/* * bootmem - A boot-time physical memory allocator and configurator * * Copyright (C) 1999 Ingo Molnar * 1999 Kanoj Sarcar, SGI * 2008 Johannes Weiner * * Access to this subsystem has to be serialized externally (which is true * for the boot process anyway). */ #include #include #include #include #include #include #include #include #include #include #include #include "internal.h" #ifndef CONFIG_NEED_MULTIPLE_NODES struct pglist_data __refdata contig_page_data; EXPORT_SYMBOL(contig_page_data); #endif unsigned long max_low_pfn; unsigned long min_low_pfn; unsigned long max_pfn; static void * __init __alloc_memory_core_early(int nid, u64 size, u64 align, u64 goal, u64 limit) { void *ptr; u64 addr; if (limit > memblock.current_limit) limit = memblock.current_limit; addr = find_memory_core_early(nid, size, align, goal, limit); if (addr == MEMBLOCK_ERROR) return NULL; ptr = phys_to_virt(addr); memset(ptr, 0, size); memblock_x86_reserve_range(addr, addr + size, "BOOTMEM"); /* * The min_count is set to 0 so that bootmem allocated blocks * are never reported as leaks. */ kmemleak_alloc(ptr, size, 0, 0); return ptr; } /* * free_bootmem_late - free bootmem pages directly to page allocator * @addr: starting address of the range * @size: size of the range in bytes * * This is only useful when the bootmem allocator has already been torn * down, but we are still initializing the system. Pages are given directly * to the page allocator, no bootmem metadata is updated because it is gone. */ void __init free_bootmem_late(unsigned long addr, unsigned long size) { unsigned long cursor, end; kmemleak_free_part(__va(addr), size); cursor = PFN_UP(addr); end = PFN_DOWN(addr + size); for (; cursor < end; cursor++) { __free_pages_bootmem(pfn_to_page(cursor), 0); totalram_pages++; } } static void __init __free_pages_memory(unsigned long start, unsigned long end) { int i; unsigned long start_aligned, end_aligned; int order = ilog2(BITS_PER_LONG); start_aligned = (start + (BITS_PER_LONG - 1)) & ~(BITS_PER_LONG - 1); end_aligned = end & ~(BITS_PER_LONG - 1); if (end_aligned <= start_aligned) { for (i = start; i < end; i++) __free_pages_bootmem(pfn_to_page(i), 0); return; } for (i = start; i < start_aligned; i++) __free_pages_bootmem(pfn_to_page(i), 0); for (i = start_aligned; i < end_aligned; i += BITS_PER_LONG) __free_pages_bootmem(pfn_to_page(i), order); for (i = end_aligned; i < end; i++) __free_pages_bootmem(pfn_to_page(i), 0); } unsigned long __init free_all_memory_core_early(int nodeid) { int i; u64 start, end; unsigned long count = 0; struct range *range = NULL; int nr_range; nr_range = get_free_all_memory_range(&range, nodeid); for (i = 0; i < nr_range; i++) { start = range[i].start; end = range[i].end; count += end - start; __free_pages_memory(start, end); } return count; } /** * free_all_bootmem_node - release a node's free pages to the buddy allocator * @pgdat: node to be released * * Returns the number of pages actually released. */ unsigned long __init free_all_bootmem_node(pg_data_t *pgdat) { register_page_bootmem_info_node(pgdat); /* free_all_memory_core_early(MAX_NUMNODES) will be called later */ return 0; } /** * free_all_bootmem - release free pages to the buddy allocator * * Returns the number of pages actually released. */ unsigned long __init free_all_bootmem(void) { /* * We need to use MAX_NUMNODES instead of NODE_DATA(0)->node_id * because in some case like Node0 doesn't have RAM installed * low ram will be on Node1 * Use MAX_NUMNODES will make sure all ranges in early_node_map[] * will be used instead of only Node0 related */ return free_all_memory_core_early(MAX_NUMNODES); } /** * free_bootmem_node - mark a page range as usable * @pgdat: node the range resides on * @physaddr: starting address of the range * @size: size of the range in bytes * * Partial pages will be considered reserved and left as they are. * * The range must reside completely on the specified node. */ void __init free_bootmem_node(pg_data_t *pgdat, unsigned long physaddr, unsigned long size) { kmemleak_free_part(__va(physaddr), size); memblock_x86_free_range(physaddr, physaddr + size); } /** * free_bootmem - mark a page range as usable * @addr: starting address of the range * @size: size of the range in bytes * * Partial pages will be considered reserved and left as they are. * * The range must be contiguous but may span node boundaries. */ void __init free_bootmem(unsigned long addr, unsigned long size) { kmemleak_free_part(__va(addr), size); memblock_x86_free_range(addr, addr + size); } static void * __init ___alloc_bootmem_nopanic(unsigned long size, unsigned long align, unsigned long goal, unsigned long limit) { void *ptr; if (WARN_ON_ONCE(slab_is_available())) return kzalloc(size, GFP_NOWAIT); restart: ptr = __alloc_memory_core_early(MAX_NUMNODES, size, align, goal, limit); if (ptr) return ptr; if (goal != 0) { goal = 0; goto restart; } return NULL; } /** * __alloc_bootmem_nopanic - allocate boot memory without panicking * @size: size of the request in bytes * @align: alignment of the region * @goal: preferred starting address of the region * * The goal is dropped if it can not be satisfied and the allocation will * fall back to memory below @goal. * * Allocation may happen on any node in the system. * * Returns NULL on failure. */ void * __init __alloc_bootmem_nopanic(unsigned long size, unsigned long align, unsigned long goal) { unsigned long limit = -1UL; return ___alloc_bootmem_nopanic(size, align, goal, limit); } static void * __init ___alloc_bootmem(unsigned long size, unsigned long align, unsigned long goal, unsigned long limit) { void *mem = ___alloc_bootmem_nopanic(size, align, goal, limit); if (mem) return mem; /* * Whoops, we cannot satisfy the allocation request. */ printk(KERN_ALERT "bootmem alloc of %lu bytes failed!\n", size); panic("Out of memory"); return NULL; } /** * __alloc_bootmem - allocate boot memory * @size: size of the request in bytes * @align: alignment of the region * @goal: preferred starting address of the region * * The goal is dropped if it can not be satisfied and the allocation will * fall back to memory below @goal. * * Allocation may happen on any node in the system. * * The function panics if the request can not be satisfied. */ void * __init __alloc_bootmem(unsigned long size, unsigned long align, unsigned long goal) { unsigned long limit = -1UL; return ___alloc_bootmem(size, align, goal, limit); } /** * __alloc_bootmem_node - allocate boot memory from a specific node * @pgdat: node to allocate from * @size: size of the request in bytes * @align: alignment of the region * @goal: preferred starting address of the region * * The goal is dropped if it can not be satisfied and the allocation will * fall back to memory below @goal. * * Allocation may fall back to any node in the system if the specified node * can not hold the requested memory. * * The function panics if the request can not be satisfied. */ void * __init __alloc_bootmem_node(pg_data_t *pgdat, unsigned long size, unsigned long align, unsigned long goal) { void *ptr; if (WARN_ON_ONCE(slab_is_available())) return kzalloc_node(size, GFP_NOWAIT, pgdat->node_id); ptr = __alloc_memory_core_early(pgdat->node_id, size, align, goal, -1ULL); if (ptr) return ptr; return __alloc_memory_core_early(MAX_NUMNODES, size, align, goal, -1ULL); } void * __init __alloc_bootmem_node_high(pg_data_t *pgdat, unsigned long size, unsigned long align, unsigned long goal) { return __alloc_bootmem_node(pgdat, size, align, goal); } #ifdef CONFIG_SPARSEMEM /** * alloc_bootmem_section - allocate boot memory from a specific section * @size: size of the request in bytes * @section_nr: sparse map section to allocate from * * Return NULL on failure. */ void * __init alloc_bootmem_section(unsigned long size, unsigned long section_nr) { unsigned long pfn, goal, limit; pfn = section_nr_to_pfn(section_nr); goal = pfn << PAGE_SHIFT; limit = section_nr_to_pfn(section_nr + 1) << PAGE_SHIFT; return __alloc_memory_core_early(early_pfn_to_nid(pfn), size, SMP_CACHE_BYTES, goal, limit); } #endif void * __init __alloc_bootmem_node_nopanic(pg_data_t *pgdat, unsigned long size, unsigned long align, unsigned long goal) { void *ptr; if (WARN_ON_ONCE(slab_is_available())) return kzalloc_node(size, GFP_NOWAIT, pgdat->node_id); ptr = __alloc_memory_core_early(pgdat->node_id, size, align, goal, -1ULL); if (ptr) return ptr; return __alloc_bootmem_nopanic(size, align, goal); } #ifndef ARCH_LOW_ADDRESS_LIMIT #define ARCH_LOW_ADDRESS_LIMIT 0xffffffffUL #endif /** * __alloc_bootmem_low - allocate low boot memory * @size: size of the request in bytes * @align: alignment of the region * @goal: preferred starting address of the region * * The goal is dropped if it can not be satisfied and the allocation will * fall back to memory below @goal. * * Allocation may happen on any node in the system. * * The function panics if the request can not be satisfied. */ void * __init __alloc_bootmem_low(unsigned long size, unsigned long align, unsigned long goal) { return ___alloc_bootmem(size, align, goal, ARCH_LOW_ADDRESS_LIMIT); } /** * __alloc_bootmem_low_node - allocate low boot memory from a specific node * @pgdat: node to allocate from * @size: size of the request in bytes * @align: alignment of the region * @goal: preferred starting address of the region * * The goal is dropped if it can not be satisfied and the allocation will * fall back to memory below @goal. * * Allocation may fall back to any node in the system if the specified node * can not hold the requested memory. * * The function panics if the request can not be satisfied. */ void * __init __alloc_bootmem_low_node(pg_data_t *pgdat, unsigned long size, unsigned long align, unsigned long goal) { void *ptr; if (WARN_ON_ONCE(slab_is_available())) return kzalloc_node(size, GFP_NOWAIT, pgdat->node_id); ptr = __alloc_memory_core_early(pgdat->node_id, size, align, goal, ARCH_LOW_ADDRESS_LIMIT); if (ptr) return ptr; return __alloc_memory_core_early(MAX_NUMNODES, size, align, goal, ARCH_LOW_ADDRESS_LIMIT); }