/* * Copyright (C) 2010 IBM Corporation * * Author: * David Safford * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, version 2 of the License. * * See Documentation/security/keys-trusted-encrypted.txt */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "trusted.h" static const char hmac_alg[] = "hmac(sha1)"; static const char hash_alg[] = "sha1"; struct sdesc { struct shash_desc shash; char ctx[]; }; static struct crypto_shash *hashalg; static struct crypto_shash *hmacalg; static struct sdesc *init_sdesc(struct crypto_shash *alg) { struct sdesc *sdesc; int size; size = sizeof(struct shash_desc) + crypto_shash_descsize(alg); sdesc = kmalloc(size, GFP_KERNEL); if (!sdesc) return ERR_PTR(-ENOMEM); sdesc->shash.tfm = alg; sdesc->shash.flags = 0x0; return sdesc; } static int TSS_sha1(const unsigned char *data, unsigned int datalen, unsigned char *digest) { struct sdesc *sdesc; int ret; sdesc = init_sdesc(hashalg); if (IS_ERR(sdesc)) { pr_info("trusted_key: can't alloc %s\n", hash_alg); return PTR_ERR(sdesc); } ret = crypto_shash_digest(&sdesc->shash, data, datalen, digest); kfree(sdesc); return ret; } static int TSS_rawhmac(unsigned char *digest, const unsigned char *key, unsigned int keylen, ...) { struct sdesc *sdesc; va_list argp; unsigned int dlen; unsigned char *data; int ret; sdesc = init_sdesc(hmacalg); if (IS_ERR(sdesc)) { pr_info("trusted_key: can't alloc %s\n", hmac_alg); return PTR_ERR(sdesc); } ret = crypto_shash_setkey(hmacalg, key, keylen); if (ret < 0) goto out; ret = crypto_shash_init(&sdesc->shash); if (ret < 0) goto out; va_start(argp, keylen); for (;;) { dlen = va_arg(argp, unsigned int); if (dlen == 0) break; data = va_arg(argp, unsigned char *); if (data == NULL) { ret = -EINVAL; break; } ret = crypto_shash_update(&sdesc->shash, data, dlen); if (ret < 0) break; } va_end(argp); if (!ret) ret = crypto_shash_final(&sdesc->shash, digest); out: kfree(sdesc); return ret; } /* * calculate authorization info fields to send to TPM */ static int TSS_authhmac(unsigned char *digest, const unsigned char *key, unsigned int keylen, unsigned char *h1, unsigned char *h2, unsigned char h3, ...) { unsigned char paramdigest[SHA1_DIGEST_SIZE]; struct sdesc *sdesc; unsigned int dlen; unsigned char *data; unsigned char c; int ret; va_list argp; sdesc = init_sdesc(hashalg); if (IS_ERR(sdesc)) { pr_info("trusted_key: can't alloc %s\n", hash_alg); return PTR_ERR(sdesc); } c = h3; ret = crypto_shash_init(&sdesc->shash); if (ret < 0) goto out; va_start(argp, h3); for (;;) { dlen = va_arg(argp, unsigned int); if (dlen == 0) break; data = va_arg(argp, unsigned char *); if (!data) { ret = -EINVAL; break; } ret = crypto_shash_update(&sdesc->shash, data, dlen); if (ret < 0) break; } va_end(argp); if (!ret) ret = crypto_shash_final(&sdesc->shash, paramdigest); if (!ret) ret = TSS_rawhmac(digest, key, keylen, SHA1_DIGEST_SIZE, paramdigest, TPM_NONCE_SIZE, h1, TPM_NONCE_SIZE, h2, 1, &c, 0, 0); out: kfree(sdesc); return ret; } /* * verify the AUTH1_COMMAND (Seal) result from TPM */ static int TSS_checkhmac1(unsigned char *buffer, const uint32_t command, const unsigned char *ononce, const unsigned char *key, unsigned int keylen, ...) { uint32_t bufsize; uint16_t tag; uint32_t ordinal; uint32_t result; unsigned char *enonce; unsigned char *continueflag; unsigned char *authdata; unsigned char testhmac[SHA1_DIGEST_SIZE]; unsigned char paramdigest[SHA1_DIGEST_SIZE]; struct sdesc *sdesc; unsigned int dlen; unsigned int dpos; va_list argp; int ret; bufsize = LOAD32(buffer, TPM_SIZE_OFFSET); tag = LOAD16(buffer, 0); ordinal = command; result = LOAD32N(buffer, TPM_RETURN_OFFSET); if (tag == TPM_TAG_RSP_COMMAND) return 0; if (tag != TPM_TAG_RSP_AUTH1_COMMAND) return -EINVAL; authdata = buffer + bufsize - SHA1_DIGEST_SIZE; continueflag = authdata - 1; enonce = continueflag - TPM_NONCE_SIZE; sdesc = init_sdesc(hashalg); if (IS_ERR(sdesc)) { pr_info("trusted_key: can't alloc %s\n", hash_alg); return PTR_ERR(sdesc); } ret = crypto_shash_init(&sdesc->shash); if (ret < 0) goto out; ret = crypto_shash_update(&sdesc->shash, (const u8 *)&result, sizeof result); if (ret < 0) goto out; ret = crypto_shash_update(&sdesc->shash, (const u8 *)&ordinal, sizeof ordinal); if (ret < 0) goto out; va_start(argp, keylen); for (;;) { dlen = va_arg(argp, unsigned int); if (dlen == 0) break; dpos = va_arg(argp, unsigned int); ret = crypto_shash_update(&sdesc->shash, buffer + dpos, dlen); if (ret < 0) break; } va_end(argp); if (!ret) ret = crypto_shash_final(&sdesc->shash, paramdigest); if (ret < 0) goto out; ret = TSS_rawhmac(testhmac, key, keylen, SHA1_DIGEST_SIZE, paramdigest, TPM_NONCE_SIZE, enonce, TPM_NONCE_SIZE, ononce, 1, continueflag, 0, 0); if (ret < 0) goto out; if (memcmp(testhmac, authdata, SHA1_DIGEST_SIZE)) ret = -EINVAL; out: kfree(sdesc); return ret; } /* * verify the AUTH2_COMMAND (unseal) result from TPM */ static int TSS_checkhmac2(unsigned char *buffer, const uint32_t command, const unsigned char *ononce, const unsigned char *key1, unsigned int keylen1, const unsigned char *key2, unsigned int keylen2, ...) { uint32_t bufsize; uint16_t tag; uint32_t ordinal; uint32_t result; unsigned char *enonce1; unsigned char *continueflag1; unsigned char *authdata1; unsigned char *enonce2; unsigned char *continueflag2; unsigned char *authdata2; unsigned char testhmac1[SHA1_DIGEST_SIZE]; unsigned char testhmac2[SHA1_DIGEST_SIZE]; unsigned char paramdigest[SHA1_DIGEST_SIZE]; struct sdesc *sdesc; unsigned int dlen; unsigned int dpos; va_list argp; int ret; bufsize = LOAD32(buffer, TPM_SIZE_OFFSET); tag = LOAD16(buffer, 0); ordinal = command; result = LOAD32N(buffer, TPM_RETURN_OFFSET); if (tag == TPM_TAG_RSP_COMMAND) return 0; if (tag != TPM_TAG_RSP_AUTH2_COMMAND) return -EINVAL; authdata1 = buffer + bufsize - (SHA1_DIGEST_SIZE + 1 + SHA1_DIGEST_SIZE + SHA1_DIGEST_SIZE); authdata2 = buffer + bufsize - (SHA1_DIGEST_SIZE); continueflag1 = authdata1 - 1; continueflag2 = authdata2 - 1; enonce1 = continueflag1 - TPM_NONCE_SIZE; enonce2 = continueflag2 - TPM_NONCE_SIZE; sdesc = init_sdesc(hashalg); if (IS_ERR(sdesc)) { pr_info("trusted_key: can't alloc %s\n", hash_alg); return PTR_ERR(sdesc); } ret = crypto_shash_init(&sdesc->shash); if (ret < 0) goto out; ret = crypto_shash_update(&sdesc->shash, (const u8 *)&result, sizeof result); if (ret < 0) goto out; ret = crypto_shash_update(&sdesc->shash, (const u8 *)&ordinal, sizeof ordinal); if (ret < 0) goto out; va_start(argp, keylen2); for (;;) { dlen = va_arg(argp, unsigned int); if (dlen == 0) break; dpos = va_arg(argp, unsigned int); ret = crypto_shash_update(&sdesc->shash, buffer + dpos, dlen); if (ret < 0) break; } va_end(argp); if (!ret) ret = crypto_shash_final(&sdesc->shash, paramdigest); if (ret < 0) goto out; ret = TSS_rawhmac(testhmac1, key1, keylen1, SHA1_DIGEST_SIZE, paramdigest, TPM_NONCE_SIZE, enonce1, TPM_NONCE_SIZE, ononce, 1, continueflag1, 0, 0); if (ret < 0) goto out; if (memcmp(testhmac1, authdata1, SHA1_DIGEST_SIZE)) { ret = -EINVAL; goto out; } ret = TSS_rawhmac(testhmac2, key2, keylen2, SHA1_DIGEST_SIZE, paramdigest, TPM_NONCE_SIZE, enonce2, TPM_NONCE_SIZE, ononce, 1, continueflag2, 0, 0); if (ret < 0) goto out; if (memcmp(testhmac2, authdata2, SHA1_DIGEST_SIZE)) ret = -EINVAL; out: kfree(sdesc); return ret; } /* * For key specific tpm requests, we will generate and send our * own TPM command packets using the drivers send function. */ static int trusted_tpm_send(const u32 chip_num, unsigned char *cmd, size_t buflen) { int rc; dump_tpm_buf(cmd); rc = tpm_send(chip_num, cmd, buflen); dump_tpm_buf(cmd); if (rc > 0) /* Can't return positive return codes values to keyctl */ rc = -EPERM; return rc; } /* * get a random value from TPM */ static int tpm_get_random(struct tpm_buf *tb, unsigned char *buf, uint32_t len) { int ret; INIT_BUF(tb); store16(tb, TPM_TAG_RQU_COMMAND); store32(tb, TPM_GETRANDOM_SIZE); store32(tb, TPM_ORD_GETRANDOM); store32(tb, len); ret = trusted_tpm_send(TPM_ANY_NUM, tb->data, sizeof tb->data); if (!ret) memcpy(buf, tb->data + TPM_GETRANDOM_SIZE, len); return ret; } static int my_get_random(unsigned char *buf, int len) { struct tpm_buf *tb; int ret; tb = kmalloc(sizeof *tb, GFP_KERNEL); if (!tb) return -ENOMEM; ret = tpm_get_random(tb, buf, len); kfree(tb); return ret; } /* * Lock a trusted key, by extending a selected PCR. * * Prevents a trusted key that is sealed to PCRs from being accessed. * This uses the tpm driver's extend function. */ static int pcrlock(const int pcrnum) { unsigned char hash[SHA1_DIGEST_SIZE]; int ret; if (!capable(CAP_SYS_ADMIN)) return -EPERM; ret = my_get_random(hash, SHA1_DIGEST_SIZE); if (ret < 0) return ret; return tpm_pcr_extend(TPM_ANY_NUM, pcrnum, hash) ? -EINVAL : 0; } /* * Create an object specific authorisation protocol (OSAP) session */ static int osap(struct tpm_buf *tb, struct osapsess *s, const unsigned char *key, uint16_t type, uint32_t handle) { unsigned char enonce[TPM_NONCE_SIZE]; unsigned char ononce[TPM_NONCE_SIZE]; int ret; ret = tpm_get_random(tb, ononce, TPM_NONCE_SIZE); if (ret < 0) return ret; INIT_BUF(tb); store16(tb, TPM_TAG_RQU_COMMAND); store32(tb, TPM_OSAP_SIZE); store32(tb, TPM_ORD_OSAP); store16(tb, type); store32(tb, handle); storebytes(tb, ononce, TPM_NONCE_SIZE); ret = trusted_tpm_send(TPM_ANY_NUM, tb->data, MAX_BUF_SIZE); if (ret < 0) return ret; s->handle = LOAD32(tb->data, TPM_DATA_OFFSET); memcpy(s->enonce, &(tb->data[TPM_DATA_OFFSET + sizeof(uint32_t)]), TPM_NONCE_SIZE); memcpy(enonce, &(tb->data[TPM_DATA_OFFSET + sizeof(uint32_t) + TPM_NONCE_SIZE]), TPM_NONCE_SIZE); return TSS_rawhmac(s->secret, key, SHA1_DIGEST_SIZE, TPM_NONCE_SIZE, enonce, TPM_NONCE_SIZE, ononce, 0, 0); } /* * Create an object independent authorisation protocol (oiap) session */ static int oiap(struct tpm_buf *tb, uint32_t *handle, unsigned char *nonce) { int ret; INIT_BUF(tb); store16(tb, TPM_TAG_RQU_COMMAND); store32(tb, TPM_OIAP_SIZE); store32(tb, TPM_ORD_OIAP); ret = trusted_tpm_send(TPM_ANY_NUM, tb->data, MAX_BUF_SIZE); if (ret < 0) return ret; *handle = LOAD32(tb->data, TPM_DATA_OFFSET); memcpy(nonce, &tb->data[TPM_DATA_OFFSET + sizeof(uint32_t)], TPM_NONCE_SIZE); return 0; } struct tpm_digests { unsigned char encauth[SHA1_DIGEST_SIZE]; unsigned char pubauth[SHA1_DIGEST_SIZE]; unsigned char xorwork[SHA1_DIGEST_SIZE * 2]; unsigned char xorhash[SHA1_DIGEST_SIZE]; unsigned char nonceodd[TPM_NONCE_SIZE]; }; /* * Have the TPM seal(encrypt) the trusted key, possibly based on * Platform Configuration Registers (PCRs). AUTH1 for sealing key. */ static int tpm_seal(struct tpm_buf *tb, uint16_t keytype, uint32_t keyhandle, const unsigned char *keyauth, const unsigned char *data, uint32_t datalen, unsigned char *blob, uint32_t *bloblen, const unsigned char *blobauth, const unsigned char *pcrinfo, uint32_t pcrinfosize) { struct osapsess sess; struct tpm_digests *td; unsigned char cont; uint32_t ordinal; uint32_t pcrsize; uint32_t datsize; int sealinfosize; int encdatasize; int storedsize; int ret; int i; /* alloc some work space for all the hashes */ td = kmalloc(sizeof *td, GFP_KERNEL); if (!td) return -ENOMEM; /* get session for sealing key */ ret = osap(tb, &sess, keyauth, keytype, keyhandle); if (ret < 0) goto out; dump_sess(&sess); /* calculate encrypted authorization value */ memcpy(td->xorwork, sess.secret, SHA1_DIGEST_SIZE); memcpy(td->xorwork + SHA1_DIGEST_SIZE, sess.enonce, SHA1_DIGEST_SIZE); ret = TSS_sha1(td->xorwork, SHA1_DIGEST_SIZE * 2, td->xorhash); if (ret < 0) goto out; ret = tpm_get_random(tb, td->nonceodd, TPM_NONCE_SIZE); if (ret < 0) goto out; ordinal = htonl(TPM_ORD_SEAL); datsize = htonl(datalen); pcrsize = htonl(pcrinfosize); cont = 0; /* encrypt data authorization key */ for (i = 0; i < SHA1_DIGEST_SIZE; ++i) td->encauth[i] = td->xorhash[i] ^ blobauth[i]; /* calculate authorization HMAC value */ if (pcrinfosize == 0) { /* no pcr info specified */ ret = TSS_authhmac(td->pubauth, sess.secret, SHA1_DIGEST_SIZE, sess.enonce, td->nonceodd, cont, sizeof(uint32_t), &ordinal, SHA1_DIGEST_SIZE, td->encauth, sizeof(uint32_t), &pcrsize, sizeof(uint32_t), &datsize, datalen, data, 0, 0); } else { /* pcr info specified */ ret = TSS_authhmac(td->pubauth, sess.secret, SHA1_DIGEST_SIZE, sess.enonce, td->nonceodd, cont, sizeof(uint32_t), &ordinal, SHA1_DIGEST_SIZE, td->encauth, sizeof(uint32_t), &pcrsize, pcrinfosize, pcrinfo, sizeof(uint32_t), &datsize, datalen, data, 0, 0); } if (ret < 0) goto out; /* build and send the TPM request packet */ INIT_BUF(tb); store16(tb, TPM_TAG_RQU_AUTH1_COMMAND); store32(tb, TPM_SEAL_SIZE + pcrinfosize + datalen); store32(tb, TPM_ORD_SEAL); store32(tb, keyhandle); storebytes(tb, td->encauth, SHA1_DIGEST_SIZE); store32(tb, pcrinfosize); storebytes(tb, pcrinfo, pcrinfosize); store32(tb, datalen); storebytes(tb, data, datalen); store32(tb, sess.handle); storebytes(tb, td->nonceodd, TPM_NONCE_SIZE); store8(tb, cont); storebytes(tb, td->pubauth, SHA1_DIGEST_SIZE); ret = trusted_tpm_send(TPM_ANY_NUM, tb->data, MAX_BUF_SIZE); if (ret < 0) goto out; /* calculate the size of the returned Blob */ sealinfosize = LOAD32(tb->data, TPM_DATA_OFFSET + sizeof(uint32_t)); encdatasize = LOAD32(tb->data, TPM_DATA_OFFSET + sizeof(uint32_t) + sizeof(uint32_t) + sealinfosize); storedsize = sizeof(uint32_t) + sizeof(uint32_t) + sealinfosize + sizeof(uint32_t) + encdatasize; /* check the HMAC in the response */ ret = TSS_checkhmac1(tb->data, ordinal, td->nonceodd, sess.secret, SHA1_DIGEST_SIZE, storedsize, TPM_DATA_OFFSET, 0, 0); /* copy the returned blob to caller */ if (!ret) { memcpy(blob, tb->data + TPM_DATA_OFFSET, storedsize); *bloblen = storedsize; } out: kfree(td); return ret; } /* * use the AUTH2_COMMAND form of unseal, to authorize both key and blob */ static int tpm_unseal(struct tpm_buf *tb, uint32_t keyhandle, const unsigned char *keyauth, const unsigned char *blob, int bloblen, const unsigned char *blobauth, unsigned char *data, unsigned int *datalen) { unsigned char nonceodd[TPM_NONCE_SIZE]; unsigned char enonce1[TPM_NONCE_SIZE]; unsigned char enonce2[TPM_NONCE_SIZE]; unsigned char authdata1[SHA1_DIGEST_SIZE]; unsigned char authdata2[SHA1_DIGEST_SIZE]; uint32_t authhandle1 = 0; uint32_t authhandle2 = 0; unsigned char cont = 0; uint32_t ordinal; uint32_t keyhndl; int ret; /* sessions for unsealing key and data */ ret = oiap(tb, &authhandle1, enonce1); if (ret < 0) { pr_info("trusted_key: oiap failed (%d)\n", ret); return ret; } ret = oiap(tb, &authhandle2, enonce2); if (ret < 0) { pr_info("trusted_key: oiap failed (%d)\n", ret); return ret; } ordinal = htonl(TPM_ORD_UNSEAL); keyhndl = htonl(SRKHANDLE); ret = tpm_get_random(tb, nonceodd, TPM_NONCE_SIZE); if (ret < 0) { pr_info("trusted_key: tpm_get_random failed (%d)\n", ret); return ret; } ret = TSS_authhmac(authdata1, keyauth, TPM_NONCE_SIZE, enonce1, nonceodd, cont, sizeof(uint32_t), &ordinal, bloblen, blob, 0, 0); if (ret < 0) return ret; ret = TSS_authhmac(authdata2, blobauth, TPM_NONCE_SIZE, enonce2, nonceodd, cont, sizeof(uint32_t), &ordinal, bloblen, blob, 0, 0); if (ret < 0) return ret; /* build and send TPM request packet */ INIT_BUF(tb); store16(tb, TPM_TAG_RQU_AUTH2_COMMAND); store32(tb, TPM_UNSEAL_SIZE + bloblen); store32(tb, TPM_ORD_UNSEAL); store32(tb, keyhandle); storebytes(tb, blob, bloblen); store32(tb, authhandle1); storebytes(tb, nonceodd, TPM_NONCE_SIZE); store8(tb, cont); storebytes(tb, authdata1, SHA1_DIGEST_SIZE); store32(tb, authhandle2); storebytes(tb, nonceodd, TPM_NONCE_SIZE); store8(tb, cont); storebytes(tb, authdata2, SHA1_DIGEST_SIZE); ret = trusted_tpm_send(TPM_ANY_NUM, tb->data, MAX_BUF_SIZE); if (ret < 0) { pr_info("trusted_key: authhmac failed (%d)\n", ret); return ret; } *datalen = LOAD32(tb->data, TPM_DATA_OFFSET); ret = TSS_checkhmac2(tb->data, ordinal, nonceodd, keyauth, SHA1_DIGEST_SIZE, blobauth, SHA1_DIGEST_SIZE, sizeof(uint32_t), TPM_DATA_OFFSET, *datalen, TPM_DATA_OFFSET + sizeof(uint32_t), 0, 0); if (ret < 0) { pr_info("trusted_key: TSS_checkhmac2 failed (%d)\n", ret); return ret; } memcpy(data, tb->data + TPM_DATA_OFFSET + sizeof(uint32_t), *datalen); return 0; } /* * Have the TPM seal(encrypt) the symmetric key */ static int key_seal(struct trusted_key_payload *p, struct trusted_key_options *o) { struct tpm_buf *tb; int ret; tb = kzalloc(sizeof *tb, GFP_KERNEL); if (!tb) return -ENOMEM; /* include migratable flag at end of sealed key */ p->key[p->key_len] = p->migratable; ret = tpm_seal(tb, o->keytype, o->keyhandle, o->keyauth, p->key, p->key_len + 1, p->blob, &p->blob_len, o->blobauth, o->pcrinfo, o->pcrinfo_len); if (ret < 0) pr_info("trusted_key: srkseal failed (%d)\n", ret); kfree(tb); return ret; } /* * Have the TPM unseal(decrypt) the symmetric key */ static int key_unseal(struct trusted_key_payload *p, struct trusted_key_options *o) { struct tpm_buf *tb; int ret; tb = kzalloc(sizeof *tb, GFP_KERNEL); if (!tb) return -ENOMEM; ret = tpm_unseal(tb, o->keyhandle, o->keyauth, p->blob, p->blob_len, o->blobauth, p->key, &p->key_len); if (ret < 0) pr_info("trusted_key: srkunseal failed (%d)\n", ret); else /* pull migratable flag out of sealed key */ p->migratable = p->key[--p->key_len]; kfree(tb); return ret; } enum { Opt_err = -1, Opt_new, Opt_load, Opt_update, Opt_keyhandle, Opt_keyauth, Opt_blobauth, Opt_pcrinfo, Opt_pcrlock, Opt_migratable }; static const match_table_t key_tokens = { {Opt_new, "new"}, {Opt_load, "load"}, {Opt_update, "update"}, {Opt_keyhandle, "keyhandle=%s"}, {Opt_keyauth, "keyauth=%s"}, {Opt_blobauth, "blobauth=%s"}, {Opt_pcrinfo, "pcrinfo=%s"}, {Opt_pcrlock, "pcrlock=%s"}, {Opt_migratable, "migratable=%s"}, {Opt_err, NULL} }; /* can have zero or more token= options */ static int getoptions(char *c, struct trusted_key_payload *pay, struct trusted_key_options *opt) { substring_t args[MAX_OPT_ARGS]; char *p = c; int token; int res; unsigned long handle; unsigned long lock; while ((p = strsep(&c, " \t"))) { if (*p == '\0' || *p == ' ' || *p == '\t') continue; token = match_token(p, key_tokens, args); switch (token) { case Opt_pcrinfo: opt->pcrinfo_len = strlen(args[0].from) / 2; if (opt->pcrinfo_len > MAX_PCRINFO_SIZE) return -EINVAL; res = hex2bin(opt->pcrinfo, args[0].from, opt->pcrinfo_len); if (res < 0) return -EINVAL; break; case Opt_keyhandle: res = strict_strtoul(args[0].from, 16, &handle); if (res < 0) return -EINVAL; opt->keytype = SEAL_keytype; opt->keyhandle = handle; break; case Opt_keyauth: if (strlen(args[0].from) != 2 * SHA1_DIGEST_SIZE) return -EINVAL; res = hex2bin(opt->keyauth, args[0].from, SHA1_DIGEST_SIZE); if (res < 0) return -EINVAL; break; case Opt_blobauth: if (strlen(args[0].from) != 2 * SHA1_DIGEST_SIZE) return -EINVAL; res = hex2bin(opt->blobauth, args[0].from, SHA1_DIGEST_SIZE); if (res < 0) return -EINVAL; break; case Opt_migratable: if (*args[0].from == '0') pay->migratable = 0; else return -EINVAL; break; case Opt_pcrlock: res = strict_strtoul(args[0].from, 10, &lock); if (res < 0) return -EINVAL; opt->pcrlock = lock; break; default: return -EINVAL; } } return 0; } /* * datablob_parse - parse the keyctl data and fill in the * payload and options structures * * On success returns 0, otherwise -EINVAL. */ static int datablob_parse(char *datablob, struct trusted_key_payload *p, struct trusted_key_options *o) { substring_t args[MAX_OPT_ARGS]; long keylen; int ret = -EINVAL; int key_cmd; char *c; /* main command */ c = strsep(&datablob, " \t"); if (!c) return -EINVAL; key_cmd = match_token(c, key_tokens, args); switch (key_cmd) { case Opt_new: /* first argument is key size */ c = strsep(&datablob, " \t"); if (!c) return -EINVAL; ret = strict_strtol(c, 10, &keylen); if (ret < 0 || keylen < MIN_KEY_SIZE || keylen > MAX_KEY_SIZE) return -EINVAL; p->key_len = keylen; ret = getoptions(datablob, p, o); if (ret < 0) return ret; ret = Opt_new; break; case Opt_load: /* first argument is sealed blob */ c = strsep(&datablob, " \t"); if (!c) return -EINVAL; p->blob_len = strlen(c) / 2; if (p->blob_len > MAX_BLOB_SIZE) return -EINVAL; ret = hex2bin(p->blob, c, p->blob_len); if (ret < 0) return -EINVAL; ret = getoptions(datablob, p, o); if (ret < 0) return ret; ret = Opt_load; break; case Opt_update: /* all arguments are options */ ret = getoptions(datablob, p, o); if (ret < 0) return ret; ret = Opt_update; break; case Opt_err: return -EINVAL; break; } return ret; } static struct trusted_key_options *trusted_options_alloc(void) { struct trusted_key_options *options; options = kzalloc(sizeof *options, GFP_KERNEL); if (options) { /* set any non-zero defaults */ options->keytype = SRK_keytype; options->keyhandle = SRKHANDLE; } return options; } static struct trusted_key_payload *trusted_payload_alloc(struct key *key) { struct trusted_key_payload *p = NULL; int ret; ret = key_payload_reserve(key, sizeof *p); if (ret < 0) return p; p = kzalloc(sizeof *p, GFP_KERNEL); if (p) p->migratable = 1; /* migratable by default */ return p; } /* * trusted_instantiate - create a new trusted key * * Unseal an existing trusted blob or, for a new key, get a * random key, then seal and create a trusted key-type key, * adding it to the specified keyring. * * On success, return 0. Otherwise return errno. */ static int trusted_instantiate(struct key *key, const void *data, size_t datalen) { struct trusted_key_payload *payload = NULL; struct trusted_key_options *options = NULL; char *datablob; int ret = 0; int key_cmd; if (datalen <= 0 || datalen > 32767 || !data) return -EINVAL; datablob = kmalloc(datalen + 1, GFP_KERNEL); if (!datablob) return -ENOMEM; memcpy(datablob, data, datalen); datablob[datalen] = '\0'; options = trusted_options_alloc(); if (!options) { ret = -ENOMEM; goto out; } payload = trusted_payload_alloc(key); if (!payload) { ret = -ENOMEM; goto out; } key_cmd = datablob_parse(datablob, payload, options); if (key_cmd < 0) { ret = key_cmd; goto out; } dump_payload(payload); dump_options(options); switch (key_cmd) { case Opt_load: ret = key_unseal(payload, options); dump_payload(payload); dump_options(options); if (ret < 0) pr_info("trusted_key: key_unseal failed (%d)\n", ret); break; case Opt_new: ret = my_get_random(payload->key, payload->key_len); if (ret < 0) { pr_info("trusted_key: key_create failed (%d)\n", ret); goto out; } ret = key_seal(payload, options); if (ret < 0) pr_info("trusted_key: key_seal failed (%d)\n", ret); break; default: ret = -EINVAL; goto out; } if (!ret && options->pcrlock) ret = pcrlock(options->pcrlock); out: kfree(datablob); kfree(options); if (!ret) rcu_assign_keypointer(key, payload); else kfree(payload); return ret; } static void trusted_rcu_free(struct rcu_head *rcu) { struct trusted_key_payload *p; p = container_of(rcu, struct trusted_key_payload, rcu); memset(p->key, 0, p->key_len); kfree(p); } /* * trusted_update - reseal an existing key with new PCR values */ static int trusted_update(struct key *key, const void *data, size_t datalen) { struct trusted_key_payload *p = key->payload.data; struct trusted_key_payload *new_p; struct trusted_key_options *new_o; char *datablob; int ret = 0; if (!p->migratable) return -EPERM; if (datalen <= 0 || datalen > 32767 || !data) return -EINVAL; datablob = kmalloc(datalen + 1, GFP_KERNEL); if (!datablob) return -ENOMEM; new_o = trusted_options_alloc(); if (!new_o) { ret = -ENOMEM; goto out; } new_p = trusted_payload_alloc(key); if (!new_p) { ret = -ENOMEM; goto out; } memcpy(datablob, data, datalen); datablob[datalen] = '\0'; ret = datablob_parse(datablob, new_p, new_o); if (ret != Opt_update) { ret = -EINVAL; kfree(new_p); goto out; } /* copy old key values, and reseal with new pcrs */ new_p->migratable = p->migratable; new_p->key_len = p->key_len; memcpy(new_p->key, p->key, p->key_len); dump_payload(p); dump_payload(new_p); ret = key_seal(new_p, new_o); if (ret < 0) { pr_info("trusted_key: key_seal failed (%d)\n", ret); kfree(new_p); goto out; } if (new_o->pcrlock) { ret = pcrlock(new_o->pcrlock); if (ret < 0) { pr_info("trusted_key: pcrlock failed (%d)\n", ret); kfree(new_p); goto out; } } rcu_assign_keypointer(key, new_p); call_rcu(&p->rcu, trusted_rcu_free); out: kfree(datablob); kfree(new_o); return ret; } /* * trusted_read - copy the sealed blob data to userspace in hex. * On success, return to userspace the trusted key datablob size. */ static long trusted_read(const struct key *key, char __user *buffer, size_t buflen) { struct trusted_key_payload *p; char *ascii_buf; char *bufp; int i; p = rcu_dereference_key(key); if (!p) return -EINVAL; if (!buffer || buflen <= 0) return 2 * p->blob_len; ascii_buf = kmalloc(2 * p->blob_len, GFP_KERNEL); if (!ascii_buf) return -ENOMEM; bufp = ascii_buf; for (i = 0; i < p->blob_len; i++) bufp = hex_byte_pack(bufp, p->blob[i]); if ((copy_to_user(buffer, ascii_buf, 2 * p->blob_len)) != 0) { kfree(ascii_buf); return -EFAULT; } kfree(ascii_buf); return 2 * p->blob_len; } /* * trusted_destroy - before freeing the key, clear the decrypted data */ static void trusted_destroy(struct key *key) { struct trusted_key_payload *p = key->payload.data; if (!p) return; memset(p->key, 0, p->key_len); kfree(key->payload.data); } struct key_type key_type_trusted = { .name = "trusted", .instantiate = trusted_instantiate, .update = trusted_update, .match = user_match, .destroy = trusted_destroy, .describe = user_describe, .read = trusted_read, }; EXPORT_SYMBOL_GPL(key_type_trusted); static void trusted_shash_release(void) { if (hashalg) crypto_free_shash(hashalg); if (hmacalg) crypto_free_shash(hmacalg); } static int __init trusted_shash_alloc(void) { int ret; hmacalg = crypto_alloc_shash(hmac_alg, 0, CRYPTO_ALG_ASYNC); if (IS_ERR(hmacalg)) { pr_info("trusted_key: could not allocate crypto %s\n", hmac_alg); return PTR_ERR(hmacalg); } hashalg = crypto_alloc_shash(hash_alg, 0, CRYPTO_ALG_ASYNC); if (IS_ERR(hashalg)) { pr_info("trusted_key: could not allocate crypto %s\n", hash_alg); ret = PTR_ERR(hashalg); goto hashalg_fail; } return 0; hashalg_fail: crypto_free_shash(hmacalg); return ret; } static int __init init_trusted(void) { int ret; ret = trusted_shash_alloc(); if (ret < 0) return ret; ret = register_key_type(&key_type_trusted); if (ret < 0) trusted_shash_release(); return ret; } static void __exit cleanup_trusted(void) { trusted_shash_release(); unregister_key_type(&key_type_trusted); } late_initcall(init_trusted); module_exit(cleanup_trusted); MODULE_LICENSE("GPL");