/* QLogic qed NIC Driver * Copyright (c) 2015 QLogic Corporation * * This software is available under the terms of the GNU General Public License * (GPL) Version 2, available from the file COPYING in the main directory of * this source tree. */ #ifndef _QED_CHAIN_H #define _QED_CHAIN_H #include #include #include #include #include #include /* dma_addr_t manip */ #define DMA_LO_LE(x) cpu_to_le32(lower_32_bits(x)) #define DMA_HI_LE(x) cpu_to_le32(upper_32_bits(x)) #define HILO_GEN(hi, lo, type) ((((type)(hi)) << 32) + (lo)) #define HILO_DMA(hi, lo) HILO_GEN(hi, lo, dma_addr_t) #define HILO_64(hi, lo) HILO_GEN((le32_to_cpu(hi)), (le32_to_cpu(lo)), u64) #define HILO_DMA_REGPAIR(regpair) (HILO_DMA(regpair.hi, regpair.lo)) #define HILO_64_REGPAIR(regpair) (HILO_64(regpair.hi, regpair.lo)) enum qed_chain_mode { /* Each Page contains a next pointer at its end */ QED_CHAIN_MODE_NEXT_PTR, /* Chain is a single page (next ptr) is unrequired */ QED_CHAIN_MODE_SINGLE, /* Page pointers are located in a side list */ QED_CHAIN_MODE_PBL, }; enum qed_chain_use_mode { QED_CHAIN_USE_TO_PRODUCE, /* Chain starts empty */ QED_CHAIN_USE_TO_CONSUME, /* Chain starts full */ QED_CHAIN_USE_TO_CONSUME_PRODUCE, /* Chain starts empty */ }; struct qed_chain_next { struct regpair next_phys; void *next_virt; }; struct qed_chain_pbl { dma_addr_t p_phys_table; void *p_virt_table; u16 prod_page_idx; u16 cons_page_idx; }; struct qed_chain { void *p_virt_addr; dma_addr_t p_phys_addr; void *p_prod_elem; void *p_cons_elem; u16 page_cnt; enum qed_chain_mode mode; enum qed_chain_use_mode intended_use; /* used to produce/consume */ u16 capacity; /*< number of _usable_ elements */ u16 size; /* number of elements */ u16 prod_idx; u16 cons_idx; u16 elem_per_page; u16 elem_per_page_mask; u16 elem_unusable; u16 usable_per_page; u16 elem_size; u16 next_page_mask; struct qed_chain_pbl pbl; }; #define QED_CHAIN_PBL_ENTRY_SIZE (8) #define QED_CHAIN_PAGE_SIZE (0x1000) #define ELEMS_PER_PAGE(elem_size) (QED_CHAIN_PAGE_SIZE / (elem_size)) #define UNUSABLE_ELEMS_PER_PAGE(elem_size, mode) \ ((mode == QED_CHAIN_MODE_NEXT_PTR) ? \ (1 + ((sizeof(struct qed_chain_next) - 1) / \ (elem_size))) : 0) #define USABLE_ELEMS_PER_PAGE(elem_size, mode) \ ((u32)(ELEMS_PER_PAGE(elem_size) - \ UNUSABLE_ELEMS_PER_PAGE(elem_size, mode))) #define QED_CHAIN_PAGE_CNT(elem_cnt, elem_size, mode) \ DIV_ROUND_UP(elem_cnt, USABLE_ELEMS_PER_PAGE(elem_size, mode)) /* Accessors */ static inline u16 qed_chain_get_prod_idx(struct qed_chain *p_chain) { return p_chain->prod_idx; } static inline u16 qed_chain_get_cons_idx(struct qed_chain *p_chain) { return p_chain->cons_idx; } static inline u16 qed_chain_get_elem_left(struct qed_chain *p_chain) { u16 used; /* we don't need to trancate upon assignmet, as we assign u32->u16 */ used = ((u32)0x10000u + (u32)(p_chain->prod_idx)) - (u32)p_chain->cons_idx; if (p_chain->mode == QED_CHAIN_MODE_NEXT_PTR) used -= p_chain->prod_idx / p_chain->elem_per_page - p_chain->cons_idx / p_chain->elem_per_page; return p_chain->capacity - used; } static inline u8 qed_chain_is_full(struct qed_chain *p_chain) { return qed_chain_get_elem_left(p_chain) == p_chain->capacity; } static inline u8 qed_chain_is_empty(struct qed_chain *p_chain) { return qed_chain_get_elem_left(p_chain) == 0; } static inline u16 qed_chain_get_elem_per_page( struct qed_chain *p_chain) { return p_chain->elem_per_page; } static inline u16 qed_chain_get_usable_per_page( struct qed_chain *p_chain) { return p_chain->usable_per_page; } static inline u16 qed_chain_get_unusable_per_page( struct qed_chain *p_chain) { return p_chain->elem_unusable; } static inline u16 qed_chain_get_size(struct qed_chain *p_chain) { return p_chain->size; } static inline dma_addr_t qed_chain_get_pbl_phys(struct qed_chain *p_chain) { return p_chain->pbl.p_phys_table; } /** * @brief qed_chain_advance_page - * * Advance the next element accros pages for a linked chain * * @param p_chain * @param p_next_elem * @param idx_to_inc * @param page_to_inc */ static inline void qed_chain_advance_page(struct qed_chain *p_chain, void **p_next_elem, u16 *idx_to_inc, u16 *page_to_inc) { switch (p_chain->mode) { case QED_CHAIN_MODE_NEXT_PTR: { struct qed_chain_next *p_next = *p_next_elem; *p_next_elem = p_next->next_virt; *idx_to_inc += p_chain->elem_unusable; break; } case QED_CHAIN_MODE_SINGLE: *p_next_elem = p_chain->p_virt_addr; break; case QED_CHAIN_MODE_PBL: /* It is assumed pages are sequential, next element needs * to change only when passing going back to first from last. */ if (++(*page_to_inc) == p_chain->page_cnt) { *page_to_inc = 0; *p_next_elem = p_chain->p_virt_addr; } } } #define is_unusable_idx(p, idx) \ (((p)->idx & (p)->elem_per_page_mask) == (p)->usable_per_page) #define is_unusable_next_idx(p, idx) \ ((((p)->idx + 1) & (p)->elem_per_page_mask) == (p)->usable_per_page) #define test_ans_skip(p, idx) \ do { \ if (is_unusable_idx(p, idx)) { \ (p)->idx += (p)->elem_unusable; \ } \ } while (0) /** * @brief qed_chain_return_multi_produced - * * A chain in which the driver "Produces" elements should use this API * to indicate previous produced elements are now consumed. * * @param p_chain * @param num */ static inline void qed_chain_return_multi_produced(struct qed_chain *p_chain, u16 num) { p_chain->cons_idx += num; test_ans_skip(p_chain, cons_idx); } /** * @brief qed_chain_return_produced - * * A chain in which the driver "Produces" elements should use this API * to indicate previous produced elements are now consumed. * * @param p_chain */ static inline void qed_chain_return_produced(struct qed_chain *p_chain) { p_chain->cons_idx++; test_ans_skip(p_chain, cons_idx); } /** * @brief qed_chain_produce - * * A chain in which the driver "Produces" elements should use this to get * a pointer to the next element which can be "Produced". It's driver * responsibility to validate that the chain has room for new element. * * @param p_chain * * @return void*, a pointer to next element */ static inline void *qed_chain_produce(struct qed_chain *p_chain) { void *ret = NULL; if ((p_chain->prod_idx & p_chain->elem_per_page_mask) == p_chain->next_page_mask) { qed_chain_advance_page(p_chain, &p_chain->p_prod_elem, &p_chain->prod_idx, &p_chain->pbl.prod_page_idx); } ret = p_chain->p_prod_elem; p_chain->prod_idx++; p_chain->p_prod_elem = (void *)(((u8 *)p_chain->p_prod_elem) + p_chain->elem_size); return ret; } /** * @brief qed_chain_get_capacity - * * Get the maximum number of BDs in chain * * @param p_chain * @param num * * @return u16, number of unusable BDs */ static inline u16 qed_chain_get_capacity(struct qed_chain *p_chain) { return p_chain->capacity; } /** * @brief qed_chain_recycle_consumed - * * Returns an element which was previously consumed; * Increments producers so they could be written to FW. * * @param p_chain */ static inline void qed_chain_recycle_consumed(struct qed_chain *p_chain) { test_ans_skip(p_chain, prod_idx); p_chain->prod_idx++; } /** * @brief qed_chain_consume - * * A Chain in which the driver utilizes data written by a different source * (i.e., FW) should use this to access passed buffers. * * @param p_chain * * @return void*, a pointer to the next buffer written */ static inline void *qed_chain_consume(struct qed_chain *p_chain) { void *ret = NULL; if ((p_chain->cons_idx & p_chain->elem_per_page_mask) == p_chain->next_page_mask) { qed_chain_advance_page(p_chain, &p_chain->p_cons_elem, &p_chain->cons_idx, &p_chain->pbl.cons_page_idx); } ret = p_chain->p_cons_elem; p_chain->cons_idx++; p_chain->p_cons_elem = (void *)(((u8 *)p_chain->p_cons_elem) + p_chain->elem_size); return ret; } /** * @brief qed_chain_reset - Resets the chain to its start state * * @param p_chain pointer to a previously allocted chain */ static inline void qed_chain_reset(struct qed_chain *p_chain) { int i; p_chain->prod_idx = 0; p_chain->cons_idx = 0; p_chain->p_cons_elem = p_chain->p_virt_addr; p_chain->p_prod_elem = p_chain->p_virt_addr; if (p_chain->mode == QED_CHAIN_MODE_PBL) { p_chain->pbl.prod_page_idx = p_chain->page_cnt - 1; p_chain->pbl.cons_page_idx = p_chain->page_cnt - 1; } switch (p_chain->intended_use) { case QED_CHAIN_USE_TO_CONSUME_PRODUCE: case QED_CHAIN_USE_TO_PRODUCE: /* Do nothing */ break; case QED_CHAIN_USE_TO_CONSUME: /* produce empty elements */ for (i = 0; i < p_chain->capacity; i++) qed_chain_recycle_consumed(p_chain); break; } } /** * @brief qed_chain_init - Initalizes a basic chain struct * * @param p_chain * @param p_virt_addr * @param p_phys_addr physical address of allocated buffer's beginning * @param page_cnt number of pages in the allocated buffer * @param elem_size size of each element in the chain * @param intended_use * @param mode */ static inline void qed_chain_init(struct qed_chain *p_chain, void *p_virt_addr, dma_addr_t p_phys_addr, u16 page_cnt, u8 elem_size, enum qed_chain_use_mode intended_use, enum qed_chain_mode mode) { /* chain fixed parameters */ p_chain->p_virt_addr = p_virt_addr; p_chain->p_phys_addr = p_phys_addr; p_chain->elem_size = elem_size; p_chain->page_cnt = page_cnt; p_chain->mode = mode; p_chain->intended_use = intended_use; p_chain->elem_per_page = ELEMS_PER_PAGE(elem_size); p_chain->usable_per_page = USABLE_ELEMS_PER_PAGE(elem_size, mode); p_chain->capacity = p_chain->usable_per_page * page_cnt; p_chain->size = p_chain->elem_per_page * page_cnt; p_chain->elem_per_page_mask = p_chain->elem_per_page - 1; p_chain->elem_unusable = UNUSABLE_ELEMS_PER_PAGE(elem_size, mode); p_chain->next_page_mask = (p_chain->usable_per_page & p_chain->elem_per_page_mask); if (mode == QED_CHAIN_MODE_NEXT_PTR) { struct qed_chain_next *p_next; u16 i; for (i = 0; i < page_cnt - 1; i++) { /* Increment mem_phy to the next page. */ p_phys_addr += QED_CHAIN_PAGE_SIZE; /* Initialize the physical address of the next page. */ p_next = (struct qed_chain_next *)((u8 *)p_virt_addr + elem_size * p_chain-> usable_per_page); p_next->next_phys.lo = DMA_LO_LE(p_phys_addr); p_next->next_phys.hi = DMA_HI_LE(p_phys_addr); /* Initialize the virtual address of the next page. */ p_next->next_virt = (void *)((u8 *)p_virt_addr + QED_CHAIN_PAGE_SIZE); /* Move to the next page. */ p_virt_addr = p_next->next_virt; } /* Last page's next should point to beginning of the chain */ p_next = (struct qed_chain_next *)((u8 *)p_virt_addr + elem_size * p_chain->usable_per_page); p_next->next_phys.lo = DMA_LO_LE(p_chain->p_phys_addr); p_next->next_phys.hi = DMA_HI_LE(p_chain->p_phys_addr); p_next->next_virt = p_chain->p_virt_addr; } qed_chain_reset(p_chain); } /** * @brief qed_chain_pbl_init - Initalizes a basic pbl chain * struct * @param p_chain * @param p_virt_addr virtual address of allocated buffer's beginning * @param p_phys_addr physical address of allocated buffer's beginning * @param page_cnt number of pages in the allocated buffer * @param elem_size size of each element in the chain * @param use_mode * @param p_phys_pbl pointer to a pre-allocated side table * which will hold physical page addresses. * @param p_virt_pbl pointer to a pre allocated side table * which will hold virtual page addresses. */ static inline void qed_chain_pbl_init(struct qed_chain *p_chain, void *p_virt_addr, dma_addr_t p_phys_addr, u16 page_cnt, u8 elem_size, enum qed_chain_use_mode use_mode, dma_addr_t p_phys_pbl, dma_addr_t *p_virt_pbl) { dma_addr_t *p_pbl_dma = p_virt_pbl; int i; qed_chain_init(p_chain, p_virt_addr, p_phys_addr, page_cnt, elem_size, use_mode, QED_CHAIN_MODE_PBL); p_chain->pbl.p_phys_table = p_phys_pbl; p_chain->pbl.p_virt_table = p_virt_pbl; /* Fill the PBL with physical addresses*/ for (i = 0; i < page_cnt; i++) { *p_pbl_dma = p_phys_addr; p_phys_addr += QED_CHAIN_PAGE_SIZE; p_pbl_dma++; } } /** * @brief qed_chain_set_prod - sets the prod to the given * value * * @param prod_idx * @param p_prod_elem */ static inline void qed_chain_set_prod(struct qed_chain *p_chain, u16 prod_idx, void *p_prod_elem) { p_chain->prod_idx = prod_idx; p_chain->p_prod_elem = p_prod_elem; } /** * @brief qed_chain_get_elem - * * get a pointer to an element represented by absolute idx * * @param p_chain * @assumption p_chain->size is a power of 2 * * @return void*, a pointer to next element */ static inline void *qed_chain_sge_get_elem(struct qed_chain *p_chain, u16 idx) { void *ret = NULL; if (idx >= p_chain->size) return NULL; ret = (u8 *)p_chain->p_virt_addr + p_chain->elem_size * idx; return ret; } /** * @brief qed_chain_sge_inc_cons_prod * * for sge chains, producer isn't increased serially, the ring * is expected to be full at all times. Once elements are * consumed, they are immediately produced. * * @param p_chain * @param cnt * * @return inline void */ static inline void qed_chain_sge_inc_cons_prod(struct qed_chain *p_chain, u16 cnt) { p_chain->prod_idx += cnt; p_chain->cons_idx += cnt; } #endif