/* ************************************************************************* * Ralink Tech Inc. * 5F., No.36, Taiyuan St., Jhubei City, * Hsinchu County 302, * Taiwan, R.O.C. * * (c) Copyright 2002-2007, Ralink Technology, Inc. * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version. * * * * This program is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * * GNU General Public License for more details. * * * * You should have received a copy of the GNU General Public License * * along with this program; if not, write to the * * Free Software Foundation, Inc., * * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. * * * *************************************************************************/ #include "../crypt_sha2.h" /* Basic operations */ #define SHR(x,n) (x >> n) /* SHR(x)^n, right shift n bits , x is w-bit word, 0 <= n <= w */ #define ROTR(x,n,w) ((x >> n) | (x << (w - n))) /* ROTR(x)^n, circular right shift n bits , x is w-bit word, 0 <= n <= w */ #define ROTL(x,n,w) ((x << n) | (x >> (w - n))) /* ROTL(x)^n, circular left shift n bits , x is w-bit word, 0 <= n <= w */ #define ROTR32(x,n) ROTR(x,n,32) /* 32 bits word */ #define ROTL32(x,n) ROTL(x,n,32) /* 32 bits word */ /* Basic functions */ #define Ch(x,y,z) ((x & y) ^ ((~x) & z)) #define Maj(x,y,z) ((x & y) ^ (x & z) ^ (y & z)) #define Parity(x,y,z) (x ^ y ^ z) #ifdef SHA1_SUPPORT /* SHA1 constants */ #define SHA1_MASK 0x0000000f static const u32 SHA1_K[4] = { 0x5a827999UL, 0x6ed9eba1UL, 0x8f1bbcdcUL, 0xca62c1d6UL }; static const u32 SHA1_DefaultHashValue[5] = { 0x67452301UL, 0xefcdab89UL, 0x98badcfeUL, 0x10325476UL, 0xc3d2e1f0UL }; /* ======================================================================== Routine Description: Initial struct rt_sha1_ctx Arguments: pSHA_CTX Pointer to struct rt_sha1_ctx Return Value: None Note: None ======================================================================== */ void RT_SHA1_Init(struct rt_sha1_ctx *pSHA_CTX) { NdisMoveMemory(pSHA_CTX->HashValue, SHA1_DefaultHashValue, sizeof(SHA1_DefaultHashValue)); NdisZeroMemory(pSHA_CTX->Block, SHA1_BLOCK_SIZE); pSHA_CTX->MessageLen = 0; pSHA_CTX->BlockLen = 0; } /* End of RT_SHA1_Init */ /* ======================================================================== Routine Description: SHA1 computation for one block (512 bits) Arguments: pSHA_CTX Pointer to struct rt_sha1_ctx Return Value: None Note: None ======================================================================== */ void SHA1_Hash(struct rt_sha1_ctx *pSHA_CTX) { u32 W_i, t, s; u32 W[16]; u32 a, b, c, d, e, T, f_t = 0; /* Prepare the message schedule, {W_i}, 0 < t < 15 */ NdisMoveMemory(W, pSHA_CTX->Block, SHA1_BLOCK_SIZE); for (W_i = 0; W_i < 16; W_i++) W[W_i] = cpu2be32(W[W_i]); /* Endian Swap */ /* End of for */ /* SHA256 hash computation */ /* Initialize the working variables */ a = pSHA_CTX->HashValue[0]; b = pSHA_CTX->HashValue[1]; c = pSHA_CTX->HashValue[2]; d = pSHA_CTX->HashValue[3]; e = pSHA_CTX->HashValue[4]; /* 80 rounds */ for (t = 0; t < 80; t++) { s = t & SHA1_MASK; if (t > 15) { /* Prepare the message schedule, {W_i}, 16 < t < 79 */ W[s] = (W[(s + 13) & SHA1_MASK]) ^ (W[(s + 8) & SHA1_MASK]) ^ (W[(s + 2) & SHA1_MASK]) ^ W[s]; W[s] = ROTL32(W[s], 1); } /* End of if */ switch (t / 20) { case 0: f_t = Ch(b, c, d); break; case 1: f_t = Parity(b, c, d); break; case 2: f_t = Maj(b, c, d); break; case 3: f_t = Parity(b, c, d); break; } /* End of switch */ T = ROTL32(a, 5) + f_t + e + SHA1_K[t / 20] + W[s]; e = d; d = c; c = ROTL32(b, 30); b = a; a = T; } /* End of for */ /* Compute the i^th intermediate hash value H^(i) */ pSHA_CTX->HashValue[0] += a; pSHA_CTX->HashValue[1] += b; pSHA_CTX->HashValue[2] += c; pSHA_CTX->HashValue[3] += d; pSHA_CTX->HashValue[4] += e; NdisZeroMemory(pSHA_CTX->Block, SHA1_BLOCK_SIZE); pSHA_CTX->BlockLen = 0; } /* End of SHA1_Hash */ /* ======================================================================== Routine Description: The message is appended to block. If block size > 64 bytes, the SHA1_Hash will be called. Arguments: pSHA_CTX Pointer to struct rt_sha1_ctx message Message context messageLen The length of message in bytes Return Value: None Note: None ======================================================================== */ void SHA1_Append(struct rt_sha1_ctx *pSHA_CTX, IN const u8 Message[], u32 MessageLen) { u32 appendLen = 0; u32 diffLen = 0; while (appendLen != MessageLen) { diffLen = MessageLen - appendLen; if ((pSHA_CTX->BlockLen + diffLen) < SHA1_BLOCK_SIZE) { NdisMoveMemory(pSHA_CTX->Block + pSHA_CTX->BlockLen, Message + appendLen, diffLen); pSHA_CTX->BlockLen += diffLen; appendLen += diffLen; } else { NdisMoveMemory(pSHA_CTX->Block + pSHA_CTX->BlockLen, Message + appendLen, SHA1_BLOCK_SIZE - pSHA_CTX->BlockLen); appendLen += (SHA1_BLOCK_SIZE - pSHA_CTX->BlockLen); pSHA_CTX->BlockLen = SHA1_BLOCK_SIZE; SHA1_Hash(pSHA_CTX); } /* End of if */ } /* End of while */ pSHA_CTX->MessageLen += MessageLen; } /* End of SHA1_Append */ /* ======================================================================== Routine Description: 1. Append bit 1 to end of the message 2. Append the length of message in rightmost 64 bits 3. Transform the Hash Value to digest message Arguments: pSHA_CTX Pointer to struct rt_sha1_ctx Return Value: digestMessage Digest message Note: None ======================================================================== */ void SHA1_End(struct rt_sha1_ctx *pSHA_CTX, u8 DigestMessage[]) { u32 index; u64 message_length_bits; /* Append bit 1 to end of the message */ NdisFillMemory(pSHA_CTX->Block + pSHA_CTX->BlockLen, 1, 0x80); /* 55 = 64 - 8 - 1: append 1 bit(1 byte) and message length (8 bytes) */ if (pSHA_CTX->BlockLen > 55) SHA1_Hash(pSHA_CTX); /* End of if */ /* Append the length of message in rightmost 64 bits */ message_length_bits = pSHA_CTX->MessageLen * 8; message_length_bits = cpu2be64(message_length_bits); NdisMoveMemory(&pSHA_CTX->Block[56], &message_length_bits, 8); SHA1_Hash(pSHA_CTX); /* Return message digest, transform the u32 hash value to bytes */ for (index = 0; index < 5; index++) pSHA_CTX->HashValue[index] = cpu2be32(pSHA_CTX->HashValue[index]); /* End of for */ NdisMoveMemory(DigestMessage, pSHA_CTX->HashValue, SHA1_DIGEST_SIZE); } /* End of SHA1_End */ /* ======================================================================== Routine Description: SHA1 algorithm Arguments: message Message context messageLen The length of message in bytes Return Value: digestMessage Digest message Note: None ======================================================================== */ void RT_SHA1(IN const u8 Message[], u32 MessageLen, u8 DigestMessage[]) { struct rt_sha1_ctx sha_ctx; NdisZeroMemory(&sha_ctx, sizeof(struct rt_sha1_ctx)); RT_SHA1_Init(&sha_ctx); SHA1_Append(&sha_ctx, Message, MessageLen); SHA1_End(&sha_ctx, DigestMessage); } /* End of RT_SHA1 */ #endif /* SHA1_SUPPORT */ /* End of crypt_sha2.c */