summaryrefslogtreecommitdiff
path: root/arch/arm/mach-tegra/latency_allowance.c
blob: 86ab179e464616b4fcce888e9b49b048d07a3515 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
/*
 * arch/arm/mach-tegra/latency_allowance.c
 *
 * Copyright (C) 2011-2012, NVIDIA CORPORATION. All rights reserved.
 *
 * This software is licensed under the terms of the GNU General Public
 * License version 2, as published by the Free Software Foundation, and
 * may be copied, distributed, and modified under those terms.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 */

#include <linux/types.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/debugfs.h>
#include <linux/seq_file.h>
#include <linux/err.h>
#include <linux/spinlock_types.h>
#include <linux/spinlock.h>
#include <linux/stringify.h>
#include <asm/bug.h>
#include <asm/io.h>
#include <asm/string.h>
#include <mach/iomap.h>
#include <mach/io.h>
#include <mach/latency_allowance.h>
#include "la_priv_common.h"
#include "tegra3_la_priv.h"

#define ENABLE_LA_DEBUG		0
#define TEST_LA_CODE		0

#define la_debug(fmt, ...) \
	if (ENABLE_LA_DEBUG) { \
		printk(KERN_INFO pr_fmt(fmt), ##__VA_ARGS__); \
	}

/* Bug 995270 */
#define HACK_LA_FIFO 1

static struct dentry *latency_debug_dir;
static DEFINE_SPINLOCK(safety_lock);
static unsigned short id_to_index[ID(MAX_ID) + 1];
static struct la_scaling_info scaling_info[TEGRA_LA_MAX_ID];
static int la_scaling_enable_count;

#define VALIDATE_ID(id) \
	do { \
		if (id >= TEGRA_LA_MAX_ID || id_to_index[id] == 0xFFFF) { \
			pr_err("%s: invalid Id=%d", __func__, id); \
			return -EINVAL; \
		} \
		BUG_ON(la_info_array[id_to_index[id]].id != id); \
	} while (0)

#define VALIDATE_BW(bw_in_mbps) \
	do { \
		if (bw_in_mbps >= 4096) \
			return -EINVAL; \
	} while (0)

#define VALIDATE_THRESHOLDS(tl, tm, th) \
	do { \
		if (tl > 100 || tm > 100 || th > 100) \
			return -EINVAL; \
	} while (0)

static void set_thresholds(struct la_scaling_reg_info *info,
			    enum tegra_la_id id)
{
	unsigned long reg_read;
	unsigned long reg_write;
	unsigned int thresh_low;
	unsigned int thresh_mid;
	unsigned int thresh_high;
	int la_set;
	int idx = id_to_index[id];

	reg_read = readl(la_info_array[idx].reg_addr);
	la_set = (reg_read & la_info_array[idx].mask) >>
		 la_info_array[idx].shift;
	/* la should be set before enabling scaling. */
	BUG_ON(la_set != scaling_info[idx].la_set);

	thresh_low = (scaling_info[idx].threshold_low * la_set) / 100;
	thresh_mid = (scaling_info[idx].threshold_mid * la_set) / 100;
	thresh_high = (scaling_info[idx].threshold_high * la_set) / 100;
	la_debug("%s: la_set=%d, thresh_low=%d(%d%%), thresh_mid=%d(%d%%),"
		" thresh_high=%d(%d%%) ", __func__, la_set,
		thresh_low, scaling_info[idx].threshold_low,
		thresh_mid, scaling_info[idx].threshold_mid,
		thresh_high, scaling_info[idx].threshold_high);

	reg_read = readl(info->tl_reg_addr);
	reg_write = (reg_read & ~info->tl_mask) |
		(thresh_low << info->tl_shift);
	writel(reg_write, info->tl_reg_addr);
	la_debug("reg_addr=0x%x, read=0x%x, write=0x%x",
		(u32)info->tl_reg_addr, (u32)reg_read, (u32)reg_write);

	reg_read = readl(info->tm_reg_addr);
	reg_write = (reg_read & ~info->tm_mask) |
		(thresh_mid << info->tm_shift);
	writel(reg_write, info->tm_reg_addr);
	la_debug("reg_addr=0x%x, read=0x%x, write=0x%x",
		(u32)info->tm_reg_addr, (u32)reg_read, (u32)reg_write);

	reg_read = readl(info->th_reg_addr);
	reg_write = (reg_read & ~info->th_mask) |
		(thresh_high << info->th_shift);
	writel(reg_write, info->th_reg_addr);
	la_debug("reg_addr=0x%x, read=0x%x, write=0x%x",
		(u32)info->th_reg_addr, (u32)reg_read, (u32)reg_write);
}

static void set_disp_latency_thresholds(enum tegra_la_id id)
{
	set_thresholds(&disp_info[id - ID(DISPLAY_0A)], id);
}

static void set_vi_latency_thresholds(enum tegra_la_id id)
{
	set_thresholds(&vi_info[id - ID(VI_WSB)], id);
}

/* Sets latency allowance based on clients memory bandwitdh requirement.
 * Bandwidth passed is in mega bytes per second.
 */
int tegra_set_latency_allowance(enum tegra_la_id id,
				unsigned int bandwidth_in_mbps)
{
	int ideal_la;
	int la_to_set;
	unsigned long reg_read;
	unsigned long reg_write;
	unsigned int fifo_size_in_atoms;
	int bytes_per_atom = normal_atom_size;
	const int fifo_scale = 4;		/* 25% of the FIFO */
	struct la_client_info *ci;
	int idx = id_to_index[id];

	VALIDATE_ID(id);
	VALIDATE_BW(bandwidth_in_mbps);

	ci = &la_info_array[idx];
	fifo_size_in_atoms = ci->fifo_size_in_atoms;

#if HACK_LA_FIFO
	/* pretend that our FIFO is only as deep as the lowest fullness
	 * we expect to see */
	if (id >= ID(DISPLAY_0A) && id <= ID(DISPLAY_HCB))
		fifo_size_in_atoms /= fifo_scale;
#endif

	if (bandwidth_in_mbps == 0) {
		la_to_set = MC_LA_MAX_VALUE;
	} else {
		ideal_la = (fifo_size_in_atoms * bytes_per_atom * 1000) /
			   (bandwidth_in_mbps * ns_per_tick);
		la_to_set = ideal_la - (ci->expiration_in_ns/ns_per_tick) - 1;
	}

	la_debug("\n%s:id=%d,idx=%d, bw=%dmbps, la_to_set=%d",
		__func__, id, idx, bandwidth_in_mbps, la_to_set);
	la_to_set = (la_to_set < 0) ? 0 : la_to_set;
	la_to_set = (la_to_set > MC_LA_MAX_VALUE) ? MC_LA_MAX_VALUE : la_to_set;
	scaling_info[idx].actual_la_to_set = la_to_set;

	spin_lock(&safety_lock);
	reg_read = readl(ci->reg_addr);
	reg_write = (reg_read & ~ci->mask) |
			(la_to_set << ci->shift);
	writel(reg_write, ci->reg_addr);
	scaling_info[idx].la_set = la_to_set;
	la_debug("reg_addr=0x%x, read=0x%x, write=0x%x",
		(u32)ci->reg_addr, (u32)reg_read, (u32)reg_write);
	spin_unlock(&safety_lock);
	return 0;
}

/* Thresholds for scaling are specified in % of fifo freeness.
 * If threshold_low is specified as 20%, it means when the fifo free
 * between 0 to 20%, use la as programmed_la.
 * If threshold_mid is specified as 50%, it means when the fifo free
 * between 20 to 50%, use la as programmed_la/2 .
 * If threshold_high is specified as 80%, it means when the fifo free
 * between 50 to 80%, use la as programmed_la/4.
 * When the fifo is free between 80 to 100%, use la as 0(highest priority).
 */
int tegra_enable_latency_scaling(enum tegra_la_id id,
				    unsigned int threshold_low,
				    unsigned int threshold_mid,
				    unsigned int threshold_high)
{
	unsigned long reg;
	unsigned long scaling_enable_reg = MC_RA(ARB_OVERRIDE);
	int idx = id_to_index[id];

	VALIDATE_ID(id);
	VALIDATE_THRESHOLDS(threshold_low, threshold_mid, threshold_high);

	if (la_info_array[idx].scaling_supported == false)
		goto exit;

	spin_lock(&safety_lock);

	la_debug("\n%s: id=%d, tl=%d, tm=%d, th=%d", __func__,
		id, threshold_low, threshold_mid, threshold_high);
	scaling_info[idx].threshold_low = threshold_low;
	scaling_info[idx].threshold_mid = threshold_mid;
	scaling_info[idx].threshold_high = threshold_high;
	scaling_info[idx].scaling_ref_count++;

	if (id >= ID(DISPLAY_0A) && id <= ID(DISPLAY_1BB))
		set_disp_latency_thresholds(id);
	else if (id >= ID(VI_WSB) && id <= ID(VI_WY))
		set_vi_latency_thresholds(id);
	if (!la_scaling_enable_count++) {
		reg = readl(scaling_enable_reg);
		reg |= (1 << GLOBAL_LATENCY_SCALING_ENABLE_BIT);
		writel(reg,  scaling_enable_reg);
		la_debug("enabled scaling.");
	}
	spin_unlock(&safety_lock);
exit:
	return 0;
}

void tegra_disable_latency_scaling(enum tegra_la_id id)
{
	unsigned long reg;
	unsigned long scaling_enable_reg = MC_RA(ARB_OVERRIDE);
	int idx;

	BUG_ON(id >= TEGRA_LA_MAX_ID);
	idx = id_to_index[id];
	BUG_ON(la_info_array[idx].id != id);

	if (la_info_array[idx].scaling_supported == false)
		return;
	spin_lock(&safety_lock);
	la_debug("\n%s: id=%d", __func__, id);
	scaling_info[idx].scaling_ref_count--;
	BUG_ON(scaling_info[idx].scaling_ref_count < 0);

	if (!--la_scaling_enable_count) {
		reg = readl(scaling_enable_reg);
		reg = reg & ~(1 << GLOBAL_LATENCY_SCALING_ENABLE_BIT);
		writel(reg, scaling_enable_reg);
		la_debug("disabled scaling.");
	}
	spin_unlock(&safety_lock);
}

void tegra_latency_allowance_update_tick_length(unsigned int new_ns_per_tick)
{
	int i = 0;
	int la;
	unsigned long reg_read;
	unsigned long reg_write;
	unsigned long scale_factor = new_ns_per_tick / ns_per_tick;

	if (scale_factor > 1) {
		spin_lock(&safety_lock);
		ns_per_tick = new_ns_per_tick;
		for (i = 0; i < ARRAY_SIZE(la_info_array) - 1; i++) {
			reg_read = readl(la_info_array[i].reg_addr);
			la = ((reg_read & la_info_array[i].mask) >>
				la_info_array[i].shift) / scale_factor;

			reg_write = (reg_read & ~la_info_array[i].mask) |
					(la << la_info_array[i].shift);
			writel(reg_write, la_info_array[i].reg_addr);
			scaling_info[i].la_set = la;
		}
		spin_unlock(&safety_lock);

		/* Re-scale G2PR, G2SR, G2DR, G2DW with updated ns_per_tick */
		tegra_set_latency_allowance(TEGRA_LA_G2PR, 20);
		tegra_set_latency_allowance(TEGRA_LA_G2SR, 20);
		tegra_set_latency_allowance(TEGRA_LA_G2DR, 20);
		tegra_set_latency_allowance(TEGRA_LA_G2DW, 20);
	}
}

static int la_regs_show(struct seq_file *s, void *unused)
{
	unsigned i;
	unsigned long la;

	/* iterate the list, but don't print MAX_ID */
	for (i = 0; i < ARRAY_SIZE(la_info_array) - 1; i++) {
		la = (readl(la_info_array[i].reg_addr) & la_info_array[i].mask)
			>> la_info_array[i].shift;
		seq_printf(s, "%-16s: %4lu\n", la_info_array[i].name, la);
	}

	return 0;
}

static int dbg_la_regs_open(struct inode *inode, struct file *file)
{
	return single_open(file, la_regs_show, inode->i_private);
}

static const struct file_operations regs_fops = {
	.open           = dbg_la_regs_open,
	.read           = seq_read,
	.llseek         = seq_lseek,
	.release        = single_release,
};

static int __init tegra_latency_allowance_debugfs_init(void)
{
	if (latency_debug_dir)
		return 0;

	latency_debug_dir = debugfs_create_dir("tegra_latency", NULL);

	debugfs_create_file("la_info", S_IRUGO, latency_debug_dir, NULL,
		&regs_fops);

	return 0;
}

late_initcall(tegra_latency_allowance_debugfs_init);

static int __init tegra_latency_allowance_init(void)
{
	unsigned int i;

	la_scaling_enable_count = 0;
	memset(&id_to_index[0], 0xFF, sizeof(id_to_index));

	for (i = 0; i < ARRAY_SIZE(la_info_array); i++)
		id_to_index[la_info_array[i].id] = i;

	tegra_set_latency_allowance(TEGRA_LA_G2PR, 20);
	tegra_set_latency_allowance(TEGRA_LA_G2SR, 20);
	tegra_set_latency_allowance(TEGRA_LA_G2DR, 20);
	tegra_set_latency_allowance(TEGRA_LA_G2DW, 20);
	return 0;
}

core_initcall(tegra_latency_allowance_init);

#if TEST_LA_CODE
#define PRINT_ID_IDX_MAPPING 0
static int __init test_la(void)
{
	int i;
	int err;
	enum tegra_la_id id = 0;
	int repeat_count = 5;

#if PRINT_ID_IDX_MAPPING
	for (i = 0; i < ID(MAX_ID); i++)
		pr_info("ID=0x%x, Idx=0x%x", i, id_to_index[i]);
#endif

	do {
		for (id = 0; id < TEGRA_LA_MAX_ID; id++) {
			err = tegra_set_latency_allowance(id, 200);
			if (err)
				la_debug("\n***tegra_set_latency_allowance,"
					" err=%d", err);
		}

		for (id = 0; id < TEGRA_LA_MAX_ID; id++) {
			if (id >= ID(DISPLAY_0AB) && id <= ID(DISPLAY_HCB))
				continue;
			if (id >= ID(VI_WSB) && id <= ID(VI_WY))
				continue;
			err = tegra_enable_latency_scaling(id, 20, 50, 80);
			if (err)
				la_debug("\n***tegra_enable_latency_scaling,"
					" err=%d", err);
		}

		la_debug("la_scaling_enable_count =%d",
			la_scaling_enable_count);
		for (id = 0; id < TEGRA_LA_MAX_ID; id++) {
			if (id >= ID(DISPLAY_0AB) && id <= ID(DISPLAY_HCB))
				continue;
			if (id >= ID(VI_WSB) && id <= ID(VI_WY))
				continue;
			tegra_disable_latency_scaling(id);
		}
		la_debug("la_scaling_enable_count=%d",
			la_scaling_enable_count);
	} while (--repeat_count);
	return 0;
}

late_initcall(test_la);
#endif