/* * Copyright 2014, Michael Ellerman, IBM Corp. * Licensed under GPLv2. */ #define _GNU_SOURCE /* For CPU_ZERO etc. */ #include #include #include #include #include #include #include #include #include "trace.h" #include "reg.h" #include "ebb.h" void (*ebb_user_func)(void); void ebb_hook(void) { if (ebb_user_func) ebb_user_func(); } struct ebb_state ebb_state; u64 sample_period = 0x40000000ull; void reset_ebb_with_clear_mask(unsigned long mmcr0_clear_mask) { u64 val; /* 2) clear MMCR0[PMAO] - docs say BESCR[PMEO] should do this */ /* 3) set MMCR0[PMAE] - docs say BESCR[PME] should do this */ val = mfspr(SPRN_MMCR0); mtspr(SPRN_MMCR0, (val & ~mmcr0_clear_mask) | MMCR0_PMAE); /* 4) clear BESCR[PMEO] */ mtspr(SPRN_BESCRR, BESCR_PMEO); /* 5) set BESCR[PME] */ mtspr(SPRN_BESCRS, BESCR_PME); /* 6) rfebb 1 - done in our caller */ } void reset_ebb(void) { reset_ebb_with_clear_mask(MMCR0_PMAO | MMCR0_FC); } /* Called outside of the EBB handler to check MMCR0 is sane */ int ebb_check_mmcr0(void) { u64 val; val = mfspr(SPRN_MMCR0); if ((val & (MMCR0_FC | MMCR0_PMAO)) == MMCR0_FC) { /* It's OK if we see FC & PMAO, but not FC by itself */ printf("Outside of loop, only FC set 0x%llx\n", val); return 1; } return 0; } bool ebb_check_count(int pmc, u64 sample_period, int fudge) { u64 count, upper, lower; count = ebb_state.stats.pmc_count[PMC_INDEX(pmc)]; lower = ebb_state.stats.ebb_count * (sample_period - fudge); if (count < lower) { printf("PMC%d count (0x%llx) below lower limit 0x%llx (-0x%llx)\n", pmc, count, lower, lower - count); return false; } upper = ebb_state.stats.ebb_count * (sample_period + fudge); if (count > upper) { printf("PMC%d count (0x%llx) above upper limit 0x%llx (+0x%llx)\n", pmc, count, upper, count - upper); return false; } printf("PMC%d count (0x%llx) is between 0x%llx and 0x%llx delta +0x%llx/-0x%llx\n", pmc, count, lower, upper, count - lower, upper - count); return true; } void standard_ebb_callee(void) { int found, i; u64 val; val = mfspr(SPRN_BESCR); if (!(val & BESCR_PMEO)) { ebb_state.stats.spurious++; goto out; } ebb_state.stats.ebb_count++; trace_log_counter(ebb_state.trace, ebb_state.stats.ebb_count); val = mfspr(SPRN_MMCR0); trace_log_reg(ebb_state.trace, SPRN_MMCR0, val); found = 0; for (i = 1; i <= 6; i++) { if (ebb_state.pmc_enable[PMC_INDEX(i)]) found += count_pmc(i, sample_period); } if (!found) ebb_state.stats.no_overflow++; out: reset_ebb(); } extern void ebb_handler(void); void setup_ebb_handler(void (*callee)(void)) { u64 entry; #if defined(_CALL_ELF) && _CALL_ELF == 2 entry = (u64)ebb_handler; #else struct opd { u64 entry; u64 toc; } *opd; opd = (struct opd *)ebb_handler; entry = opd->entry; #endif printf("EBB Handler is at %#llx\n", entry); ebb_user_func = callee; /* Ensure ebb_user_func is set before we set the handler */ mb(); mtspr(SPRN_EBBHR, entry); /* Make sure the handler is set before we return */ mb(); } void clear_ebb_stats(void) { memset(&ebb_state.stats, 0, sizeof(ebb_state.stats)); } void dump_summary_ebb_state(void) { printf("ebb_state:\n" \ " ebb_count = %d\n" \ " spurious = %d\n" \ " negative = %d\n" \ " no_overflow = %d\n" \ " pmc[1] count = 0x%llx\n" \ " pmc[2] count = 0x%llx\n" \ " pmc[3] count = 0x%llx\n" \ " pmc[4] count = 0x%llx\n" \ " pmc[5] count = 0x%llx\n" \ " pmc[6] count = 0x%llx\n", ebb_state.stats.ebb_count, ebb_state.stats.spurious, ebb_state.stats.negative, ebb_state.stats.no_overflow, ebb_state.stats.pmc_count[0], ebb_state.stats.pmc_count[1], ebb_state.stats.pmc_count[2], ebb_state.stats.pmc_count[3], ebb_state.stats.pmc_count[4], ebb_state.stats.pmc_count[5]); } static char *decode_mmcr0(u32 value) { static char buf[16]; buf[0] = '\0'; if (value & (1 << 31)) strcat(buf, "FC "); if (value & (1 << 26)) strcat(buf, "PMAE "); if (value & (1 << 7)) strcat(buf, "PMAO "); return buf; } static char *decode_bescr(u64 value) { static char buf[16]; buf[0] = '\0'; if (value & (1ull << 63)) strcat(buf, "GE "); if (value & (1ull << 32)) strcat(buf, "PMAE "); if (value & 1) strcat(buf, "PMAO "); return buf; } void dump_ebb_hw_state(void) { u64 bescr; u32 mmcr0; mmcr0 = mfspr(SPRN_MMCR0); bescr = mfspr(SPRN_BESCR); printf("HW state:\n" \ "MMCR0 0x%016x %s\n" \ "EBBHR 0x%016lx\n" \ "BESCR 0x%016llx %s\n" \ "PMC1 0x%016lx\n" \ "PMC2 0x%016lx\n" \ "PMC3 0x%016lx\n" \ "PMC4 0x%016lx\n" \ "PMC5 0x%016lx\n" \ "PMC6 0x%016lx\n" \ "SIAR 0x%016lx\n", mmcr0, decode_mmcr0(mmcr0), mfspr(SPRN_EBBHR), bescr, decode_bescr(bescr), mfspr(SPRN_PMC1), mfspr(SPRN_PMC2), mfspr(SPRN_PMC3), mfspr(SPRN_PMC4), mfspr(SPRN_PMC5), mfspr(SPRN_PMC6), mfspr(SPRN_SIAR)); } void dump_ebb_state(void) { dump_summary_ebb_state(); dump_ebb_hw_state(); trace_buffer_print(ebb_state.trace); } int count_pmc(int pmc, uint32_t sample_period) { uint32_t start_value; u64 val; /* 0) Read PMC */ start_value = pmc_sample_period(sample_period); val = read_pmc(pmc); if (val < start_value) ebb_state.stats.negative++; else ebb_state.stats.pmc_count[PMC_INDEX(pmc)] += val - start_value; trace_log_reg(ebb_state.trace, SPRN_PMC1 + pmc - 1, val); /* 1) Reset PMC */ write_pmc(pmc, start_value); /* Report if we overflowed */ return val >= COUNTER_OVERFLOW; } int ebb_event_enable(struct event *e) { int rc; /* Ensure any SPR writes are ordered vs us */ mb(); rc = ioctl(e->fd, PERF_EVENT_IOC_ENABLE); if (rc) return rc; rc = event_read(e); /* Ditto */ mb(); return rc; } void ebb_freeze_pmcs(void) { mtspr(SPRN_MMCR0, mfspr(SPRN_MMCR0) | MMCR0_FC); mb(); } void ebb_unfreeze_pmcs(void) { /* Unfreeze counters */ mtspr(SPRN_MMCR0, mfspr(SPRN_MMCR0) & ~MMCR0_FC); mb(); } void ebb_global_enable(void) { /* Enable EBBs globally and PMU EBBs */ mtspr(SPRN_BESCR, 0x8000000100000000ull); mb(); } void ebb_global_disable(void) { /* Disable EBBs & freeze counters, events are still scheduled */ mtspr(SPRN_BESCRR, BESCR_PME); mb(); } void event_ebb_init(struct event *e) { e->attr.config |= (1ull << 63); } void event_bhrb_init(struct event *e, unsigned ifm) { e->attr.config |= (1ull << 62) | ((u64)ifm << 60); } void event_leader_ebb_init(struct event *e) { event_ebb_init(e); e->attr.exclusive = 1; e->attr.pinned = 1; } int core_busy_loop(void) { int rc; asm volatile ( "li 3, 0x3030\n" "std 3, -96(1)\n" "li 4, 0x4040\n" "std 4, -104(1)\n" "li 5, 0x5050\n" "std 5, -112(1)\n" "li 6, 0x6060\n" "std 6, -120(1)\n" "li 7, 0x7070\n" "std 7, -128(1)\n" "li 8, 0x0808\n" "std 8, -136(1)\n" "li 9, 0x0909\n" "std 9, -144(1)\n" "li 10, 0x1010\n" "std 10, -152(1)\n" "li 11, 0x1111\n" "std 11, -160(1)\n" "li 14, 0x1414\n" "std 14, -168(1)\n" "li 15, 0x1515\n" "std 15, -176(1)\n" "li 16, 0x1616\n" "std 16, -184(1)\n" "li 17, 0x1717\n" "std 17, -192(1)\n" "li 18, 0x1818\n" "std 18, -200(1)\n" "li 19, 0x1919\n" "std 19, -208(1)\n" "li 20, 0x2020\n" "std 20, -216(1)\n" "li 21, 0x2121\n" "std 21, -224(1)\n" "li 22, 0x2222\n" "std 22, -232(1)\n" "li 23, 0x2323\n" "std 23, -240(1)\n" "li 24, 0x2424\n" "std 24, -248(1)\n" "li 25, 0x2525\n" "std 25, -256(1)\n" "li 26, 0x2626\n" "std 26, -264(1)\n" "li 27, 0x2727\n" "std 27, -272(1)\n" "li 28, 0x2828\n" "std 28, -280(1)\n" "li 29, 0x2929\n" "std 29, -288(1)\n" "li 30, 0x3030\n" "li 31, 0x3131\n" "li 3, 0\n" "0: " "addi 3, 3, 1\n" "cmpwi 3, 100\n" "blt 0b\n" /* Return 1 (fail) unless we get through all the checks */ "li 0, 1\n" /* Check none of our registers have been corrupted */ "cmpwi 4, 0x4040\n" "bne 1f\n" "cmpwi 5, 0x5050\n" "bne 1f\n" "cmpwi 6, 0x6060\n" "bne 1f\n" "cmpwi 7, 0x7070\n" "bne 1f\n" "cmpwi 8, 0x0808\n" "bne 1f\n" "cmpwi 9, 0x0909\n" "bne 1f\n" "cmpwi 10, 0x1010\n" "bne 1f\n" "cmpwi 11, 0x1111\n" "bne 1f\n" "cmpwi 14, 0x1414\n" "bne 1f\n" "cmpwi 15, 0x1515\n" "bne 1f\n" "cmpwi 16, 0x1616\n" "bne 1f\n" "cmpwi 17, 0x1717\n" "bne 1f\n" "cmpwi 18, 0x1818\n" "bne 1f\n" "cmpwi 19, 0x1919\n" "bne 1f\n" "cmpwi 20, 0x2020\n" "bne 1f\n" "cmpwi 21, 0x2121\n" "bne 1f\n" "cmpwi 22, 0x2222\n" "bne 1f\n" "cmpwi 23, 0x2323\n" "bne 1f\n" "cmpwi 24, 0x2424\n" "bne 1f\n" "cmpwi 25, 0x2525\n" "bne 1f\n" "cmpwi 26, 0x2626\n" "bne 1f\n" "cmpwi 27, 0x2727\n" "bne 1f\n" "cmpwi 28, 0x2828\n" "bne 1f\n" "cmpwi 29, 0x2929\n" "bne 1f\n" "cmpwi 30, 0x3030\n" "bne 1f\n" "cmpwi 31, 0x3131\n" "bne 1f\n" /* Load junk into all our registers before we reload them from the stack. */ "li 3, 0xde\n" "li 4, 0xad\n" "li 5, 0xbe\n" "li 6, 0xef\n" "li 7, 0xde\n" "li 8, 0xad\n" "li 9, 0xbe\n" "li 10, 0xef\n" "li 11, 0xde\n" "li 14, 0xad\n" "li 15, 0xbe\n" "li 16, 0xef\n" "li 17, 0xde\n" "li 18, 0xad\n" "li 19, 0xbe\n" "li 20, 0xef\n" "li 21, 0xde\n" "li 22, 0xad\n" "li 23, 0xbe\n" "li 24, 0xef\n" "li 25, 0xde\n" "li 26, 0xad\n" "li 27, 0xbe\n" "li 28, 0xef\n" "li 29, 0xdd\n" "ld 3, -96(1)\n" "cmpwi 3, 0x3030\n" "bne 1f\n" "ld 4, -104(1)\n" "cmpwi 4, 0x4040\n" "bne 1f\n" "ld 5, -112(1)\n" "cmpwi 5, 0x5050\n" "bne 1f\n" "ld 6, -120(1)\n" "cmpwi 6, 0x6060\n" "bne 1f\n" "ld 7, -128(1)\n" "cmpwi 7, 0x7070\n" "bne 1f\n" "ld 8, -136(1)\n" "cmpwi 8, 0x0808\n" "bne 1f\n" "ld 9, -144(1)\n" "cmpwi 9, 0x0909\n" "bne 1f\n" "ld 10, -152(1)\n" "cmpwi 10, 0x1010\n" "bne 1f\n" "ld 11, -160(1)\n" "cmpwi 11, 0x1111\n" "bne 1f\n" "ld 14, -168(1)\n" "cmpwi 14, 0x1414\n" "bne 1f\n" "ld 15, -176(1)\n" "cmpwi 15, 0x1515\n" "bne 1f\n" "ld 16, -184(1)\n" "cmpwi 16, 0x1616\n" "bne 1f\n" "ld 17, -192(1)\n" "cmpwi 17, 0x1717\n" "bne 1f\n" "ld 18, -200(1)\n" "cmpwi 18, 0x1818\n" "bne 1f\n" "ld 19, -208(1)\n" "cmpwi 19, 0x1919\n" "bne 1f\n" "ld 20, -216(1)\n" "cmpwi 20, 0x2020\n" "bne 1f\n" "ld 21, -224(1)\n" "cmpwi 21, 0x2121\n" "bne 1f\n" "ld 22, -232(1)\n" "cmpwi 22, 0x2222\n" "bne 1f\n" "ld 23, -240(1)\n" "cmpwi 23, 0x2323\n" "bne 1f\n" "ld 24, -248(1)\n" "cmpwi 24, 0x2424\n" "bne 1f\n" "ld 25, -256(1)\n" "cmpwi 25, 0x2525\n" "bne 1f\n" "ld 26, -264(1)\n" "cmpwi 26, 0x2626\n" "bne 1f\n" "ld 27, -272(1)\n" "cmpwi 27, 0x2727\n" "bne 1f\n" "ld 28, -280(1)\n" "cmpwi 28, 0x2828\n" "bne 1f\n" "ld 29, -288(1)\n" "cmpwi 29, 0x2929\n" "bne 1f\n" /* Load 0 (success) to return */ "li 0, 0\n" "1: mr %0, 0\n" : "=r" (rc) : /* no inputs */ : "3", "4", "5", "6", "7", "8", "9", "10", "11", "14", "15", "16", "17", "18", "19", "20", "21", "22", "23", "24", "25", "26", "27", "28", "29", "30", "31", "memory" ); return rc; } int core_busy_loop_with_freeze(void) { int rc; mtspr(SPRN_MMCR0, mfspr(SPRN_MMCR0) & ~MMCR0_FC); rc = core_busy_loop(); mtspr(SPRN_MMCR0, mfspr(SPRN_MMCR0) | MMCR0_FC); return rc; } int ebb_child(union pipe read_pipe, union pipe write_pipe) { struct event event; uint64_t val; FAIL_IF(wait_for_parent(read_pipe)); event_init_named(&event, 0x1001e, "cycles"); event_leader_ebb_init(&event); event.attr.exclude_kernel = 1; event.attr.exclude_hv = 1; event.attr.exclude_idle = 1; FAIL_IF(event_open(&event)); ebb_enable_pmc_counting(1); setup_ebb_handler(standard_ebb_callee); ebb_global_enable(); FAIL_IF(event_enable(&event)); if (event_read(&event)) { /* * Some tests expect to fail here, so don't report an error on * this line, and return a distinguisable error code. Tell the * parent an error happened. */ notify_parent_of_error(write_pipe); return 2; } mtspr(SPRN_PMC1, pmc_sample_period(sample_period)); FAIL_IF(notify_parent(write_pipe)); FAIL_IF(wait_for_parent(read_pipe)); FAIL_IF(notify_parent(write_pipe)); while (ebb_state.stats.ebb_count < 20) { FAIL_IF(core_busy_loop()); /* To try and hit SIGILL case */ val = mfspr(SPRN_MMCRA); val |= mfspr(SPRN_MMCR2); val |= mfspr(SPRN_MMCR0); } ebb_global_disable(); ebb_freeze_pmcs(); count_pmc(1, sample_period); dump_ebb_state(); event_close(&event); FAIL_IF(ebb_state.stats.ebb_count == 0); return 0; } static jmp_buf setjmp_env; static void sigill_handler(int signal) { printf("Took sigill\n"); longjmp(setjmp_env, 1); } static struct sigaction sigill_action = { .sa_handler = sigill_handler, }; int catch_sigill(void (*func)(void)) { if (sigaction(SIGILL, &sigill_action, NULL)) { perror("sigaction"); return 1; } if (setjmp(setjmp_env) == 0) { func(); return 1; } return 0; } void write_pmc1(void) { mtspr(SPRN_PMC1, 0); } void write_pmc(int pmc, u64 value) { switch (pmc) { case 1: mtspr(SPRN_PMC1, value); break; case 2: mtspr(SPRN_PMC2, value); break; case 3: mtspr(SPRN_PMC3, value); break; case 4: mtspr(SPRN_PMC4, value); break; case 5: mtspr(SPRN_PMC5, value); break; case 6: mtspr(SPRN_PMC6, value); break; } } u64 read_pmc(int pmc) { switch (pmc) { case 1: return mfspr(SPRN_PMC1); case 2: return mfspr(SPRN_PMC2); case 3: return mfspr(SPRN_PMC3); case 4: return mfspr(SPRN_PMC4); case 5: return mfspr(SPRN_PMC5); case 6: return mfspr(SPRN_PMC6); } return 0; } static void term_handler(int signal) { dump_summary_ebb_state(); dump_ebb_hw_state(); abort(); } struct sigaction term_action = { .sa_handler = term_handler, }; static void __attribute__((constructor)) ebb_init(void) { clear_ebb_stats(); if (sigaction(SIGTERM, &term_action, NULL)) perror("sigaction"); ebb_state.trace = trace_buffer_allocate(1 * 1024 * 1024); }