/* * Copyright 2013-2015 Freescale Semiconductor, Inc. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define REG_SET 0x4 #define REG_CLR 0x8 #define REG_TOG 0xc #define MISC0 0x0150 #define MISC0_REFTOP_SELBIASOFF (1 << 3) #define MISC1 0x0160 #define MISC1_IRQ_TEMPHIGH (1 << 29) #define MISC1_IRQ_TEMPLOW (1 << 28) #define MISC1_IRQ_TEMPPANIC (1 << 27) #define IMX6_TEMPSENSE0 0x180 #define IMX6_TEMPSENSE1 0x190 #define IMX6_TEMPSENSE2 0x290 #define IMX7_TEMPSENSE0 0x300 #define IMX7_TEMPSENSE1 0x310 #define TEMPSENSE2 0x0290 #define TEMPSENSE2_LOW_VALUE_SHIFT 0 #define TEMPSENSE2_LOW_VALUE_MASK 0xfff #define TEMPSENSE2_PANIC_VALUE_SHIFT 16 #define TEMPSENSE2_PANIC_VALUE_MASK 0xfff0000 #define IMX6_OCOTP_ANA1 0x04e0 #define IMX7_OCOTP_ANA1 0x04f0 /* * It defines the temperature in millicelsius for passive trip point * that will trigger cooling action when crossed. */ #define IMX_TEMP_PASSIVE 85000 #define IMX_TEMP_PASSIVE_COOL_DELTA 10000 #define IMX_POLLING_DELAY 2000 /* millisecond */ #define IMX_PASSIVE_DELAY 1000 #define FACTOR0 10000000 #define FACTOR1 15423 #define FACTOR2 4148468 #define OFFSET 3580661 #define TEMPMON_V1 1 #define TEMPMON_V2 2 #define TEMPMON_V3 3 #define POWERON 0 #define POWERDOWN 1 #define STOP 0 #define START 1 /* The driver supports 1 passive trip point and 1 critical trip point */ enum imx_thermal_trip { IMX_TRIP_PASSIVE, IMX_TRIP_CRITICAL, IMX_TRIP_NUM, }; enum imx_reg_field_ids { TEMP_VALUE, POWER_DOWN, MEASURE_START, FINISHED, MEASURE_FREQ, PANIC_ALARM, HIGH_ALARM, MAX_REGFIELDS }; struct thermal_soc_data { u32 version; const struct reg_field *reg_fields; }; struct imx_thermal_data { struct thermal_zone_device *tz; struct thermal_cooling_device *cdev[2]; enum thermal_device_mode mode; struct regmap *tempmon; struct regmap_field *temp_value; struct regmap_field *measure; struct regmap_field *finished; struct regmap_field *power_down; struct regmap_field *measure_freq; struct regmap_field *panic_alarm; struct regmap_field *high_alarm; u32 c1, c2; /* See formula in imx_get_sensor_data() */ unsigned long temp_passive; unsigned long temp_critical; unsigned long alarm_temp; unsigned long last_temp; bool irq_enabled; int irq; struct clk *thermal_clk; struct mutex mutex; const struct thermal_soc_data *socdata; }; static struct reg_field imx6q_regfields[MAX_REGFIELDS] = { [TEMP_VALUE] = REG_FIELD(IMX6_TEMPSENSE0, 8, 19), [POWER_DOWN] = REG_FIELD(IMX6_TEMPSENSE0, 0, 0), [MEASURE_START] = REG_FIELD(IMX6_TEMPSENSE0, 1, 1), [FINISHED] = REG_FIELD(IMX6_TEMPSENSE0, 2, 2), [MEASURE_FREQ] = REG_FIELD(IMX6_TEMPSENSE1, 0, 15), [HIGH_ALARM] = REG_FIELD(IMX6_TEMPSENSE0, 20, 31), }; static struct reg_field imx6sx_regfields[MAX_REGFIELDS] = { [TEMP_VALUE] = REG_FIELD(IMX6_TEMPSENSE0, 8, 19), [POWER_DOWN] = REG_FIELD(IMX6_TEMPSENSE0, 0, 0), [MEASURE_START] = REG_FIELD(IMX6_TEMPSENSE0, 1, 1), [FINISHED] = REG_FIELD(IMX6_TEMPSENSE0, 2, 2), [MEASURE_FREQ] = REG_FIELD(IMX6_TEMPSENSE1, 0, 15), [HIGH_ALARM] = REG_FIELD(IMX6_TEMPSENSE0, 20, 31), [PANIC_ALARM] = REG_FIELD(IMX6_TEMPSENSE2, 16, 27), }; static struct reg_field imx7d_regfields[MAX_REGFIELDS] = { [TEMP_VALUE] = REG_FIELD(IMX7_TEMPSENSE1, 0, 8), [POWER_DOWN] = REG_FIELD(IMX7_TEMPSENSE1, 9, 9), [MEASURE_START] = REG_FIELD(IMX7_TEMPSENSE1, 10, 10), [FINISHED] = REG_FIELD(IMX7_TEMPSENSE1, 11, 11), [MEASURE_FREQ] = REG_FIELD(IMX7_TEMPSENSE1, 16, 31), [HIGH_ALARM] = REG_FIELD(IMX7_TEMPSENSE0, 9, 17), [PANIC_ALARM] = REG_FIELD(IMX7_TEMPSENSE0, 18, 26), }; static struct thermal_soc_data thermal_imx6q_data = { .version = TEMPMON_V1, .reg_fields = imx6q_regfields, }; static struct thermal_soc_data thermal_imx6sx_data = { .version = TEMPMON_V2, .reg_fields = imx6sx_regfields, }; static struct thermal_soc_data thermal_imx7d_data = { .version = TEMPMON_V3, .reg_fields = imx7d_regfields, }; static struct imx_thermal_data *imx_thermal_data; static int imx_thermal_regfield_alloc(struct platform_device *pdev) { struct imx_thermal_data *data = platform_get_drvdata(pdev); struct regmap *regmap = data->tempmon; const struct reg_field *reg_fields = data->socdata->reg_fields; data->power_down = devm_regmap_field_alloc(&pdev->dev, regmap, reg_fields[POWERDOWN]); data->measure = devm_regmap_field_alloc(&pdev->dev, regmap, reg_fields[MEASURE_START]); data->finished = devm_regmap_field_alloc(&pdev->dev, regmap, reg_fields[FINISHED]); data->temp_value = devm_regmap_field_alloc(&pdev->dev, regmap, reg_fields[TEMP_VALUE]); data->measure_freq = devm_regmap_field_alloc(&pdev->dev, regmap, reg_fields[MEASURE_FREQ]); data->high_alarm = devm_regmap_field_alloc(&pdev->dev, regmap, reg_fields[HIGH_ALARM]); /* for imx6q tempmon, no panic_alarm available */ if (data->socdata->version != TEMPMON_V1) data->panic_alarm = devm_regmap_field_alloc(&pdev->dev, regmap, reg_fields[PANIC_ALARM]); return 0; } static void imx_set_panic_temp(struct imx_thermal_data *data, signed long panic_temp) { int critical_value; if (data->socdata->version == TEMPMON_V3) critical_value = panic_temp / 1000 + data->c1 - 25; else critical_value = (data->c2 - panic_temp) / data->c1; regmap_field_write(data->panic_alarm, critical_value); } static void imx_set_alarm_temp(struct imx_thermal_data *data, signed long alarm_temp) { int alarm_value; data->alarm_temp = alarm_temp; if (data->socdata->version == TEMPMON_V3) alarm_value = alarm_temp / 1000 + data->c1 - 25; else alarm_value = (data->c2 - alarm_temp) / data->c1; regmap_field_write(data->high_alarm, alarm_value); } static int imx_get_temp(struct thermal_zone_device *tz, unsigned long *temp) { struct imx_thermal_data *data = tz->devdata; unsigned int finished; unsigned int val; mutex_lock(&data->mutex); if (data->mode == THERMAL_DEVICE_ENABLED) { /* Check if a measurement is currently in progress */ regmap_field_read(data->finished, &finished); regmap_field_read(data->temp_value, &val); } else { /* * Every time we measure the temperature, we will power on the * temperature sensor, enable measurements, take a reading, * disable measurements, power off the temperature sensor. */ clk_prepare_enable(data->thermal_clk); regmap_field_write(data->power_down, POWERON); regmap_field_write(data->measure, START); finished = 0; } /* * According to the temp sensor designers, it may require up to ~17us * to complete a measurement. */ if (!finished) { /* On i.MX7, according to the design team, the finished bit can * only keep 1us after the measured data available. It is hard * for software to polling this bit. So wait for 20ms to make * sure the measured data is valid. */ if (data->socdata->version == TEMPMON_V3) msleep(20); else usleep_range(20, 50); regmap_field_read(data->finished, &finished); regmap_field_read(data->temp_value, &val); } if (data->mode != THERMAL_DEVICE_ENABLED) { regmap_field_write(data->measure, STOP); regmap_field_write(data->power_down, POWERDOWN); clk_disable_unprepare(data->thermal_clk); } /* The finished bit is not easy to poll on i.MX7, skip checking it */ if (data->socdata->version != TEMPMON_V3 && !finished) { dev_dbg(&tz->device, "temp measurement never finished\n"); mutex_unlock(&data->mutex); return -EAGAIN; } /* See imx_get_sensor_data() for formula derivation */ if (data->socdata->version == TEMPMON_V3) *temp = (val - data->c1 + 25) * 1000; else *temp = data->c2 - val * data->c1; /* Update alarm value to next higher trip point */ if (data->alarm_temp == data->temp_passive && *temp >= data->temp_passive) imx_set_alarm_temp(data, data->temp_critical); if (data->alarm_temp == data->temp_critical && *temp < data->temp_passive) { imx_set_alarm_temp(data, data->temp_passive); dev_dbg(&tz->device, "thermal alarm off: T < %lu\n", data->alarm_temp / 1000); } if (*temp != data->last_temp) { dev_dbg(&tz->device, "millicelsius: %ld\n", *temp); data->last_temp = *temp; } /* Reenable alarm IRQ if temperature below alarm temperature */ if (!data->irq_enabled && *temp < data->alarm_temp) { data->irq_enabled = true; enable_irq(data->irq); } mutex_unlock(&data->mutex); return 0; } static int imx_get_mode(struct thermal_zone_device *tz, enum thermal_device_mode *mode) { struct imx_thermal_data *data = tz->devdata; *mode = data->mode; return 0; } static int imx_set_mode(struct thermal_zone_device *tz, enum thermal_device_mode mode) { struct imx_thermal_data *data = tz->devdata; if (mode == THERMAL_DEVICE_ENABLED) { tz->polling_delay = IMX_POLLING_DELAY; tz->passive_delay = IMX_PASSIVE_DELAY; regmap_field_write(data->power_down, POWERON); regmap_field_write(data->measure, START); if (!data->irq_enabled) { data->irq_enabled = true; enable_irq(data->irq); } } else { regmap_field_write(data->measure, STOP); regmap_field_write(data->power_down, POWERDOWN); tz->polling_delay = 0; tz->passive_delay = 0; if (data->irq_enabled) { disable_irq(data->irq); data->irq_enabled = false; } } data->mode = mode; thermal_zone_device_update(tz); return 0; } static int imx_get_trip_type(struct thermal_zone_device *tz, int trip, enum thermal_trip_type *type) { *type = (trip == IMX_TRIP_PASSIVE) ? THERMAL_TRIP_PASSIVE : THERMAL_TRIP_CRITICAL; return 0; } static int imx_get_crit_temp(struct thermal_zone_device *tz, unsigned long *temp) { struct imx_thermal_data *data = tz->devdata; *temp = data->temp_critical; return 0; } static int imx_get_trip_temp(struct thermal_zone_device *tz, int trip, unsigned long *temp) { struct imx_thermal_data *data = tz->devdata; *temp = (trip == IMX_TRIP_PASSIVE) ? data->temp_passive : data->temp_critical; return 0; } static int imx_set_trip_temp(struct thermal_zone_device *tz, int trip, unsigned long temp) { struct imx_thermal_data *data = tz->devdata; if (trip == IMX_TRIP_CRITICAL) { data->temp_critical = temp; if (data->socdata->version == TEMPMON_V2) imx_set_panic_temp(data, temp); } if (trip == IMX_TRIP_PASSIVE) { if (temp > IMX_TEMP_PASSIVE) return -EINVAL; data->temp_passive = temp; imx_set_alarm_temp(data, temp); } return 0; } static int imx_get_trend(struct thermal_zone_device *tz, int trip, enum thermal_trend *trend) { int ret; unsigned long trip_temp; ret = imx_get_trip_temp(tz, trip, &trip_temp); if (ret < 0) return ret; if (tz->temperature >= (trip_temp - IMX_TEMP_PASSIVE_COOL_DELTA)) *trend = THERMAL_TREND_RAISE_FULL; else *trend = THERMAL_TREND_DROP_FULL; return 0; } static int imx_bind(struct thermal_zone_device *tz, struct thermal_cooling_device *cdev) { int ret; ret = thermal_zone_bind_cooling_device(tz, IMX_TRIP_PASSIVE, cdev, THERMAL_NO_LIMIT, THERMAL_NO_LIMIT); if (ret) { dev_err(&tz->device, "binding zone %s with cdev %s failed:%d\n", tz->type, cdev->type, ret); return ret; } return 0; } static int imx_unbind(struct thermal_zone_device *tz, struct thermal_cooling_device *cdev) { int ret; ret = thermal_zone_unbind_cooling_device(tz, IMX_TRIP_PASSIVE, cdev); if (ret) { dev_err(&tz->device, "unbinding zone %s with cdev %s failed:%d\n", tz->type, cdev->type, ret); return ret; } return 0; } static struct thermal_zone_device_ops imx_tz_ops = { .bind = imx_bind, .unbind = imx_unbind, .get_temp = imx_get_temp, .get_mode = imx_get_mode, .set_mode = imx_set_mode, .get_trip_type = imx_get_trip_type, .get_trip_temp = imx_get_trip_temp, .get_crit_temp = imx_get_crit_temp, .set_trip_temp = imx_set_trip_temp, .get_trend = imx_get_trend, }; static inline void imx6_calibrate_data(struct imx_thermal_data *data, u32 val) { int t1, t2, n1, n2; u64 temp64; /* * Sensor data layout: * [31:20] - sensor value @ 25C * [19:8] - sensor value of hot * [7:0] - hot temperature value * Use universal formula now and only need sensor value @ 25C * slope = 0.4297157 - (0.0015976 * 25C fuse) */ n1 = val >> 20; n2 = (val & 0xfff00) >> 8; t2 = val & 0xff; t1 = 25; /* t1 always 25C */ /* * Derived from linear interpolation: * slope = 0.4297157 - (0.0015976 * 25C fuse) * slope = (FACTOR2 - FACTOR1 * n1) / FACTOR0 * offset = OFFSET / 1000000 * (Nmeas - n1) / (Tmeas - t1) = slope * We want to reduce this down to the minimum computation necessary * for each temperature read. Also, we want Tmeas in millicelsius * and we don't want to lose precision from integer division. So... * Tmeas = (Nmeas - n1) / slope + t1 + offset * milli_Tmeas = 1000 * (Nmeas - n1) / slope + 1000 * t1 + OFFSET / 1000 * milli_Tmeas = -1000 * (n1 - Nmeas) / slope + 1000 * t1 + OFFSET /1000 * Let constant c1 = (-1000 / slope) * milli_Tmeas = (n1 - Nmeas) * c1 + 1000 * t1 + OFFSET / 1000 * Let constant c2 = n1 *c1 + 1000 * t1 + OFFSET / 1000 * milli_Tmeas = c2 - Nmeas * c1 */ temp64 = FACTOR0; temp64 *= 1000; do_div(temp64, FACTOR1 * n1 - FACTOR2); data->c1 = temp64; temp64 = OFFSET; do_div(temp64, 1000); data->c2 = n1 * data->c1 + 1000 * t1 + temp64; } /* * On i.MX7, we only use the calibration data at 25C to get the temp, * Tmeas = ( Nmeas - n1) + 25; n1 is the fuse value for 25C. */ static inline void imx7_calibrate_data(struct imx_thermal_data *data, u32 val) { data->c1 = (val >> 9) & 0x1ff; } static int imx_get_sensor_data(struct platform_device *pdev) { struct imx_thermal_data *data = platform_get_drvdata(pdev); struct regmap *map; int ret; u32 val; map = syscon_regmap_lookup_by_phandle(pdev->dev.of_node, "fsl,tempmon-data"); if (IS_ERR(map)) { ret = PTR_ERR(map); dev_err(&pdev->dev, "failed to get sensor regmap: %d\n", ret); return ret; } if (data->socdata->version == TEMPMON_V3) ret = regmap_read(map, IMX7_OCOTP_ANA1, &val); else ret = regmap_read(map, IMX6_OCOTP_ANA1, &val); if (ret) { dev_err(&pdev->dev, "failed to read sensor data: %d\n", ret); return ret; } if (val == 0 || val == ~0) { dev_err(&pdev->dev, "invalid sensor calibration data\n"); return -EINVAL; } if (data->socdata->version == TEMPMON_V3) imx7_calibrate_data(data, val); else imx6_calibrate_data(data, val); /* * Set the default passive cooling trip point to IMX_TEMP_PASSIVE. * Can be changed from userspace. */ data->temp_passive = IMX_TEMP_PASSIVE; /* * Set the default critical trip point to 20 C higher * than passive trip point. Can be changed from userspace. */ data->temp_critical = IMX_TEMP_PASSIVE + 20 * 1000; return 0; } static irqreturn_t imx_thermal_alarm_irq(int irq, void *dev) { struct imx_thermal_data *data = dev; disable_irq_nosync(irq); data->irq_enabled = false; return IRQ_WAKE_THREAD; } static irqreturn_t imx_thermal_alarm_irq_thread(int irq, void *dev) { struct imx_thermal_data *data = dev; dev_dbg(&data->tz->device, "THERMAL ALARM: T > %lu\n", data->alarm_temp / 1000); thermal_zone_device_update(data->tz); return IRQ_HANDLED; } static const struct of_device_id of_imx_thermal_match[] = { { .compatible = "fsl,imx6q-tempmon", .data = &thermal_imx6q_data, }, { .compatible = "fsl,imx6sx-tempmon", .data = &thermal_imx6sx_data, }, { .compatible = "fsl,imx7d-tempmon", .data = &thermal_imx7d_data, }, { /* end */ } }; MODULE_DEVICE_TABLE(of, of_imx_thermal_match); static int thermal_notifier_event(struct notifier_block *this, unsigned long event, void *ptr) { mutex_lock(&imx_thermal_data->mutex); switch (event) { /* * In low_bus_freq_mode, the thermal sensor auto measurement * can be disabled to low the power consumption. */ case LOW_BUSFREQ_ENTER: regmap_field_write(imx_thermal_data->measure, STOP); regmap_field_write(imx_thermal_data->power_down, POWERDOWN); imx_thermal_data->mode = THERMAL_DEVICE_DISABLED; disable_irq(imx_thermal_data->irq); clk_disable_unprepare(imx_thermal_data->thermal_clk); break; /* Enabled thermal auto measurement when exiting low_bus_freq_mode */ case LOW_BUSFREQ_EXIT: clk_prepare_enable(imx_thermal_data->thermal_clk); regmap_field_write(imx_thermal_data->power_down, POWERON); regmap_field_write(imx_thermal_data->measure, START); imx_thermal_data->mode = THERMAL_DEVICE_ENABLED; enable_irq(imx_thermal_data->irq); break; default: break; } mutex_unlock(&imx_thermal_data->mutex); return NOTIFY_OK; } static struct notifier_block thermal_notifier = { .notifier_call = thermal_notifier_event, }; static int imx_thermal_probe(struct platform_device *pdev) { const struct of_device_id *of_id = of_match_device(of_imx_thermal_match, &pdev->dev); struct imx_thermal_data *data; struct cpumask clip_cpus; struct regmap *map; int measure_freq; int ret; data = devm_kzalloc(&pdev->dev, sizeof(*data), GFP_KERNEL); if (!data) return -ENOMEM; imx_thermal_data = data; map = syscon_regmap_lookup_by_phandle(pdev->dev.of_node, "fsl,tempmon"); if (IS_ERR(map)) { ret = PTR_ERR(map); dev_err(&pdev->dev, "failed to get tempmon regmap: %d\n", ret); return ret; } data->tempmon = map; data->socdata = of_id->data; data->thermal_clk = devm_clk_get(&pdev->dev, NULL); if (IS_ERR(data->thermal_clk)) { dev_warn(&pdev->dev, "failed to get thermal clk!\n"); } else { /* * Thermal sensor needs clk on to get correct value, normally * we should enable its clk before taking measurement and disable * clk after measurement is done, but if alarm function is enabled, * hardware will auto measure the temperature periodically, so we * need to keep the clk always on for alarm function. */ ret = clk_prepare_enable(data->thermal_clk); if (ret) dev_warn(&pdev->dev, "failed to enable thermal clk: %d\n", ret); } mutex_init(&data->mutex); /* make sure the IRQ flag is clear before enable irq */ if (data->socdata->version != TEMPMON_V3) regmap_write(map, MISC1 + REG_CLR, MISC1_IRQ_TEMPHIGH); if (data->socdata->version == TEMPMON_V2) { /* * reset value of LOW ALARM is incorrect, set it to lowest * value to avoid false trigger of low alarm. */ regmap_write(map, TEMPSENSE2 + REG_SET, TEMPSENSE2_LOW_VALUE_MASK); regmap_write(map, MISC1 + REG_CLR, MISC1_IRQ_TEMPLOW | MISC1_IRQ_TEMPPANIC); } data->irq = platform_get_irq(pdev, 0); if (data->irq < 0) { ret = data->irq; goto out; } platform_set_drvdata(pdev, data); /* Allocate the regmap_field for the imx_thermal */ imx_thermal_regfield_alloc(pdev); ret = imx_get_sensor_data(pdev); if (ret) { dev_err(&pdev->dev, "failed to get sensor data\n"); goto out; } /* Make sure sensor is in known good state for measurements */ regmap_field_write(data->power_down, POWERON); regmap_field_write(data->measure, STOP); regmap_field_write(data->measure_freq, 0); if (data->socdata->version != TEMPMON_V3) regmap_write(map, MISC0 + REG_SET, MISC0_REFTOP_SELBIASOFF); regmap_field_write(data->power_down, POWERDOWN); cpumask_set_cpu(0, &clip_cpus); data->cdev[0] = cpufreq_cooling_register(&clip_cpus); if (IS_ERR(data->cdev[0])) { ret = PTR_ERR(data->cdev[0]); dev_err(&pdev->dev, "failed to register cpufreq cooling device: %d\n", ret); goto out; } data->cdev[1] = devfreq_cooling_register(); if (IS_ERR(data->cdev[1])) { ret = PTR_ERR(data->cdev[1]); dev_err(&pdev->dev, "failed to register devfreq cooling device: %d\n", ret); goto out; } data->tz = thermal_zone_device_register("imx_thermal_zone", IMX_TRIP_NUM, (1 << IMX_TRIP_NUM) - 1, data, &imx_tz_ops, NULL, IMX_PASSIVE_DELAY, IMX_POLLING_DELAY); if (IS_ERR(data->tz)) { ret = PTR_ERR(data->tz); dev_err(&pdev->dev, "failed to register thermal zone device %d\n", ret); cpufreq_cooling_unregister(data->cdev[0]); devfreq_cooling_unregister(data->cdev[1]); goto out; } /* Enable measurements at ~ 10 Hz */ measure_freq = DIV_ROUND_UP(32768, 10); /* 10 Hz */ regmap_field_write(data->measure_freq, measure_freq); imx_set_alarm_temp(data, data->temp_passive); if (data->socdata->version == TEMPMON_V2) imx_set_panic_temp(data, data->temp_critical); regmap_field_write(data->power_down, POWERON); regmap_field_write(data->measure, START); ret = devm_request_threaded_irq(&pdev->dev, data->irq, imx_thermal_alarm_irq, imx_thermal_alarm_irq_thread, 0, "imx_thermal", data); if (ret < 0) { dev_err(&pdev->dev, "failed to request alarm irq: %d\n", ret); goto out; } data->irq_enabled = true; data->mode = THERMAL_DEVICE_ENABLED; /* register the busfreq notifier called in low bus freq */ if (data->socdata->version != TEMPMON_V3) register_busfreq_notifier(&thermal_notifier); return 0; out: clk_disable_unprepare(data->thermal_clk); return ret; } static int imx_thermal_remove(struct platform_device *pdev) { struct imx_thermal_data *data = platform_get_drvdata(pdev); if (data->socdata->version != TEMPMON_V3) unregister_busfreq_notifier(&thermal_notifier); /* Disable measurements */ regmap_field_write(data->power_down, POWERDOWN); if (!IS_ERR(data->thermal_clk)) clk_disable_unprepare(data->thermal_clk); thermal_zone_device_unregister(data->tz); cpufreq_cooling_unregister(data->cdev[0]); devfreq_cooling_unregister(data->cdev[1]); return 0; } #ifdef CONFIG_PM_SLEEP static int imx_thermal_suspend(struct device *dev) { struct imx_thermal_data *data = dev_get_drvdata(dev); /* * Need to disable thermal sensor, otherwise, when thermal core * try to get temperature before thermal sensor resume, a wrong * temperature will be read as the thermal sensor is powered * down. */ regmap_field_write(data->measure, STOP); regmap_field_write(data->power_down, POWERDOWN); data->mode = THERMAL_DEVICE_DISABLED; disable_irq(data->irq); clk_disable_unprepare(data->thermal_clk); return 0; } static int imx_thermal_resume(struct device *dev) { struct imx_thermal_data *data = dev_get_drvdata(dev); /* Enabled thermal sensor after resume */ clk_prepare_enable(data->thermal_clk); regmap_field_write(data->power_down, POWERON); regmap_field_write(data->measure, START); data->mode = THERMAL_DEVICE_ENABLED; enable_irq(data->irq); return 0; } #endif static SIMPLE_DEV_PM_OPS(imx_thermal_pm_ops, imx_thermal_suspend, imx_thermal_resume); static struct platform_driver imx_thermal = { .driver = { .name = "imx_thermal", .owner = THIS_MODULE, .pm = &imx_thermal_pm_ops, .of_match_table = of_imx_thermal_match, }, .probe = imx_thermal_probe, .remove = imx_thermal_remove, }; static int __init imx_thermal_init(void) { return platform_driver_register(&imx_thermal); } late_initcall(imx_thermal_init); MODULE_AUTHOR("Freescale Semiconductor, Inc."); MODULE_DESCRIPTION("Thermal driver for Freescale i.MX SoCs"); MODULE_LICENSE("GPL v2"); MODULE_ALIAS("platform:imx-thermal");