/* * intel_pt.c: Intel Processor Trace support * Copyright (c) 2013-2015, Intel Corporation. * * This program is free software; you can redistribute it and/or modify it * under the terms and conditions of the GNU General Public License, * version 2, as published by the Free Software Foundation. * * This program is distributed in the hope it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * */ #include #include #include #include #include #include #include "../../perf.h" #include "../../util/session.h" #include "../../util/event.h" #include "../../util/evlist.h" #include "../../util/evsel.h" #include "../../util/cpumap.h" #include "../../util/parse-options.h" #include "../../util/parse-events.h" #include "../../util/pmu.h" #include "../../util/debug.h" #include "../../util/auxtrace.h" #include "../../util/tsc.h" #include "../../util/intel-pt.h" #define KiB(x) ((x) * 1024) #define MiB(x) ((x) * 1024 * 1024) #define KiB_MASK(x) (KiB(x) - 1) #define MiB_MASK(x) (MiB(x) - 1) #define INTEL_PT_DEFAULT_SAMPLE_SIZE KiB(4) #define INTEL_PT_MAX_SAMPLE_SIZE KiB(60) #define INTEL_PT_PSB_PERIOD_NEAR 256 struct intel_pt_snapshot_ref { void *ref_buf; size_t ref_offset; bool wrapped; }; struct intel_pt_recording { struct auxtrace_record itr; struct perf_pmu *intel_pt_pmu; int have_sched_switch; struct perf_evlist *evlist; bool snapshot_mode; bool snapshot_init_done; size_t snapshot_size; size_t snapshot_ref_buf_size; int snapshot_ref_cnt; struct intel_pt_snapshot_ref *snapshot_refs; }; static int intel_pt_parse_terms_with_default(struct list_head *formats, const char *str, u64 *config) { struct list_head *terms; struct perf_event_attr attr = { .size = 0, }; int err; terms = malloc(sizeof(struct list_head)); if (!terms) return -ENOMEM; INIT_LIST_HEAD(terms); err = parse_events_terms(terms, str); if (err) goto out_free; attr.config = *config; err = perf_pmu__config_terms(formats, &attr, terms, true, NULL); if (err) goto out_free; *config = attr.config; out_free: parse_events__free_terms(terms); return err; } static int intel_pt_parse_terms(struct list_head *formats, const char *str, u64 *config) { *config = 0; return intel_pt_parse_terms_with_default(formats, str, config); } static u64 intel_pt_masked_bits(u64 mask, u64 bits) { const u64 top_bit = 1ULL << 63; u64 res = 0; int i; for (i = 0; i < 64; i++) { if (mask & top_bit) { res <<= 1; if (bits & top_bit) res |= 1; } mask <<= 1; bits <<= 1; } return res; } static int intel_pt_read_config(struct perf_pmu *intel_pt_pmu, const char *str, struct perf_evlist *evlist, u64 *res) { struct perf_evsel *evsel; u64 mask; *res = 0; mask = perf_pmu__format_bits(&intel_pt_pmu->format, str); if (!mask) return -EINVAL; evlist__for_each(evlist, evsel) { if (evsel->attr.type == intel_pt_pmu->type) { *res = intel_pt_masked_bits(mask, evsel->attr.config); return 0; } } return -EINVAL; } static size_t intel_pt_psb_period(struct perf_pmu *intel_pt_pmu, struct perf_evlist *evlist) { u64 val; int err, topa_multiple_entries; size_t psb_period; if (perf_pmu__scan_file(intel_pt_pmu, "caps/topa_multiple_entries", "%d", &topa_multiple_entries) != 1) topa_multiple_entries = 0; /* * Use caps/topa_multiple_entries to indicate early hardware that had * extra frequent PSBs. */ if (!topa_multiple_entries) { psb_period = 256; goto out; } err = intel_pt_read_config(intel_pt_pmu, "psb_period", evlist, &val); if (err) val = 0; psb_period = 1 << (val + 11); out: pr_debug2("%s psb_period %zu\n", intel_pt_pmu->name, psb_period); return psb_period; } static int intel_pt_pick_bit(int bits, int target) { int pos, pick = -1; for (pos = 0; bits; bits >>= 1, pos++) { if (bits & 1) { if (pos <= target || pick < 0) pick = pos; if (pos >= target) break; } } return pick; } static u64 intel_pt_default_config(struct perf_pmu *intel_pt_pmu) { char buf[256]; int mtc, mtc_periods = 0, mtc_period; int psb_cyc, psb_periods, psb_period; int pos = 0; u64 config; pos += scnprintf(buf + pos, sizeof(buf) - pos, "tsc"); if (perf_pmu__scan_file(intel_pt_pmu, "caps/mtc", "%d", &mtc) != 1) mtc = 1; if (mtc) { if (perf_pmu__scan_file(intel_pt_pmu, "caps/mtc_periods", "%x", &mtc_periods) != 1) mtc_periods = 0; if (mtc_periods) { mtc_period = intel_pt_pick_bit(mtc_periods, 3); pos += scnprintf(buf + pos, sizeof(buf) - pos, ",mtc,mtc_period=%d", mtc_period); } } if (perf_pmu__scan_file(intel_pt_pmu, "caps/psb_cyc", "%d", &psb_cyc) != 1) psb_cyc = 1; if (psb_cyc && mtc_periods) { if (perf_pmu__scan_file(intel_pt_pmu, "caps/psb_periods", "%x", &psb_periods) != 1) psb_periods = 0; if (psb_periods) { psb_period = intel_pt_pick_bit(psb_periods, 3); pos += scnprintf(buf + pos, sizeof(buf) - pos, ",psb_period=%d", psb_period); } } pr_debug2("%s default config: %s\n", intel_pt_pmu->name, buf); intel_pt_parse_terms(&intel_pt_pmu->format, buf, &config); return config; } static int intel_pt_parse_snapshot_options(struct auxtrace_record *itr, struct record_opts *opts, const char *str) { struct intel_pt_recording *ptr = container_of(itr, struct intel_pt_recording, itr); unsigned long long snapshot_size = 0; char *endptr; if (str) { snapshot_size = strtoull(str, &endptr, 0); if (*endptr || snapshot_size > SIZE_MAX) return -1; } opts->auxtrace_snapshot_mode = true; opts->auxtrace_snapshot_size = snapshot_size; ptr->snapshot_size = snapshot_size; return 0; } struct perf_event_attr * intel_pt_pmu_default_config(struct perf_pmu *intel_pt_pmu) { struct perf_event_attr *attr; attr = zalloc(sizeof(struct perf_event_attr)); if (!attr) return NULL; attr->config = intel_pt_default_config(intel_pt_pmu); intel_pt_pmu->selectable = true; return attr; } static size_t intel_pt_info_priv_size(struct auxtrace_record *itr __maybe_unused) { return INTEL_PT_AUXTRACE_PRIV_SIZE; } static void intel_pt_tsc_ctc_ratio(u32 *n, u32 *d) { unsigned int eax = 0, ebx = 0, ecx = 0, edx = 0; __get_cpuid(0x15, &eax, &ebx, &ecx, &edx); *n = ebx; *d = eax; } static int intel_pt_info_fill(struct auxtrace_record *itr, struct perf_session *session, struct auxtrace_info_event *auxtrace_info, size_t priv_size) { struct intel_pt_recording *ptr = container_of(itr, struct intel_pt_recording, itr); struct perf_pmu *intel_pt_pmu = ptr->intel_pt_pmu; struct perf_event_mmap_page *pc; struct perf_tsc_conversion tc = { .time_mult = 0, }; bool cap_user_time_zero = false, per_cpu_mmaps; u64 tsc_bit, mtc_bit, mtc_freq_bits, cyc_bit, noretcomp_bit; u32 tsc_ctc_ratio_n, tsc_ctc_ratio_d; int err; if (priv_size != INTEL_PT_AUXTRACE_PRIV_SIZE) return -EINVAL; intel_pt_parse_terms(&intel_pt_pmu->format, "tsc", &tsc_bit); intel_pt_parse_terms(&intel_pt_pmu->format, "noretcomp", &noretcomp_bit); intel_pt_parse_terms(&intel_pt_pmu->format, "mtc", &mtc_bit); mtc_freq_bits = perf_pmu__format_bits(&intel_pt_pmu->format, "mtc_period"); intel_pt_parse_terms(&intel_pt_pmu->format, "cyc", &cyc_bit); intel_pt_tsc_ctc_ratio(&tsc_ctc_ratio_n, &tsc_ctc_ratio_d); if (!session->evlist->nr_mmaps) return -EINVAL; pc = session->evlist->mmap[0].base; if (pc) { err = perf_read_tsc_conversion(pc, &tc); if (err) { if (err != -EOPNOTSUPP) return err; } else { cap_user_time_zero = tc.time_mult != 0; } if (!cap_user_time_zero) ui__warning("Intel Processor Trace: TSC not available\n"); } per_cpu_mmaps = !cpu_map__empty(session->evlist->cpus); auxtrace_info->type = PERF_AUXTRACE_INTEL_PT; auxtrace_info->priv[INTEL_PT_PMU_TYPE] = intel_pt_pmu->type; auxtrace_info->priv[INTEL_PT_TIME_SHIFT] = tc.time_shift; auxtrace_info->priv[INTEL_PT_TIME_MULT] = tc.time_mult; auxtrace_info->priv[INTEL_PT_TIME_ZERO] = tc.time_zero; auxtrace_info->priv[INTEL_PT_CAP_USER_TIME_ZERO] = cap_user_time_zero; auxtrace_info->priv[INTEL_PT_TSC_BIT] = tsc_bit; auxtrace_info->priv[INTEL_PT_NORETCOMP_BIT] = noretcomp_bit; auxtrace_info->priv[INTEL_PT_HAVE_SCHED_SWITCH] = ptr->have_sched_switch; auxtrace_info->priv[INTEL_PT_SNAPSHOT_MODE] = ptr->snapshot_mode; auxtrace_info->priv[INTEL_PT_PER_CPU_MMAPS] = per_cpu_mmaps; auxtrace_info->priv[INTEL_PT_MTC_BIT] = mtc_bit; auxtrace_info->priv[INTEL_PT_MTC_FREQ_BITS] = mtc_freq_bits; auxtrace_info->priv[INTEL_PT_TSC_CTC_N] = tsc_ctc_ratio_n; auxtrace_info->priv[INTEL_PT_TSC_CTC_D] = tsc_ctc_ratio_d; auxtrace_info->priv[INTEL_PT_CYC_BIT] = cyc_bit; return 0; } static int intel_pt_track_switches(struct perf_evlist *evlist) { const char *sched_switch = "sched:sched_switch"; struct perf_evsel *evsel; int err; if (!perf_evlist__can_select_event(evlist, sched_switch)) return -EPERM; err = parse_events(evlist, sched_switch, NULL); if (err) { pr_debug2("%s: failed to parse %s, error %d\n", __func__, sched_switch, err); return err; } evsel = perf_evlist__last(evlist); perf_evsel__set_sample_bit(evsel, CPU); perf_evsel__set_sample_bit(evsel, TIME); evsel->system_wide = true; evsel->no_aux_samples = true; evsel->immediate = true; return 0; } static void intel_pt_valid_str(char *str, size_t len, u64 valid) { unsigned int val, last = 0, state = 1; int p = 0; str[0] = '\0'; for (val = 0; val <= 64; val++, valid >>= 1) { if (valid & 1) { last = val; switch (state) { case 0: p += scnprintf(str + p, len - p, ","); /* Fall through */ case 1: p += scnprintf(str + p, len - p, "%u", val); state = 2; break; case 2: state = 3; break; case 3: state = 4; break; default: break; } } else { switch (state) { case 3: p += scnprintf(str + p, len - p, ",%u", last); state = 0; break; case 4: p += scnprintf(str + p, len - p, "-%u", last); state = 0; break; default: break; } if (state != 1) state = 0; } } } static int intel_pt_val_config_term(struct perf_pmu *intel_pt_pmu, const char *caps, const char *name, const char *supported, u64 config) { char valid_str[256]; unsigned int shift; unsigned long long valid; u64 bits; int ok; if (perf_pmu__scan_file(intel_pt_pmu, caps, "%llx", &valid) != 1) valid = 0; if (supported && perf_pmu__scan_file(intel_pt_pmu, supported, "%d", &ok) == 1 && !ok) valid = 0; valid |= 1; bits = perf_pmu__format_bits(&intel_pt_pmu->format, name); config &= bits; for (shift = 0; bits && !(bits & 1); shift++) bits >>= 1; config >>= shift; if (config > 63) goto out_err; if (valid & (1 << config)) return 0; out_err: intel_pt_valid_str(valid_str, sizeof(valid_str), valid); pr_err("Invalid %s for %s. Valid values are: %s\n", name, INTEL_PT_PMU_NAME, valid_str); return -EINVAL; } static int intel_pt_validate_config(struct perf_pmu *intel_pt_pmu, struct perf_evsel *evsel) { int err; if (!evsel) return 0; err = intel_pt_val_config_term(intel_pt_pmu, "caps/cycle_thresholds", "cyc_thresh", "caps/psb_cyc", evsel->attr.config); if (err) return err; err = intel_pt_val_config_term(intel_pt_pmu, "caps/mtc_periods", "mtc_period", "caps/mtc", evsel->attr.config); if (err) return err; return intel_pt_val_config_term(intel_pt_pmu, "caps/psb_periods", "psb_period", "caps/psb_cyc", evsel->attr.config); } static int intel_pt_recording_options(struct auxtrace_record *itr, struct perf_evlist *evlist, struct record_opts *opts) { struct intel_pt_recording *ptr = container_of(itr, struct intel_pt_recording, itr); struct perf_pmu *intel_pt_pmu = ptr->intel_pt_pmu; bool have_timing_info, need_immediate = false; struct perf_evsel *evsel, *intel_pt_evsel = NULL; const struct cpu_map *cpus = evlist->cpus; bool privileged = geteuid() == 0 || perf_event_paranoid() < 0; u64 tsc_bit; int err; ptr->evlist = evlist; ptr->snapshot_mode = opts->auxtrace_snapshot_mode; evlist__for_each(evlist, evsel) { if (evsel->attr.type == intel_pt_pmu->type) { if (intel_pt_evsel) { pr_err("There may be only one " INTEL_PT_PMU_NAME " event\n"); return -EINVAL; } evsel->attr.freq = 0; evsel->attr.sample_period = 1; intel_pt_evsel = evsel; opts->full_auxtrace = true; } } if (opts->auxtrace_snapshot_mode && !opts->full_auxtrace) { pr_err("Snapshot mode (-S option) requires " INTEL_PT_PMU_NAME " PMU event (-e " INTEL_PT_PMU_NAME ")\n"); return -EINVAL; } if (opts->use_clockid) { pr_err("Cannot use clockid (-k option) with " INTEL_PT_PMU_NAME "\n"); return -EINVAL; } if (!opts->full_auxtrace) return 0; err = intel_pt_validate_config(intel_pt_pmu, intel_pt_evsel); if (err) return err; /* Set default sizes for snapshot mode */ if (opts->auxtrace_snapshot_mode) { size_t psb_period = intel_pt_psb_period(intel_pt_pmu, evlist); if (!opts->auxtrace_snapshot_size && !opts->auxtrace_mmap_pages) { if (privileged) { opts->auxtrace_mmap_pages = MiB(4) / page_size; } else { opts->auxtrace_mmap_pages = KiB(128) / page_size; if (opts->mmap_pages == UINT_MAX) opts->mmap_pages = KiB(256) / page_size; } } else if (!opts->auxtrace_mmap_pages && !privileged && opts->mmap_pages == UINT_MAX) { opts->mmap_pages = KiB(256) / page_size; } if (!opts->auxtrace_snapshot_size) opts->auxtrace_snapshot_size = opts->auxtrace_mmap_pages * (size_t)page_size; if (!opts->auxtrace_mmap_pages) { size_t sz = opts->auxtrace_snapshot_size; sz = round_up(sz, page_size) / page_size; opts->auxtrace_mmap_pages = roundup_pow_of_two(sz); } if (opts->auxtrace_snapshot_size > opts->auxtrace_mmap_pages * (size_t)page_size) { pr_err("Snapshot size %zu must not be greater than AUX area tracing mmap size %zu\n", opts->auxtrace_snapshot_size, opts->auxtrace_mmap_pages * (size_t)page_size); return -EINVAL; } if (!opts->auxtrace_snapshot_size || !opts->auxtrace_mmap_pages) { pr_err("Failed to calculate default snapshot size and/or AUX area tracing mmap pages\n"); return -EINVAL; } pr_debug2("Intel PT snapshot size: %zu\n", opts->auxtrace_snapshot_size); if (psb_period && opts->auxtrace_snapshot_size <= psb_period + INTEL_PT_PSB_PERIOD_NEAR) ui__warning("Intel PT snapshot size (%zu) may be too small for PSB period (%zu)\n", opts->auxtrace_snapshot_size, psb_period); } /* Set default sizes for full trace mode */ if (opts->full_auxtrace && !opts->auxtrace_mmap_pages) { if (privileged) { opts->auxtrace_mmap_pages = MiB(4) / page_size; } else { opts->auxtrace_mmap_pages = KiB(128) / page_size; if (opts->mmap_pages == UINT_MAX) opts->mmap_pages = KiB(256) / page_size; } } /* Validate auxtrace_mmap_pages */ if (opts->auxtrace_mmap_pages) { size_t sz = opts->auxtrace_mmap_pages * (size_t)page_size; size_t min_sz; if (opts->auxtrace_snapshot_mode) min_sz = KiB(4); else min_sz = KiB(8); if (sz < min_sz || !is_power_of_2(sz)) { pr_err("Invalid mmap size for Intel Processor Trace: must be at least %zuKiB and a power of 2\n", min_sz / 1024); return -EINVAL; } } intel_pt_parse_terms(&intel_pt_pmu->format, "tsc", &tsc_bit); if (opts->full_auxtrace && (intel_pt_evsel->attr.config & tsc_bit)) have_timing_info = true; else have_timing_info = false; /* * Per-cpu recording needs sched_switch events to distinguish different * threads. */ if (have_timing_info && !cpu_map__empty(cpus)) { if (perf_can_record_switch_events()) { bool cpu_wide = !target__none(&opts->target) && !target__has_task(&opts->target); if (!cpu_wide && perf_can_record_cpu_wide()) { struct perf_evsel *switch_evsel; err = parse_events(evlist, "dummy:u", NULL); if (err) return err; switch_evsel = perf_evlist__last(evlist); switch_evsel->attr.freq = 0; switch_evsel->attr.sample_period = 1; switch_evsel->attr.context_switch = 1; switch_evsel->system_wide = true; switch_evsel->no_aux_samples = true; switch_evsel->immediate = true; perf_evsel__set_sample_bit(switch_evsel, TID); perf_evsel__set_sample_bit(switch_evsel, TIME); perf_evsel__set_sample_bit(switch_evsel, CPU); opts->record_switch_events = false; ptr->have_sched_switch = 3; } else { opts->record_switch_events = true; need_immediate = true; if (cpu_wide) ptr->have_sched_switch = 3; else ptr->have_sched_switch = 2; } } else { err = intel_pt_track_switches(evlist); if (err == -EPERM) pr_debug2("Unable to select sched:sched_switch\n"); else if (err) return err; else ptr->have_sched_switch = 1; } } if (intel_pt_evsel) { /* * To obtain the auxtrace buffer file descriptor, the auxtrace * event must come first. */ perf_evlist__to_front(evlist, intel_pt_evsel); /* * In the case of per-cpu mmaps, we need the CPU on the * AUX event. */ if (!cpu_map__empty(cpus)) perf_evsel__set_sample_bit(intel_pt_evsel, CPU); } /* Add dummy event to keep tracking */ if (opts->full_auxtrace) { struct perf_evsel *tracking_evsel; err = parse_events(evlist, "dummy:u", NULL); if (err) return err; tracking_evsel = perf_evlist__last(evlist); perf_evlist__set_tracking_event(evlist, tracking_evsel); tracking_evsel->attr.freq = 0; tracking_evsel->attr.sample_period = 1; if (need_immediate) tracking_evsel->immediate = true; /* In per-cpu case, always need the time of mmap events etc */ if (!cpu_map__empty(cpus)) { perf_evsel__set_sample_bit(tracking_evsel, TIME); /* And the CPU for switch events */ perf_evsel__set_sample_bit(tracking_evsel, CPU); } } /* * Warn the user when we do not have enough information to decode i.e. * per-cpu with no sched_switch (except workload-only). */ if (!ptr->have_sched_switch && !cpu_map__empty(cpus) && !target__none(&opts->target)) ui__warning("Intel Processor Trace decoding will not be possible except for kernel tracing!\n"); return 0; } static int intel_pt_snapshot_start(struct auxtrace_record *itr) { struct intel_pt_recording *ptr = container_of(itr, struct intel_pt_recording, itr); struct perf_evsel *evsel; evlist__for_each(ptr->evlist, evsel) { if (evsel->attr.type == ptr->intel_pt_pmu->type) return perf_evlist__disable_event(ptr->evlist, evsel); } return -EINVAL; } static int intel_pt_snapshot_finish(struct auxtrace_record *itr) { struct intel_pt_recording *ptr = container_of(itr, struct intel_pt_recording, itr); struct perf_evsel *evsel; evlist__for_each(ptr->evlist, evsel) { if (evsel->attr.type == ptr->intel_pt_pmu->type) return perf_evlist__enable_event(ptr->evlist, evsel); } return -EINVAL; } static int intel_pt_alloc_snapshot_refs(struct intel_pt_recording *ptr, int idx) { const size_t sz = sizeof(struct intel_pt_snapshot_ref); int cnt = ptr->snapshot_ref_cnt, new_cnt = cnt * 2; struct intel_pt_snapshot_ref *refs; if (!new_cnt) new_cnt = 16; while (new_cnt <= idx) new_cnt *= 2; refs = calloc(new_cnt, sz); if (!refs) return -ENOMEM; memcpy(refs, ptr->snapshot_refs, cnt * sz); ptr->snapshot_refs = refs; ptr->snapshot_ref_cnt = new_cnt; return 0; } static void intel_pt_free_snapshot_refs(struct intel_pt_recording *ptr) { int i; for (i = 0; i < ptr->snapshot_ref_cnt; i++) zfree(&ptr->snapshot_refs[i].ref_buf); zfree(&ptr->snapshot_refs); } static void intel_pt_recording_free(struct auxtrace_record *itr) { struct intel_pt_recording *ptr = container_of(itr, struct intel_pt_recording, itr); intel_pt_free_snapshot_refs(ptr); free(ptr); } static int intel_pt_alloc_snapshot_ref(struct intel_pt_recording *ptr, int idx, size_t snapshot_buf_size) { size_t ref_buf_size = ptr->snapshot_ref_buf_size; void *ref_buf; ref_buf = zalloc(ref_buf_size); if (!ref_buf) return -ENOMEM; ptr->snapshot_refs[idx].ref_buf = ref_buf; ptr->snapshot_refs[idx].ref_offset = snapshot_buf_size - ref_buf_size; return 0; } static size_t intel_pt_snapshot_ref_buf_size(struct intel_pt_recording *ptr, size_t snapshot_buf_size) { const size_t max_size = 256 * 1024; size_t buf_size = 0, psb_period; if (ptr->snapshot_size <= 64 * 1024) return 0; psb_period = intel_pt_psb_period(ptr->intel_pt_pmu, ptr->evlist); if (psb_period) buf_size = psb_period * 2; if (!buf_size || buf_size > max_size) buf_size = max_size; if (buf_size >= snapshot_buf_size) return 0; if (buf_size >= ptr->snapshot_size / 2) return 0; return buf_size; } static int intel_pt_snapshot_init(struct intel_pt_recording *ptr, size_t snapshot_buf_size) { if (ptr->snapshot_init_done) return 0; ptr->snapshot_init_done = true; ptr->snapshot_ref_buf_size = intel_pt_snapshot_ref_buf_size(ptr, snapshot_buf_size); return 0; } /** * intel_pt_compare_buffers - compare bytes in a buffer to a circular buffer. * @buf1: first buffer * @compare_size: number of bytes to compare * @buf2: second buffer (a circular buffer) * @offs2: offset in second buffer * @buf2_size: size of second buffer * * The comparison allows for the possibility that the bytes to compare in the * circular buffer are not contiguous. It is assumed that @compare_size <= * @buf2_size. This function returns %false if the bytes are identical, %true * otherwise. */ static bool intel_pt_compare_buffers(void *buf1, size_t compare_size, void *buf2, size_t offs2, size_t buf2_size) { size_t end2 = offs2 + compare_size, part_size; if (end2 <= buf2_size) return memcmp(buf1, buf2 + offs2, compare_size); part_size = end2 - buf2_size; if (memcmp(buf1, buf2 + offs2, part_size)) return true; compare_size -= part_size; return memcmp(buf1 + part_size, buf2, compare_size); } static bool intel_pt_compare_ref(void *ref_buf, size_t ref_offset, size_t ref_size, size_t buf_size, void *data, size_t head) { size_t ref_end = ref_offset + ref_size; if (ref_end > buf_size) { if (head > ref_offset || head < ref_end - buf_size) return true; } else if (head > ref_offset && head < ref_end) { return true; } return intel_pt_compare_buffers(ref_buf, ref_size, data, ref_offset, buf_size); } static void intel_pt_copy_ref(void *ref_buf, size_t ref_size, size_t buf_size, void *data, size_t head) { if (head >= ref_size) { memcpy(ref_buf, data + head - ref_size, ref_size); } else { memcpy(ref_buf, data, head); ref_size -= head; memcpy(ref_buf + head, data + buf_size - ref_size, ref_size); } } static bool intel_pt_wrapped(struct intel_pt_recording *ptr, int idx, struct auxtrace_mmap *mm, unsigned char *data, u64 head) { struct intel_pt_snapshot_ref *ref = &ptr->snapshot_refs[idx]; bool wrapped; wrapped = intel_pt_compare_ref(ref->ref_buf, ref->ref_offset, ptr->snapshot_ref_buf_size, mm->len, data, head); intel_pt_copy_ref(ref->ref_buf, ptr->snapshot_ref_buf_size, mm->len, data, head); return wrapped; } static bool intel_pt_first_wrap(u64 *data, size_t buf_size) { int i, a, b; b = buf_size >> 3; a = b - 512; if (a < 0) a = 0; for (i = a; i < b; i++) { if (data[i]) return true; } return false; } static int intel_pt_find_snapshot(struct auxtrace_record *itr, int idx, struct auxtrace_mmap *mm, unsigned char *data, u64 *head, u64 *old) { struct intel_pt_recording *ptr = container_of(itr, struct intel_pt_recording, itr); bool wrapped; int err; pr_debug3("%s: mmap index %d old head %zu new head %zu\n", __func__, idx, (size_t)*old, (size_t)*head); err = intel_pt_snapshot_init(ptr, mm->len); if (err) goto out_err; if (idx >= ptr->snapshot_ref_cnt) { err = intel_pt_alloc_snapshot_refs(ptr, idx); if (err) goto out_err; } if (ptr->snapshot_ref_buf_size) { if (!ptr->snapshot_refs[idx].ref_buf) { err = intel_pt_alloc_snapshot_ref(ptr, idx, mm->len); if (err) goto out_err; } wrapped = intel_pt_wrapped(ptr, idx, mm, data, *head); } else { wrapped = ptr->snapshot_refs[idx].wrapped; if (!wrapped && intel_pt_first_wrap((u64 *)data, mm->len)) { ptr->snapshot_refs[idx].wrapped = true; wrapped = true; } } /* * In full trace mode 'head' continually increases. However in snapshot * mode 'head' is an offset within the buffer. Here 'old' and 'head' * are adjusted to match the full trace case which expects that 'old' is * always less than 'head'. */ if (wrapped) { *old = *head; *head += mm->len; } else { if (mm->mask) *old &= mm->mask; else *old %= mm->len; if (*old > *head) *head += mm->len; } pr_debug3("%s: wrap-around %sdetected, adjusted old head %zu adjusted new head %zu\n", __func__, wrapped ? "" : "not ", (size_t)*old, (size_t)*head); return 0; out_err: pr_err("%s: failed, error %d\n", __func__, err); return err; } static u64 intel_pt_reference(struct auxtrace_record *itr __maybe_unused) { return rdtsc(); } static int intel_pt_read_finish(struct auxtrace_record *itr, int idx) { struct intel_pt_recording *ptr = container_of(itr, struct intel_pt_recording, itr); struct perf_evsel *evsel; evlist__for_each(ptr->evlist, evsel) { if (evsel->attr.type == ptr->intel_pt_pmu->type) return perf_evlist__enable_event_idx(ptr->evlist, evsel, idx); } return -EINVAL; } struct auxtrace_record *intel_pt_recording_init(int *err) { struct perf_pmu *intel_pt_pmu = perf_pmu__find(INTEL_PT_PMU_NAME); struct intel_pt_recording *ptr; if (!intel_pt_pmu) return NULL; ptr = zalloc(sizeof(struct intel_pt_recording)); if (!ptr) { *err = -ENOMEM; return NULL; } ptr->intel_pt_pmu = intel_pt_pmu; ptr->itr.recording_options = intel_pt_recording_options; ptr->itr.info_priv_size = intel_pt_info_priv_size; ptr->itr.info_fill = intel_pt_info_fill; ptr->itr.free = intel_pt_recording_free; ptr->itr.snapshot_start = intel_pt_snapshot_start; ptr->itr.snapshot_finish = intel_pt_snapshot_finish; ptr->itr.find_snapshot = intel_pt_find_snapshot; ptr->itr.parse_snapshot_options = intel_pt_parse_snapshot_options; ptr->itr.reference = intel_pt_reference; ptr->itr.read_finish = intel_pt_read_finish; return &ptr->itr; }