->host_lock); if (hba->msg_done) break; msleep(1); } hba->ops->enable_intr(hba); return hba->msg_done? 0 : -1; } static int iop_get_config_itl(struct hptiop_hba *hba, struct hpt_iop_request_get_config *config) { u32 req32; struct hpt_iop_request_get_config __iomem *req; req32 = readl(&hba->u.itl.iop->inbound_queue); if (req32 == IOPMU_QUEUE_EMPTY) return -1; req = (struct hpt_iop_request_get_config __iomem *) ((unsigned long)hba->u.itl.iop + req32); writel(0, &req->header.flags); writel(IOP_REQUEST_TYPE_GET_CONFIG, &req->header.type); writel(sizeof(struct hpt_iop_request_get_config), &req->header.size); writel(IOP_RESULT_PENDING, &req->header.result); if (iop_send_sync_request_itl(hba, req, 20000)) { dprintk("Get config send cmd failed\n"); return -1; } memcpy_fromio(config, req, sizeof(*config)); writel(req32, &hba->u.itl.iop->outbound_queue); return 0; } static int iop_get_config_mv(struct hptiop_hba *hba, struct hpt_iop_request_get_config *config) { struct hpt_iop_request_get_config *req = hba->u.mv.internal_req; req->header.flags = cpu_to_le32(IOP_REQUEST_FLAG_OUTPUT_CONTEXT); req->header.type = cpu_to_le32(IOP_REQUEST_TYPE_GET_CONFIG); req->header.size = cpu_to_le32(sizeof(struct hpt_iop_request_get_config)); req->header.result = cpu_to_le32(IOP_RESULT_PENDING); req->header.context = cpu_to_le32(IOP_REQUEST_TYPE_GET_CONFIG<<5); req->header.context_hi32 = 0; if (iop_send_sync_request_mv(hba, 0, 20000)) { dprintk("Get config send cmd failed\n"); return -1; } memcpy(config, req, sizeof(struct hpt_iop_request_get_config)); return 0; } static int iop_get_config_mvfrey(struct hptiop_hba *hba, struct hpt_iop_request_get_config *config) { struct hpt_iop_request_get_config *info = hba->u.mvfrey.config; if (info->header.size != sizeof(struct hpt_iop_request_get_config) || info->header.type != IOP_REQUEST_TYPE_GET_CONFIG) return -1; config->interface_version = info->interface_version; config->firmware_version = info->firmware_version; config->max_requests = info->max_requests; config->request_size = info->request_size; config->max_sg_count = info->max_sg_count; config->data_transfer_length = info->data_transfer_length; config->alignment_mask = info->alignment_mask; config->max_devices = info->max_devices; config->sdram_size = info->sdram_size; return 0; } static int iop_set_config_itl(struct hptiop_hba *hba, struct hpt_iop_request_set_config *config) { u32 req32; struct hpt_iop_request_set_config __iomem *req; req32 = readl(&hba->u.itl.iop->inbound_queue); if (req32 == IOPMU_QUEUE_EMPTY) return -1; req = (struct hpt_iop_request_set_config __iomem *) ((unsigned long)hba->u.itl.iop + req32); memcpy_toio((u8 __iomem *)req + sizeof(struct hpt_iop_request_header), (u8 *)config + sizeof(struct hpt_iop_request_header), sizeof(struct hpt_iop_request_set_config) - sizeof(struct hpt_iop_request_header)); writel(0, &req->header.flags); writel(IOP_REQUEST_TYPE_SET_CONFIG, &req->header.type); writel(sizeof(struct hpt_iop_request_set_config), &req->header.size); writel(IOP_RESULT_PENDING, &req->header.result); if (iop_send_sync_request_itl(hba, req, 20000)) { dprintk("Set config send cmd failed\n"); return -1; } writel(req32, &hba->u.itl.iop->outbound_queue); return 0; } static int iop_set_config_mv(struct hptiop_hba *hba, struct hpt_iop_request_set_config *config) { struct hpt_iop_request_set_config *req = hba->u.mv.internal_req; memcpy(req, config, sizeof(struct hpt_iop_request_set_config)); req->header.flags = cpu_to_le32(IOP_REQUEST_FLAG_OUTPUT_CONTEXT); req->header.type = cpu_to_le32(IOP_REQUEST_TYPE_SET_CONFIG); req->header.size = cpu_to_le32(sizeof(struct hpt_iop_request_set_config)); req->header.result = cpu_to_le32(IOP_RESULT_PENDING); req->header.context = cpu_to_le32(IOP_REQUEST_TYPE_SET_CONFIG<<5); req->header.context_hi32 = 0; if (iop_send_sync_request_mv(hba, 0, 20000)) { dprintk("Set config send cmd failed\n"); return -1; } return 0; } static int iop_set_config_mvfrey(struct hptiop_hba *hba, struct hpt_iop_request_set_config *config) { struct hpt_iop_request_set_config *req = hba->u.mvfrey.internal_req.req_virt; memcpy(req, config, sizeof(struct hpt_iop_request_set_config)); req->header.flags = cpu_to_le32(IOP_REQUEST_FLAG_OUTPUT_CONTEXT); req->header.type = cpu_to_le32(IOP_REQUEST_TYPE_SET_CONFIG); req->header.size = cpu_to_le32(sizeof(struct hpt_iop_request_set_config)); req->header.result = cpu_to_le32(IOP_RESULT_PENDING); req->header.context = cpu_to_le32(IOP_REQUEST_TYPE_SET_CONFIG<<5); req->header.context_hi32 = 0; if (iop_send_sync_request_mvfrey(hba, 0, 20000)) { dprintk("Set config send cmd failed\n"); return -1; } return 0; } static void hptiop_enable_intr_itl(struct hptiop_hba *hba) { writel(~(IOPMU_OUTBOUND_INT_POSTQUEUE | IOPMU_OUTBOUND_INT_MSG0), &hba->u.itl.iop->outbound_intmask); } static void hptiop_enable_intr_mv(struct hptiop_hba *hba) { writel(MVIOP_MU_OUTBOUND_INT_POSTQUEUE | MVIOP_MU_OUTBOUND_INT_MSG, &hba->u.mv.regs->outbound_intmask); } static void hptiop_enable_intr_mvfrey(struct hptiop_hba *hba) { writel(CPU_TO_F0_DRBL_MSG_BIT, &(hba->u.mvfrey.mu->f0_doorbell_enable)); writel(0x1, &(hba->u.mvfrey.mu->isr_enable)); writel(0x1010, &(hba->u.mvfrey.mu->pcie_f0_int_enable)); } static int hptiop_initialize_iop(struct hptiop_hba *hba) { /* enable interrupts */ hba->ops->enable_intr(hba); hba->initialized = 1; /* start background tasks */ if (iop_send_sync_msg(hba, IOPMU_INBOUND_MSG0_START_BACKGROUND_TASK, 5000)) { printk(KERN_ERR "scsi%d: fail to start background task\n", hba->host->host_no); return -1; } return 0; } static void __iomem *hptiop_map_pci_bar(struct hptiop_hba *hba, int index) { u32 mem_base_phy, length; void __iomem *mem_base_virt; struct pci_dev *pcidev = hba->pcidev; if (!(pci_resource_flags(pcidev, index) & IORESOURCE_MEM)) { printk(KERN_ERR "scsi%d: pci resource invalid\n", hba->host->host_no); return NULL; } mem_base_phy = pci_resource_start(pcidev, index); length = pci_resource_len(pcidev, index); mem_base_virt = ioremap(mem_base_phy, length); if (!mem_base_virt) { printk(KERN_ERR "scsi%d: Fail to ioremap memory space\n", hba->host->host_no); return NULL; } return mem_base_virt; } static int hptiop_map_pci_bar_itl(struct hptiop_hba *hba) { struct pci_dev *pcidev = hba->pcidev; hba->u.itl.iop = hptiop_map_pci_bar(hba, 0); if (hba->u.itl.iop == NULL) return -1; if ((pcidev->device & 0xff00) == 0x4400) { hba->u.itl.plx = hba->u.itl.iop; hba->u.itl.iop = hptiop_map_pci_bar(hba, 2); if (hba->u.itl.iop == NULL) { iounmap(hba->u.itl.plx); return -1; } } return 0; } static void hptiop_unmap_pci_bar_itl(struct hptiop_hba *hba) { if (hba->u.itl.plx) iounmap(hba->u.itl.plx); iounmap(hba->u.itl.iop); } static int hptiop_map_pci_bar_mv(struct hptiop_hba *hba) { hba->u.mv.regs = hptiop_map_pci_bar(hba, 0); if (hba->u.mv.regs == NULL) return -1; hba->u.mv.mu = hptiop_map_pci_bar(hba, 2); if (hba->u.mv.mu == NULL) { iounmap(hba->u.mv.regs); return -1; } return 0; } static int hptiop_map_pci_bar_mvfrey(struct hptiop_hba *hba) { hba->u.mvfrey.config = hptiop_map_pci_bar(hba, 0); if (hba->u.mvfrey.config == NULL) return -1; hba->u.mvfrey.mu = hptiop_map_pci_bar(hba, 2); if (hba->u.mvfrey.mu == NULL) { iounmap(hba->u.mvfrey.config); return -1; } return 0; } static void hptiop_unmap_pci_bar_mv(struct hptiop_hba *hba) { iounmap(hba->u.mv.regs); iounmap(hba->u.mv.mu); } static void hptiop_unmap_pci_bar_mvfrey(struct hptiop_hba *hba) { iounmap(hba->u.mvfrey.config); iounmap(hba->u.mvfrey.mu); } static void hptiop_message_callback(struct hptiop_hba *hba, u32 msg) { dprintk("iop message 0x%x\n", msg); if (msg == IOPMU_INBOUND_MSG0_NOP || msg == IOPMU_INBOUND_MSG0_RESET_COMM) hba->msg_done = 1; if (!hba->initialized) return; if (msg == IOPMU_INBOUND_MSG0_RESET) { atomic_set(&hba->resetting, 0); wake_up(&hba->reset_wq); } else if (msg <= IOPMU_INBOUND_MSG0_MAX) hba->msg_done = 1; } static struct hptiop_request *get_req(struct hptiop_hba *hba) { struct hptiop_request *ret; dprintk("get_req : req=%p\n", hba->req_list); ret = hba->req_list; if (ret) hba->req_list = ret->next; return ret; } static void free_req(struct hptiop_hba *hba, struct hptiop_request *req) { dprintk("free_req(%d, %p)\n", req->index, req); req->next = hba->req_list; hba->req_list = req; } static void hptiop_finish_scsi_req(struct hptiop_hba *hba, u32 tag, struct hpt_iop_request_scsi_command *req) { struct scsi_cmnd *scp; dprintk("hptiop_finish_scsi_req: req=%p, type=%d, " "result=%d, context=0x%x tag=%d\n", req, req->header.type, req->header.result, req->header.context, tag); BUG_ON(!req->header.result); BUG_ON(req->header.type != cpu_to_le32(IOP_REQUEST_TYPE_SCSI_COMMAND)); scp = hba->reqs[tag].scp; if (HPT_SCP(scp)->mapped) scsi_dma_unmap(scp); switch (le32_to_cpu(req->header.result)) { case IOP_RESULT_SUCCESS: scsi_set_resid(scp, scsi_bufflen(scp) - le32_to_cpu(req->dataxfer_length)); scp->result = (DID_OK<<16); break; case IOP_RESULT_BAD_TARGET: scp->result = (DID_BAD_TARGET<<16); break; case IOP_RESULT_BUSY: scp->result = (DID_BUS_BUSY<<16); break; case IOP_RESULT_RESET: scp->result = (DID_RESET<<16); break; case IOP_RESULT_FAIL: scp->result = (DID_ERROR<<16); break; case IOP_RESULT_INVALID_REQUEST: scp->result = (DID_ABORT<<16); break; case IOP_RESULT_CHECK_CONDITION: scsi_set_resid(scp, scsi_bufflen(scp) - le32_to_cpu(req->dataxfer_length)); scp->result = SAM_STAT_CHECK_CONDITION; memcpy(scp->sense_buffer, &req->sg_list, SCSI_SENSE_BUFFERSIZE); goto skip_resid; break; default: scp->result = DRIVER_INVALID << 24 | DID_ABORT << 16; break; } scsi_set_resid(scp, scsi_bufflen(scp) - le32_to_cpu(req->dataxfer_length)); skip_resid: dprintk("scsi_done(%p)\n", scp); scp->scsi_done(scp); free_req(hba, &hba->reqs[tag]); } static void hptiop_host_request_callback_itl(struct hptiop_hba *hba, u32 _tag) { struct hpt_iop_request_scsi_command *req; u32 tag; if (hba->iopintf_v2) { tag = _tag & ~IOPMU_QUEUE_REQUEST_RESULT_BIT; req = hba->reqs[tag].req_virt; if (likely(_tag & IOPMU_QUEUE_REQUEST_RESULT_BIT)) req->header.result = cpu_to_le32(IOP_RESULT_SUCCESS); } else { tag = _tag; req = hba->reqs[tag].req_virt; } hptiop_finish_scsi_req(hba, tag, req); } void hptiop_iop_request_callback_itl(struct hptiop_hba *hba, u32 tag) { struct hpt_iop_request_header __iomem *req; struct hpt_iop_request_ioctl_command __iomem *p; struct hpt_ioctl_k *arg; req = (struct hpt_iop_request_header __iomem *) ((unsigned long)hba->u.itl.iop + tag); dprintk("hptiop_iop_request_callback_itl: req=%p, type=%d, " "result=%d, context=0x%x tag=%d\n", req, readl(&req->type), readl(&req->result), readl(&req->context), tag); BUG_ON(!readl(&req->result)); BUG_ON(readl(&req->type) != IOP_REQUEST_TYPE_IOCTL_COMMAND); p = (struct hpt_iop_request_ioctl_command __iomem *)req; arg = (struct hpt_ioctl_k *)(unsigned long) (readl(&req->context) | ((u64)readl(&req->context_hi32)<<32)); if (readl(&req->result) == IOP_RESULT_SUCCESS) { arg->result = HPT_IOCTL_RESULT_OK; if (arg->outbuf_size) memcpy_fromio(arg->outbuf, &p->buf[(readl(&p->inbuf_size) + 3)& ~3], arg->outbuf_size); if (arg->bytes_returned) *arg->bytes_returned = arg->outbuf_size; } else arg->result = HPT_IOCTL_RESULT_FAILED; arg->done(arg); writel(tag, &hba->u.itl.iop->outbound_queue); } static irqreturn_t hptiop_intr(int irq, void *dev_id) { struct hptiop_hba *hba = dev_id; int handled; unsigned long flags; spin_lock_irqsave(hba->host->host_lock, flags); handled = hba->ops->iop_intr(hba); spin_unlock_irqrestore(hba->host->host_lock, flags); return handled; } static int hptiop_buildsgl(struct scsi_cmnd *scp, struct hpt_iopsg *psg) { struct Scsi_Host *host = scp->device->host; struct hptiop_hba *hba = (struct hptiop_hba *)host->hostdata; struct scatterlist *sg; int idx, nseg; nseg = scsi_dma_map(scp); BUG_ON(nseg < 0); if (!nseg) return 0; HPT_SCP(scp)->sgcnt = nseg; HPT_SCP(scp)->mapped = 1; BUG_ON(HPT_SCP(scp)->sgcnt > hba->max_sg_descriptors); scsi_for_each_sg(scp, sg, HPT_SCP(scp)->sgcnt, idx) { psg[idx].pci_address = cpu_to_le64(sg_dma_address(sg)) | hba->ops->host_phy_flag; psg[idx].size = cpu_to_le32(sg_dma_len(sg)); psg[idx].eot = (idx == HPT_SCP(scp)->sgcnt - 1) ? cpu_to_le32(1) : 0; } return HPT_SCP(scp)->sgcnt; } static void hptiop_post_req_itl(struct hptiop_hba *hba, struct hptiop_request *_req) { struct hpt_iop_request_header *reqhdr = _req->req_virt; reqhdr->context = cpu_to_le32(IOPMU_QUEUE_ADDR_HOST_BIT | (u32)_req->index); reqhdr->context_hi32 = 0; if (hba->iopintf_v2) { u32 size, size_bits; size = le32_to_cpu(reqhdr->size); if (size < 256) size_bits = IOPMU_QUEUE_REQUEST_SIZE_BIT; else if (size < 512) size_bits = IOPMU_QUEUE_ADDR_HOST_BIT; else size_bits = IOPMU_QUEUE_REQUEST_SIZE_BIT | IOPMU_QUEUE_ADDR_HOST_BIT; writel(_req->req_shifted_phy | size_bits, &hba->u.itl.iop->inbound_queue); } else writel(_req->req_shifted_phy | IOPMU_QUEUE_ADDR_HOST_BIT, &hba->u.itl.iop->inbound_queue); } static void hptiop_post_req_mv(struct hptiop_hba *hba, struct hptiop_request *_req) { struct hpt_iop_request_header *reqhdr = _req->req_virt; u32 size, size_bit; reqhdr->context = cpu_to_le32(_req->index<<8 | IOP_REQUEST_TYPE_SCSI_COMMAND<<5); reqhdr->context_hi32 = 0; size = le32_to_cpu(reqhdr->size); if (size <= 256) size_bit = 0; else if (size <= 256*2) size_bit = 1; else if (size <= 256*3) size_bit = 2; else size_bit = 3; mv_inbound_write((_req->req_shifted_phy << 5) | MVIOP_MU_QUEUE_ADDR_HOST_BIT | size_bit, hba); } static void hptiop_post_req_mvfrey(struct hptiop_hba *hba, struct hptiop_request *_req) { struct hpt_iop_request_header *reqhdr = _req->req_virt; u32 index; reqhdr->flags |= cpu_to_le32(IOP_REQUEST_FLAG_OUTPUT_CONTEXT | IOP_REQUEST_FLAG_ADDR_BITS | ((_req->req_shifted_phy >> 11) & 0xffff0000)); reqhdr->context = cpu_to_le32(IOPMU_QUEUE_ADDR_HOST_BIT | (_req->index << 4) | reqhdr->type); reqhdr->context_hi32 = cpu_to_le32((_req->req_shifted_phy << 5) & 0xffffffff); hba->u.mvfrey.inlist_wptr++; index = hba->u.mvfrey.inlist_wptr & 0x3fff; if (index == hba->u.mvfrey.list_count) { index = 0; hba->u.mvfrey.inlist_wptr &= ~0x3fff; hba->u.mvfrey.inlist_wptr ^= CL_POINTER_TOGGLE; } hba->u.mvfrey.inlist[index].addr = (dma_addr_t)_req->req_shifted_phy << 5; hba->u.mvfrey.inlist[index].intrfc_len = (reqhdr->size + 3) / 4; writel(hba->u.mvfrey.inlist_wptr, &(hba->u.mvfrey.mu->inbound_write_ptr)); readl(&(hba->u.mvfrey.mu->inbound_write_ptr)); } static int hptiop_reset_comm_itl(struct hptiop_hba *hba) { return 0; } static int hptiop_reset_comm_mv(struct hptiop_hba *hba) { return 0; } static int hptiop_reset_comm_mvfrey(struct hptiop_hba *hba) { u32 list_count = hba->u.mvfrey.list_count; if (iop_send_sync_msg(hba, IOPMU_INBOUND_MSG0_RESET_COMM, 3000)) return -1; /* wait 100ms for MCU ready */ msleep(100); writel(cpu_to_le32(hba->u.mvfrey.inlist_phy & 0xffffffff), &(hba->u.mvfrey.mu->inbound_base)); writel(cpu_to_le32((hba->u.mvfrey.inlist_phy >> 16) >> 16), &(hba->u.mvfrey.mu->inbound_base_high)); writel(cpu_to_le32(hba->u.mvfrey.outlist_phy & 0xffffffff), &(hba->u.mvfrey.mu->outbound_base)); writel(cpu_to_le32((hba->u.mvfrey.outlist_phy >> 16) >> 16), &(hba->u.mvfrey.mu->outbound_base_high)); writel(cpu_to_le32(hba->u.mvfrey.outlist_cptr_phy & 0xffffffff), &(hba->u.mvfrey.mu->outbound_shadow_base)); writel(cpu_to_le32((hba->u.mvfrey.outlist_cptr_phy >> 16) >> 16), &(hba->u.mvfrey.mu->outbound_shadow_base_high)); hba->u.mvfrey.inlist_wptr = (list_count - 1) | CL_POINTER_TOGGLE; *hba->u.mvfrey.outlist_cptr = (list_count - 1) | CL_POINTER_TOGGLE; hba->u.mvfrey.outlist_rptr = list_count - 1; return 0; } static int hptiop_queuecommand_lck(struct scsi_cmnd *scp, void (*done)(struct scsi_cmnd *)) { struct Scsi_Host *host = scp->device->host; struct hptiop_hba *hba = (struct hptiop_hba *)host->hostdata; struct hpt_iop_request_scsi_command *req; int sg_count = 0; struct hptiop_request *_req; BUG_ON(!done); scp->scsi_done = done; _req = get_req(hba); if (_req == NULL) { dprintk("hptiop_queuecmd : no free req\n"); return SCSI_MLQUEUE_HOST_BUSY; } _req->scp = scp; dprintk("hptiop_queuecmd(scp=%p) %d/%d/%d/%llu cdb=(%08x-%08x-%08x-%08x) " "req_index=%d, req=%p\n", scp, host->host_no, scp->device->channel, scp->device->id, scp->device->lun, cpu_to_be32(((u32 *)scp->cmnd)[0]), cpu_to_be32(((u32 *)scp->cmnd)[1]), cpu_to_be32(((u32 *)scp->cmnd)[2]), cpu_to_be32(((u32 *)scp->cmnd)[3]), _req->index, _req->req_virt); scp->result = 0; if (scp->device->channel || (scp->device->id > hba->max_devices) || ((scp->device->id == (hba->max_devices-1)) && scp->device->lun)) { scp->result = DID_BAD_TARGET << 16; free_req(hba, _req); goto cmd_done; } req = _req->req_virt; /* build S/G table */ sg_count = hptiop_buildsgl(scp, req->sg_list); if (!sg_count) HPT_SCP(scp)->mapped = 0; req->header.flags = cpu_to_le32(IOP_REQUEST_FLAG_OUTPUT_CONTEXT); req->header.type = cpu_to_le32(IOP_REQUEST_TYPE_SCSI_COMMAND); req->header.result = cpu_to_le32(IOP_RESULT_PENDING); req->dataxfer_length = cpu_to_le32(scsi_bufflen(scp)); req->channel = scp->device->channel; req->target = scp->device->id; req->lun = scp->device->lun; req->header.size = cpu_to_le32( sizeof(struct hpt_iop_request_scsi_command) - sizeof(struct hpt_iopsg) + sg_count * sizeof(struct hpt_iopsg)); memcpy(req->cdb, scp->cmnd, sizeof(req->cdb)); hba->ops->post_req(hba, _req); return 0; cmd_done: dprintk("scsi_done(scp=%p)\n", scp); scp->scsi_done(scp); return 0; } static DEF_SCSI_QCMD(hptiop_queuecommand) static const char *hptiop_info(struct Scsi_Host *host) { return driver_name_long; } static int hptiop_reset_hba(struct hptiop_hba *hba) { if (atomic_xchg(&hba->resetting, 1) == 0) { atomic_inc(&hba->reset_count); hba->ops->post_msg(hba, IOPMU_INBOUND_MSG0_RESET); } wait_event_timeout(hba->reset_wq, atomic_read(&hba->resetting) == 0, 60 * HZ); if (atomic_read(&hba->resetting)) { /* IOP is in unknown state, abort reset */ printk(KERN_ERR "scsi%d: reset failed\n", hba->host->host_no); return -1; } if (iop_send_sync_msg(hba, IOPMU_INBOUND_MSG0_START_BACKGROUND_TASK, 5000)) { dprintk("scsi%d: fail to start background task\n", hba->host->host_no); } return 0; } static int hptiop_reset(struct scsi_cmnd *scp) { struct Scsi_Host * host = scp->device->host; struct hptiop_hba * hba = (struct hptiop_hba *)host->hostdata; printk(KERN_WARNING "hptiop_reset(%d/%d/%d) scp=%p\n", scp->device->host->host_no, scp->device->channel, scp->device->id, scp); return hptiop_reset_hba(hba)? FAILED : SUCCESS; } static int hptiop_adjust_disk_queue_depth(struct scsi_device *sdev, int queue_depth) { struct hptiop_hba *hba = (struct hptiop_hba *)sdev->host->hostdata; if (queue_depth > hba->max_requests) queue_depth = hba->max_requests; return scsi_change_queue_depth(sdev, queue_depth); } static ssize_t hptiop_show_version(struct device *dev, struct device_attribute *attr, char *buf) { return snprintf(buf, PAGE_SIZE, "%s\n", driver_ver); } static ssize_t hptiop_show_fw_version(struct device *dev, struct device_attribute *attr, char *buf) { struct Scsi_Host *host = class_to_shost(dev); struct hptiop_hba *hba = (struct hptiop_hba *)host->hostdata; return snprintf(buf, PAGE_SIZE, "%d.%d.%d.%d\n", hba->firmware_version >> 24, (hba->firmware_version >> 16) & 0xff, (hba->firmware_version >> 8) & 0xff, hba->firmware_version & 0xff); } static struct device_attribute hptiop_attr_version = { .attr = { .name = "driver-version", .mode = S_IRUGO, }, .show = hptiop_show_version, }; static struct device_attribute hptiop_attr_fw_version = { .attr = { .name = "firmware-version", .mode = S_IRUGO, }, .show = hptiop_show_fw_version, }; static struct device_attribute *hptiop_attrs[] = { &hptiop_attr_version, &hptiop_attr_fw_version, NULL }; static int hptiop_slave_config(struct scsi_device *sdev) { if (sdev->type == TYPE_TAPE) blk_queue_max_hw_sectors(sdev->request_queue, 8192); return 0; } static struct scsi_host_template driver_template = { .module = THIS_MODULE, .name = driver_name, .queuecommand = hptiop_queuecommand, .eh_device_reset_handler = hptiop_reset, .eh_bus_reset_handler = hptiop_reset, .info = hptiop_info, .emulated = 0, .use_clustering = ENABLE_CLUSTERING, .proc_name = driver_name, .shost_attrs = hptiop_attrs, .slave_configure = hptiop_slave_config, .this_id = -1, .change_queue_depth = hptiop_adjust_disk_queue_depth, }; static int hptiop_internal_memalloc_itl(struct hptiop_hba *hba) { return 0; } static int hptiop_internal_memalloc_mv(struct hptiop_hba *hba) { hba->u.mv.internal_req = dma_alloc_coherent(&hba->pcidev->dev, 0x800, &hba->u.mv.internal_req_phy, GFP_KERNEL); if (hba->u.mv.internal_req) return 0; else return -1; } static int hptiop_internal_memalloc_mvfrey(struct hptiop_hba *hba) { u32 list_count = readl(&hba->u.mvfrey.mu->inbound_conf_ctl); char *p; dma_addr_t phy; BUG_ON(hba->max_request_size == 0); if (list_count == 0) { BUG_ON(1); return -1; } list_count >>= 16; hba->u.mvfrey.list_count = list_count; hba->u.mvfrey.internal_mem_size = 0x800 + list_count * sizeof(struct mvfrey_inlist_entry) + list_count * sizeof(struct mvfrey_outlist_entry) + sizeof(int); p = dma_alloc_coherent(&hba->pcidev->dev, hba->u.mvfrey.internal_mem_size, &phy, GFP_KERNEL); if (!p) return -1; hba->u.mvfrey.internal_req.req_virt = p; hba->u.mvfrey.internal_req.req_shifted_phy = phy >> 5; hba->u.mvfrey.internal_req.scp = NULL; hba->u.mvfrey.internal_req.next = NULL; p += 0x800; phy += 0x800; hba->u.mvfrey.inlist = (struct mvfrey_inlist_entry *)p; hba->u.mvfrey.inlist_phy = phy; p += list_count * sizeof(struct mvfrey_inlist_entry); phy += list_count * sizeof(struct mvfrey_inlist_entry); hba->u.mvfrey.outlist = (struct mvfrey_outlist_entry *)p; hba->u.mvfrey.outlist_phy = phy; p += list_count * sizeof(struct mvfrey_outlist_entry); phy += list_count * sizeof(struct mvfrey_outlist_entry); hba->u.mvfrey.outlist_cptr = (__le32 *)p; hba->u.mvfrey.outlist_cptr_phy = phy; return 0; } static int hptiop_internal_memfree_itl(struct hptiop_hba *hba) { return 0; } static int hptiop_internal_memfree_mv(struct hptiop_hba *hba) { if (hba->u.mv.internal_req) { dma_free_coherent(&hba->pcidev->dev, 0x800, hba->u.mv.internal_req, hba->u.mv.internal_req_phy); return 0; } else return -1; } static int hptiop_internal_memfree_mvfrey(struct hptiop_hba *hba) { if (hba->u.mvfrey.internal_req.req_virt) { dma_free_coherent(&hba->pcidev->dev, hba->u.mvfrey.internal_mem_size, hba->u.mvfrey.internal_req.req_virt, (dma_addr_t) hba->u.mvfrey.internal_req.req_shifted_phy << 5); return 0; } else return -1; } static int hptiop_probe(struct pci_dev *pcidev, const struct pci_device_id *id) { struct Scsi_Host *host = NULL; struct hptiop_hba *hba; struct hptiop_adapter_ops *iop_ops; struct hpt_iop_request_get_config iop_config; struct hpt_iop_request_set_config set_config; dma_addr_t start_phy; void *start_virt; u32 offset, i, req_size; dprintk("hptiop_probe(%p)\n", pcidev); if (pci_enable_device(pcidev)) { printk(KERN_ERR "hptiop: fail to enable pci device\n"); return -ENODEV; } printk(KERN_INFO "adapter at PCI %d:%d:%d, IRQ %d\n", pcidev->bus->number, pcidev->devfn >> 3, pcidev->devfn & 7, pcidev->irq); pci_set_master(pcidev); /* Enable 64bit DMA if possible */ iop_ops = (struct hptiop_adapter_ops *)id->driver_data; if (pci_set_dma_mask(pcidev, DMA_BIT_MASK(iop_ops->hw_dma_bit_mask))) { if (pci_set_dma_mask(pcidev, DMA_BIT_MASK(32))) { printk(KERN_ERR "hptiop: fail to set dma_mask\n"); goto disable_pci_device; } } if (pci_request_regions(pcidev, driver_name)) { printk(KERN_ERR "hptiop: pci_request_regions failed\n"); goto disable_pci_device; } host = scsi_host_alloc(&driver_template, sizeof(struct hptiop_hba)); if (!host) { printk(KERN_ERR "hptiop: fail to alloc scsi host\n"); goto free_pci_regions; } hba = (struct hptiop_hba *)host->hostdata; memset(hba, 0, sizeof(struct hptiop_hba)); hba->ops = iop_ops; hba->pcidev = pcidev; hba->host = host; hba->initialized = 0; hba->iopintf_v2 = 0; atomic_set(&hba->resetting, 0); atomic_set(&hba->reset_count, 0); init_waitqueue_head(&hba->reset_wq); init_waitqueue_head(&hba->ioctl_wq); host->max_lun = 128; host->max_channel = 0; host->io_port = 0; host->n_io_port = 0; host->irq = pcidev->irq; if (hba->ops->map_pci_bar(hba)) goto free_scsi_host; if (hba->ops->iop_wait_ready(hba, 20000)) { printk(KERN_ERR "scsi%d: firmware not ready\n", hba->host->host_no); goto unmap_pci_bar; } if (hba->ops->family == MV_BASED_IOP) { if (hba->ops->internal_memalloc(hba)) { printk(KERN_ERR "scsi%d: internal_memalloc failed\n", hba->host->host_no); goto unmap_pci_bar; } } if (hba->ops->get_config(hba, &iop_config)) { printk(KERN_ERR "scsi%d: get config failed\n", hba->host->host_no); goto unmap_pci_bar; } hba->max_requests = min(le32_to_cpu(iop_config.max_requests), HPTIOP_MAX_REQUESTS); hba->max_devices = le32_to_cpu(iop_config.max_devices); hba->max_request_size = le32_to_cpu(iop_config.request_size); hba->max_sg_descriptors = le32_to_cpu(iop_config.max_sg_count); hba->firmware_version = le32_to_cpu(iop_config.firmware_version); hba->interface_version = le32_to_cpu(iop_config.interface_version); hba->sdram_size = le32_to_cpu(iop_config.sdram_size); if (hba->ops->family == MVFREY_BASED_IOP) { if (hba->ops->internal_memalloc(hba)) { printk(KERN_ERR "scsi%d: internal_memalloc failed\n", hba->host->host_no); goto unmap_pci_bar; } if (hba->ops->reset_comm(hba)) { printk(KERN_ERR "scsi%d: reset comm failed\n", hba->host->host_no); goto unmap_pci_bar; } } if (hba->firmware_version > 0x01020000 || hba->interface_version > 0x01020000) hba->iopintf_v2 = 1; host->max_sectors = le32_to_cpu(iop_config.data_transfer_length) >> 9; host->max_id = le32_to_cpu(iop_config.max_devices); host->sg_tablesize = le32_to_cpu(iop_config.max_sg_count); host->can_queue = le32_to_cpu(iop_config.max_requests); host->cmd_per_lun = le32_to_cpu(iop_config.max_requests); host->max_cmd_len = 16; req_size = sizeof(struct hpt_iop_request_scsi_command) + sizeof(struct hpt_iopsg) * (hba->max_sg_descriptors - 1); if ((req_size & 0x1f) != 0) req_size = (req_size + 0x1f) & ~0x1f; memset(&set_config, 0, sizeof(struct hpt_iop_request_set_config)); set_config.iop_id = cpu_to_le32(host->host_no); set_config.vbus_id = cpu_to_le16(host->host_no); set_config.max_host_request_size = cpu_to_le16(req_size); if (hba->ops->set_config(hba, &set_config)) { printk(KERN_ERR "scsi%d: set config failed\n", hba->host->host_no); goto unmap_pci_bar; } pci_set_drvdata(pcidev, host); if (request_irq(pcidev->irq, hptiop_intr, IRQF_SHARED, driver_name, hba)) { printk(KERN_ERR "scsi%d: request irq %d failed\n", hba->host->host_no, pcidev->irq); goto unmap_pci_bar; } /* Allocate request mem */ dprintk("req_size=%d, max_requests=%d\n", req_size, hba->max_requests); hba->req_size = req_size; hba->req_list = NULL; for (i = 0; i < hba->max_requests; i++) { start_virt = dma_alloc_coherent(&pcidev->dev, hba->req_size + 0x20, &start_phy, GFP_KERNEL); if (!start_virt) { printk(KERN_ERR "scsi%d: fail to alloc request mem\n", hba->host->host_no); goto free_request_mem; } hba->dma_coherent[i] = start_virt; hba->dma_coherent_handle[i] = start_phy; if ((start_phy & 0x1f) != 0) { offset = ((start_phy + 0x1f) & ~0x1f) - start_phy; start_phy += offset; start_virt += offset; } hba->reqs[i].next = NULL; hba->reqs[i].req_virt = start_virt; hba->reqs[i].req_shifted_phy = start_phy >> 5; hba->reqs[i].index = i; free_req(hba, &hba->reqs[i]); } /* Enable Interrupt and start background task */ if (hptiop_initialize_iop(hba)) goto free_request_mem; if (scsi_add_host(host, &pcidev->dev)) { printk(KERN_ERR "scsi%d: scsi_add_host failed\n", hba->host->host_no); goto free_request_mem; } scsi_scan_host(host); dprintk("scsi%d: hptiop_probe successfully\n", hba->host->host_no); return 0; free_request_mem: for (i = 0; i < hba->max_requests; i++) { if (hba->dma_coherent[i] && hba->dma_coherent_handle[i]) dma_free_coherent(&hba->pcidev->dev, hba->req_size + 0x20, hba->dma_coherent[i], hba->dma_coherent_handle[i]); else break; } free_irq(hba->pcidev->irq, hba); unmap_pci_bar: hba->ops->internal_memfree(hba); hba->ops->unmap_pci_bar(hba); free_scsi_host: scsi_host_put(host); free_pci_regions: pci_release_regions(pcidev); disable_pci_device: pci_disable_device(pcidev); dprintk("scsi%d: hptiop_probe fail\n", host ? host->host_no : 0); return -ENODEV; } static void hptiop_shutdown(struct pci_dev *pcidev) { struct Scsi_Host *host = pci_get_drvdata(pcidev); struct hptiop_hba *hba = (struct hptiop_hba *)host->hostdata; dprintk("hptiop_shutdown(%p)\n", hba); /* stop the iop */ if (iop_send_sync_msg(hba, IOPMU_INBOUND_MSG0_SHUTDOWN, 60000)) printk(KERN_ERR "scsi%d: shutdown the iop timeout\n", hba->host->host_no); /* disable all outbound interrupts */ hba->ops->disable_intr(hba); } static void hptiop_disable_intr_itl(struct hptiop_hba *hba) { u32 int_mask; int_mask = readl(&hba->u.itl.iop->outbound_intmask); writel(int_mask | IOPMU_OUTBOUND_INT_MSG0 | IOPMU_OUTBOUND_INT_POSTQUEUE, &hba->u.itl.iop->outbound_intmask); readl(&hba->u.itl.iop->outbound_intmask); } static void hptiop_disable_intr_mv(struct hptiop_hba *hba) { writel(0, &hba->u.mv.regs->outbound_intmask); readl(&hba->u.mv.regs->outbound_intmask); } static void hptiop_disable_intr_mvfrey(struct hptiop_hba *hba) { writel(0, &(hba->u.mvfrey.mu->f0_doorbell_enable)); readl(&(hba->u.mvfrey.mu->f0_doorbell_enable)); writel(0, &(hba->u.mvfrey.mu->isr_enable)); readl(&(hba->u.mvfrey.mu->isr_enable)); writel(0, &(hba->u.mvfrey.mu->pcie_f0_int_enable)); readl(&(hba->u.mvfrey.mu->pcie_f0_int_enable)); } static void hptiop_remove(struct pci_dev *pcidev) { struct Scsi_Host *host = pci_get_drvdata(pcidev); struct hptiop_hba *hba = (struct hptiop_hba *)host->hostdata; u32 i; dprintk("scsi%d: hptiop_remove\n", hba->host->host_no); scsi_remove_host(host); hptiop_shutdown(pcidev); free_irq(hba->pcidev->irq, hba); for (i = 0; i < hba->max_requests; i++) { if (hba->dma_coherent[i] && hba->dma_coherent_handle[i]) dma_free_coherent(&hba->pcidev->dev, hba->req_size + 0x20, hba->dma_coherent[i], hba->dma_coherent_handle[i]); else break; } hba->ops->internal_memfree(hba); hba->ops->unmap_pci_bar(hba); pci_release_regions(hba->pcidev); pci_set_drvdata(hba->pcidev, NULL); pci_disable_device(hba->pcidev); scsi_host_put(host); } static struct hptiop_adapter_ops hptiop_itl_ops = { .family = INTEL_BASED_IOP, .iop_wait_ready = iop_wait_ready_itl, .internal_memalloc = hptiop_internal_memalloc_itl, .internal_memfree = hptiop_internal_memfree_itl, .map_pci_bar = hptiop_map_pci_bar_itl, .unmap_pci_bar = hptiop_unmap_pci_bar_itl, .enable_intr = hptiop_enable_intr_itl, .disable_intr = hptiop_disable_intr_itl, .get_config = iop_get_config_itl, .set_config = iop_set_config_itl, .iop_intr = iop_intr_itl, .post_msg = hptiop_post_msg_itl, .post_req = hptiop_post_req_itl, .hw_dma_bit_mask = 64, .reset_comm = hptiop_reset_comm_itl, .host_phy_flag = cpu_to_le64(0), }; static struct hptiop_adapter_ops hptiop_mv_ops = { .family = MV_BASED_IOP, .iop_wait_ready = iop_wait_ready_mv, .internal_memalloc = hptiop_internal_memalloc_mv, .internal_memfree = hptiop_internal_memfree_mv, .map_pci_bar = hptiop_map_pci_bar_mv, .unmap_pci_bar = hptiop_unmap_pci_bar_mv, .enable_intr = hptiop_enable_intr_mv, .disable_intr = hptiop_disable_intr_mv, .get_config = iop_get_config_mv, .set_config = iop_set_config_mv, .iop_intr = iop_intr_mv, .post_msg = hptiop_post_msg_mv, .post_req = hptiop_post_req_mv, .hw_dma_bit_mask = 33, .reset_comm = hptiop_reset_comm_mv, .host_phy_flag = cpu_to_le64(0), }; static struct hptiop_adapter_ops hptiop_mvfrey_ops = { .family = MVFREY_BASED_IOP, .iop_wait_ready = iop_wait_ready_mvfrey, .internal_memalloc = hptiop_internal_memalloc_mvfrey, .internal_memfree = hptiop_internal_memfree_mvfrey, .map_pci_bar = hptiop_map_pci_bar_mvfrey, .unmap_pci_bar = hptiop_unmap_pci_bar_mvfrey, .enable_intr = hptiop_enable_intr_mvfrey, .disable_intr = hptiop_disable_intr_mvfrey, .get_config = iop_get_config_mvfrey, .set_config = iop_set_config_mvfrey, .iop_intr = iop_intr_mvfrey, .post_msg = hptiop_post_msg_mvfrey, .post_req = hptiop_post_req_mvfrey, .hw_dma_bit_mask = 64, .reset_comm = hptiop_reset_comm_mvfrey, .host_phy_flag = cpu_to_le64(1), }; static struct pci_device_id hptiop_id_table[] = { { PCI_VDEVICE(TTI, 0x3220), (kernel_ulong_t)&hptiop_itl_ops }, { PCI_VDEVICE(TTI, 0x3320), (kernel_ulong_t)&hptiop_itl_ops }, { PCI_VDEVICE(TTI, 0x3410), (kernel_ulong_t)&hptiop_itl_ops }, { PCI_VDEVICE(TTI, 0x3510), (kernel_ulong_t)&hptiop_itl_ops }, { PCI_VDEVICE(TTI, 0x3511), (kernel_ulong_t)&hptiop_itl_ops }, { PCI_VDEVICE(TTI, 0x3520), (kernel_ulong_t)&hptiop_itl_ops }, { PCI_VDEVICE(TTI, 0x3521), (kernel_ulong_t)&hptiop_itl_ops }, { PCI_VDEVICE(TTI, 0x3522), (kernel_ulong_t)&hptiop_itl_ops }, { PCI_VDEVICE(TTI, 0x3530), (kernel_ulong_t)&hptiop_itl_ops }, { PCI_VDEVICE(TTI, 0x3540), (kernel_ulong_t)&hptiop_itl_ops }, { PCI_VDEVICE(TTI, 0x3560), (kernel_ulong_t)&hptiop_itl_ops }, { PCI_VDEVICE(TTI, 0x4210), (kernel_ulong_t)&hptiop_itl_ops }, { PCI_VDEVICE(TTI, 0x4211), (kernel_ulong_t)&hptiop_itl_ops }, { PCI_VDEVICE(TTI, 0x4310), (kernel_ulong_t)&hptiop_itl_ops }, { PCI_VDEVICE(TTI, 0x4311), (kernel_ulong_t)&hptiop_itl_ops }, { PCI_VDEVICE(TTI, 0x4320), (kernel_ulong_t)&hptiop_itl_ops }, { PCI_VDEVICE(TTI, 0x4321), (kernel_ulong_t)&hptiop_itl_ops }, { PCI_VDEVICE(TTI, 0x4322), (kernel_ulong_t)&hptiop_itl_ops }, { PCI_VDEVICE(TTI, 0x4400), (kernel_ulong_t)&hptiop_itl_ops }, { PCI_VDEVICE(TTI, 0x3120), (kernel_ulong_t)&hptiop_mv_ops }, { PCI_VDEVICE(TTI, 0x3122), (kernel_ulong_t)&hptiop_mv_ops }, { PCI_VDEVICE(TTI, 0x3020), (kernel_ulong_t)&hptiop_mv_ops }, { PCI_VDEVICE(TTI, 0x4520), (kernel_ulong_t)&hptiop_mvfrey_ops }, { PCI_VDEVICE(TTI, 0x4522), (kernel_ulong_t)&hptiop_mvfrey_ops }, { PCI_VDEVICE(TTI, 0x3610), (kernel_ulong_t)&hptiop_mvfrey_ops }, { PCI_VDEVICE(TTI, 0x3611), (kernel_ulong_t)&hptiop_mvfrey_ops }, { PCI_VDEVICE(TTI, 0x3620), (kernel_ulong_t)&hptiop_mvfrey_ops }, { PCI_VDEVICE(TTI, 0x3622), (kernel_ulong_t)&hptiop_mvfrey_ops }, { PCI_VDEVICE(TTI, 0x3640), (kernel_ulong_t)&hptiop_mvfrey_ops }, { PCI_VDEVICE(TTI, 0x3660), (kernel_ulong_t)&hptiop_mvfrey_ops }, { PCI_VDEVICE(TTI, 0x3680), (kernel_ulong_t)&hptiop_mvfrey_ops }, { PCI_VDEVICE(TTI, 0x3690), (kernel_ulong_t)&hptiop_mvfrey_ops }, {}, }; MODULE_DEVICE_TABLE(pci, hptiop_id_table); static struct pci_driver hptiop_pci_driver = { .name = driver_name, .id_table = hptiop_id_table, .probe = hptiop_probe, .remove = hptiop_remove, .shutdown = hptiop_shutdown, }; static int __init hptiop_module_init(void) { printk(KERN_INFO "%s %s\n", driver_name_long, driver_ver); return pci_register_driver(&hptiop_pci_driver); } static void __exit hptiop_module_exit(void) { pci_unregister_driver(&hptiop_pci_driver); } module_init(hptiop_module_init); module_exit(hptiop_module_exit); MODULE_LICENSE("GPL");