summaryrefslogtreecommitdiff
path: root/arch/arm/mach-tegra/nvddk/nvddk_usbphy_ap20.c
blob: 4ce0d05291196d45c6cb1c65d336994e17f453f0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
/*
 * Copyright (c) 2009 NVIDIA Corporation.
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *
 * Redistributions of source code must retain the above copyright notice,
 * this list of conditions and the following disclaimer.
 *
 * Redistributions in binary form must reproduce the above copyright notice,
 * this list of conditions and the following disclaimer in the documentation
 * and/or other materials provided with the distribution.
 *
 * Neither the name of the NVIDIA Corporation nor the names of its contributors
 * may be used to endorse or promote products derived from this software
 * without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGE.
 *
 */

/**
 * @file
 * @brief <b>NVIDIA Driver Development Kit:
 *           NvDDK USB PHY functions</b>
 *
 * @b Description: Defines USB PHY private functions
 *
 */

#include "nvrm_module.h"
#include "nvrm_drf.h"
#include "ap20/arusb.h"
#include "ap20/arapb_misc.h"
#include "nvrm_hardware_access.h"
#include "nvddk_usbphy_priv.h"
#include "nvodm_query.h"
#include "ap20/arahb_arbc.h"
#include "ap20/arclk_rst.h"

/* Defines for USB register read and writes */
#define USB_REG_RD(reg)\
    NV_READ32(pUsbPhy->UsbVirAdr + ((USB2_CONTROLLER_2_USB2D_##reg##_0)/4))

#define USB_REG_WR(reg, data)\
    NV_WRITE32(pUsbPhy->UsbVirAdr + ((USB2_CONTROLLER_2_USB2D_##reg##_0)/4), (data))

// Read perticular field value from reg mentioned
#define USB_DRF_VAL(reg, field, value) \
    NV_DRF_VAL(USB2_CONTROLLER_2_USB2D, reg, field, value)

#define USB_FLD_SET_DRF_DEF(reg, field, define, value) \
    NV_FLD_SET_DRF_DEF(USB2_CONTROLLER_2_USB2D, reg, field, define, value)

#define USB_REG_SET_DRF_DEF(reg, field, define) \
    NV_FLD_SET_DRF_DEF(USB2_CONTROLLER_2_USB2D, reg, field, define, USB_REG_RD(reg))

#define USB_REG_UPDATE_DEF(reg, field, define) \
    USB_REG_WR(reg, USB_REG_SET_DRF_DEF(reg, field, define))

#define USB_DRF_DEF(reg, field, define) \
    NV_DRF_DEF(USB2_CONTROLLER_2_USB2D, reg, field, define)

#define USB_DRF_VAL(reg, field, value) \
    NV_DRF_VAL(USB2_CONTROLLER_2_USB2D, reg, field, value)

#define USB_REG_READ_VAL(reg, field) \
    USB_DRF_VAL(reg, field, USB_REG_RD(reg))

#define USB_FLD_SET_DRF_NUM(reg, field, num, value) \
    NV_FLD_SET_DRF_NUM(USB2_CONTROLLER_2_USB2D, reg, field, num, value);

/* Defines for USB IF register read and writes */

#define USB1_IF_FLD_SET_DRF_DEF(reg, field, define, value) \
    NV_FLD_SET_DRF_DEF(USB1_IF, reg, field, define, value)

#define USB1_IF_REG_RD(reg)\
    NV_READ32(pUsbPhy->UsbVirAdr + ((USB1_IF_##reg##_0)/4))

#define USB1_IF_REG_WR(reg, data)\
    NV_WRITE32(pUsbPhy->UsbVirAdr + ((USB1_IF_##reg##_0)/4), (data))

#define USB1_IF_REG_SET_DRF_DEF(reg, field, define) \
    NV_FLD_SET_DRF_DEF(USB1_IF, reg, field, define, USB1_IF_REG_RD(reg))

#define USB1_IF_REG_UPDATE_DEF(reg, field, define) \
    USB1_IF_REG_WR(reg, USB1_IF_REG_SET_DRF_DEF(reg, field, define))

#define USB1_IF_DRF_VAL(reg, field, value) \
    NV_DRF_VAL(USB1_IF, reg, field, value)

#define USB1_IF_REG_READ_VAL(reg, field) \
    USB1_IF_DRF_VAL(reg, field, USB1_IF_REG_RD(reg))

#define USB3_IF_FLD_SET_DRF_DEF(reg, field, define, value) \
    NV_FLD_SET_DRF_DEF(USB3_IF_USB, reg, field, define, value)

#define USB_IF_DRF_DEF(reg, field, define) \
    NV_DRF_DEF(USB2_IF_USB, reg, field, define)

#define USB_IF_DRF_NUM(reg, field, value) \
    NV_DRF_NUM(USB2_IF_USB, reg, field, value)

#define USB_IF_DRF_VAL(reg, field, value) \
    NV_DRF_VAL(USB2_IF_USB, reg, field, value)

#define USB_IF_REG_RD(reg)\
    NV_READ32(pUsbPhy->UsbVirAdr + ((USB2_IF_USB_##reg##_0)/4))

#define USB_IF_REG_WR(reg, data)\
    NV_WRITE32(pUsbPhy->UsbVirAdr + ((USB2_IF_USB_##reg##_0)/4), (data))

#define USB_IF_REG_READ_VAL(reg, field) \
    USB_IF_DRF_VAL(reg, field, USB_IF_REG_RD(reg))

#define USB_IF_REG_SET_DRF_NUM(reg, field, define) \
    NV_FLD_SET_DRF_NUM(USB2_IF_USB, reg, field, define, USB_IF_REG_RD(reg))

#define USB_IF_REG_SET_DRF_DEF(reg, field, define) \
    NV_FLD_SET_DRF_DEF(USB2_IF_USB, reg, field, define, USB_IF_REG_RD(reg))

#define USB_IF_REG_UPDATE_DEF(reg, field, define) \
    USB_IF_REG_WR(reg, USB_IF_REG_SET_DRF_DEF(reg, field, define))

#define USB_IF_REG_UPDATE_NUM(reg, field, define) \
    USB_IF_REG_WR(reg, USB_IF_REG_SET_DRF_NUM(reg, field, define))


// defines for ULPI register access
#define ULPI_IF_REG_RD(reg)\
    NV_READ32(pUsbPhy->UsbVirAdr + ((USB2_IF_ULPI_##reg##_0)/4))

#define ULPI_IF_REG_WR(reg, data)\
    NV_WRITE32(pUsbPhy->UsbVirAdr + ((USB2_IF_ULPI_##reg##_0)/4), (data))

#define ULPI_IF_DRF_DEF(reg, field, define) \
    NV_DRF_DEF(USB2_IF_ULPI, reg, field, define)

#define ULPI_IF_DRF_NUM(reg, field, define) \
    NV_DRF_NUM(USB2_IF_ULPI, reg, field, define)


/* Defines for USB IF register read and writes */

#define USB_UTMIP_FLD_SET_DRF_DEF(reg, field, define, value) \
    NV_FLD_SET_DRF_NUM(USB1_UTMIP, reg, field, define, value)

#define USB_UTMIP_REG_RD(reg)\
    NV_READ32(pUsbPhy->UsbVirAdr + ((USB1_UTMIP_##reg##_0)/4))

#define USB_UTMIP_REG_WR(reg, data)\
    NV_WRITE32(pUsbPhy->UsbVirAdr + ((USB1_UTMIP_##reg##_0)/4), (data))

#define USB_UTMIP_REG_SET_DRF_NUM(reg, field, num) \
    NV_FLD_SET_DRF_NUM(USB1_UTMIP, reg, field, num, USB_UTMIP_REG_RD(reg))

#define USB_UTMIP_REG_UPDATE_NUM(reg, field, num) \
    USB_UTMIP_REG_WR(reg, USB_UTMIP_REG_SET_DRF_NUM(reg, field, num))

/* Defines for MISC register access */
#define USB_MISC_REGR(pUsbPhy, offset) \
    NV_READ32(pUsbPhy->MiscVirAdr + offset/4)

#define USB_MISC_REGW(pUsbPhy, offset, value) \
    NV_WRITE32(pUsbPhy->MiscVirAdr + offset/4, value)

/**
 * Structure defining the fields for USB UTMI clocks delay Parameters.
 */
typedef struct UsbPllDelayParamsRec
{
    // Pll-U Enable Delay Count
    NvU8 EnableDelayCount;
    //PLL-U Stable count
    NvU8 StableCount;
    //Pll-U Active delay count
    NvU8 ActiveDelayCount;
    //PLL-U Xtal frequency count
    NvU8 XtalFreqCount;
} UsbPllDelayParams;

/*
 * Set of oscillator frequencies supported
 */
typedef enum
{
    NvRmClocksOscFreq_13_MHz = 0x0,
    NvRmClocksOscFreq_19_2_MHz,
    NvRmClocksOscFreq_12_MHz,
    NvRmClocksOscFreq_26_MHz,
    NvRmClocksOscFreq_Num,       // dummy to get number of frequencies
    NvRmClocksOscFreq_Force32 = 0x7fffffff
} NvRmClocksOscFreq;

// Possible Oscillator Frequecies in KHz for mapping the index
static NvRmFreqKHz s_RmOscFrequecy [NvRmClocksOscFreq_Num] =
{
    13000, // 13 Mega Hertz
    19200,// 19.2 Mega Hertz
    12000,// 12 Mega Hertz
    26000 // 26 Mega Hertz
};

///////////////////////////////////////////////////////////////////////////////
// USB PLL CONFIGURATION & PARAMETERS: refer to the arapb_misc_utmip.spec file.
///////////////////////////////////////////////////////////////////////////////
// PLL CONFIGURATION & PARAMETERS for different clock generators:
//-----------------------------------------------------------------------------
// Reference frequency     13.0MHz         19.2MHz         12.0MHz     26.0MHz
// ----------------------------------------------------------------------------
// PLLU_ENABLE_DLY_COUNT   02 (02h)        03 (03h)        02 (02h)    04 (04h)
// PLLU_STABLE_COUNT       51 (33h)        75 (4Bh)        47 (2Fh)   102 (66h)
// PLL_ACTIVE_DLY_COUNT    05 (05h)        06 (06h)        04 (04h)    09 (09h)
// XTAL_FREQ_COUNT        127 (7Fh)       187 (BBh)       118 (76h)   254 (FEh)
///////////////////////////////////////////////////////////////////////////////
static const UsbPllDelayParams s_UsbPllDelayParams[NvRmClocksOscFreq_Num] =
{
    //ENABLE_DLY,  STABLE_CNT,  ACTIVE_DLY,  XTAL_FREQ_CNT
    {0x02,         0x33,        0x05,        0x7F}, // For NvRmClocksOscFreq_13_MHz,
    {0x03,         0x4B,        0x06,        0xBB}, // For NvRmClocksOscFreq_19_2_MHz
    {0x02,         0x2F,        0x04,        0x76}, // For NvRmClocksOscFreq_12_MHz
    {0x04,         0x66,        0x09,        0xFE}  // For NvRmClocksOscFreq_26_MHz
};

///////////////////////////////////////////////////////////////////////////////
// USB Debounce values IdDig, Avalid, Bvalid, VbusValid, VbusWakeUp, and SessEnd.
// Each of these signals have their own debouncer and for each of those one out
// of 2 debouncing times can be chosen (BIAS_DEBOUNCE_A or BIAS_DEBOUNCE_B.)
//
// The values of DEBOUNCE_A and DEBOUNCE_B are calculated as follows:
// 0xffff -> No debouncing at all
// <n> ms = <n> *1000 / (1/19.2MHz) / 4
// So to program a 1 ms debounce for BIAS_DEBOUNCE_A, we have:
// BIAS_DEBOUNCE_A[15:0] = 1000 * 19.2 / 4  = 4800 = 0x12c0
// We need to use only DebounceA, We dont need the DebounceB
// values, so we can keep those to default.
///////////////////////////////////////////////////////////////////////////////
static const NvU32 s_UsbBiasDebounceATime[NvRmClocksOscFreq_Num] =
{
    /* Ten milli second delay for BIAS_DEBOUNCE_A */
    0x7EF4,  // For NvRmClocksOscFreq_13_MHz,
    0xBB80,  // For NvRmClocksOscFreq_19_2_MHz
    0x7530,  // For NvRmClocksOscFreq_12_MHz
    0xFDE8   // For NvRmClocksOscFreq_26_MHz
};

///////////////////////////////////////////////////////////////////////////////
// The following arapb_misc_utmip.spec fields need to be programmed to ensure
// correct operation of the UTMIP block:
// Production settings :
//        'HS_SYNC_START_DLY' : 9,
//        'IDLE_WAIT'         : 17,
//        'ELASTIC_LIMIT'     : 16,
// All other fields can use the default reset values.
// Setting the fields above, together with default values of the other fields,
// results in programming the registers below as follows:
//         UTMIP_HSRX_CFG0 = 0x9168c000
//         UTMIP_HSRX_CFG1 = 0x13
///////////////////////////////////////////////////////////////////////////////
//UTMIP Idle Wait Delay
static const NvU8 s_UtmipIdleWaitDelay    = 17;
//UTMIP Elastic limit
static const NvU8 s_UtmipElasticLimit     = 16;
//UTMIP High Speed Sync Start Delay
static const NvU8 s_UtmipHsSyncStartDelay = 0;

static void
Ap20UsbPhyConfigUsbClockOverOn(
    NvDdkUsbPhy *pUsbPhy,
    NvBool EnableOverOn)
{
    NvU32 RegVal = 0x0;

    RegVal = NV_REGR(pUsbPhy->hRmDevice, NvRmPrivModuleID_ClockAndReset, 0,
                 CLK_RST_CONTROLLER_LVL2_CLK_GATE_OVRB_0);
    switch (pUsbPhy->Instance)
    {
        case 0:
            RegVal = NV_FLD_SET_DRF_NUM(CLK_RST_CONTROLLER, LVL2_CLK_GATE_OVRB,
                USB1_CLK_OVR_ON, EnableOverOn, RegVal);
        break;
        case 1:
            RegVal = NV_FLD_SET_DRF_NUM(CLK_RST_CONTROLLER, LVL2_CLK_GATE_OVRB,
                USB2_CLK_OVR_ON, EnableOverOn, RegVal);
        break;
        case 2:
            RegVal = NV_FLD_SET_DRF_NUM(CLK_RST_CONTROLLER, LVL2_CLK_GATE_OVRB,
                USB3_CLK_OVR_ON, EnableOverOn, RegVal);
        break;
        default:
            NV_ASSERT(!"Unable to enable/disable USB Clock Over On");
            return;
    }
    NV_REGW(pUsbPhy->hRmDevice, NvRmPrivModuleID_ClockAndReset, 0,
                 CLK_RST_CONTROLLER_LVL2_CLK_GATE_OVRB_0, RegVal);

}

static NvError
Ap20UsbPhyWaitForInValidPhyClock(
    NvDdkUsbPhy *pUsbPhy)
{
    NvU32 TimeOut = USB_PHY_HW_TIMEOUT_US;

    // Wait for the phy clock to become in valid or hardware timeout
    do {
        if (!USB_IF_REG_READ_VAL(SUSP_CTRL, USB_PHY_CLK_VALID))
            return NvSuccess;
        NvOsWaitUS(1);
        TimeOut--;
    } while (TimeOut);

    NvOsDebugPrintf("Phy Clock is not stopped and timed out\n");

    return NvError_Timeout;
}


static void
Ap20UsbPhyUlpiViewPortProgramData(
    NvDdkUsbPhy *pUsbPhy,
    NvU32 Addr,
    NvU32 Data)
{
    NvU32 RegVal = 0x0;
    NvU32 TimeOut = USB_PHY_HW_TIMEOUT_US;

    RegVal = USB_FLD_SET_DRF_DEF(ULPI_VIEWPORT, ULPI_WAKEUP, CLEAR, RegVal);
    RegVal = USB_FLD_SET_DRF_DEF(ULPI_VIEWPORT, ULPI_RUN, SET, RegVal);
    RegVal = USB_FLD_SET_DRF_DEF(ULPI_VIEWPORT, ULPI_RD_WR, WRITE, RegVal);
    RegVal = USB_FLD_SET_DRF_NUM(ULPI_VIEWPORT, ULPI_PORT, 0, RegVal);
    RegVal = USB_FLD_SET_DRF_NUM(ULPI_VIEWPORT, ULPI_REG_ADDR, Addr, RegVal);
    RegVal = USB_FLD_SET_DRF_NUM(ULPI_VIEWPORT, ULPI_DATA_WR, Data, RegVal);
    USB_REG_WR(ULPI_VIEWPORT, RegVal);

    // wait for run bit to be cleared
    do
    {
        RegVal = USB_REG_RD(ULPI_VIEWPORT);
        if (!TimeOut)
        {
            NvOsDebugPrintf(" !!!Error in accessing ULPI !!! \n");
            return;
        }
        NvOsWaitUS(1);
        TimeOut--;
    } while (USB_DRF_VAL(ULPI_VIEWPORT, ULPI_RUN, RegVal));
}

static NvError
Ap20UsbPhyUtmiConfigure(
    NvDdkUsbPhy *pUsbPhy)
{
    NvU32 RegVal = 0;
    NvRmFreqKHz OscFreqKz = 0;
    NvU32 FreqIndex;

    // Get the Oscillator Frequency
    OscFreqKz = NvRmPowerGetPrimaryFrequency(pUsbPhy->hRmDevice);

    // Get the Oscillator Frequency Index
    for (FreqIndex = 0; FreqIndex < NvRmClocksOscFreq_Num; FreqIndex++)
    {
        if (OscFreqKz == s_RmOscFrequecy[FreqIndex])
        {
            // Bail Out if frequecy matches with the supported frequency
            break;
        }
    }
    // If Index is equal to the maximum supported frequency count
    // There is a mismatch of the frequecy, so returning since the
    // frequency is not supported.
    if (FreqIndex >= NvRmClocksOscFreq_Num)
    {
        return NvError_NotSupported;
    }

    // Hold UTMIP in reset
    RegVal =USB_IF_REG_RD(SUSP_CTRL);
    RegVal = USB3_IF_FLD_SET_DRF_DEF(SUSP_CTRL, UTMIP_RESET, ENABLE, RegVal);
    USB_IF_REG_WR(SUSP_CTRL, RegVal);

    // Change the USB1 to non-legacy mode
    if (pUsbPhy->Instance == 0)
    {
        RegVal =USB1_IF_REG_RD(USB1_LEGACY_CTRL);
        RegVal = USB1_IF_FLD_SET_DRF_DEF(
                    USB1_LEGACY_CTRL, USB1_NO_LEGACY_MODE, NEW, RegVal);
        USB1_IF_REG_WR(USB1_LEGACY_CTRL, RegVal);
    }

    // Configure the UTMIP_IDLE_WAIT and UTMIP_ELASTIC_LIMIT
    // Setting these fields, together with default values of the other
    // fields, results in programming the registers below as follows:
    //         UTMIP_HSRX_CFG0 = 0x9168c000
    //         UTMIP_HSRX_CFG1 = 0x13
    RegVal = USB_UTMIP_REG_RD(HSRX_CFG0);
    RegVal = USB_UTMIP_FLD_SET_DRF_DEF(HSRX_CFG0, 
                UTMIP_IDLE_WAIT,s_UtmipIdleWaitDelay, RegVal);
    RegVal = USB_UTMIP_FLD_SET_DRF_DEF(HSRX_CFG0, 
                UTMIP_ELASTIC_LIMIT,s_UtmipElasticLimit, RegVal);
    USB_UTMIP_REG_WR(HSRX_CFG0, RegVal);

    // Configure the UTMIP_HS_SYNC_START_DLY
    USB_UTMIP_REG_UPDATE_NUM(
        HSRX_CFG1, UTMIP_HS_SYNC_START_DLY, s_UtmipHsSyncStartDelay);

    // Program 1ms Debounce time for VBUS to become valid.
    USB_UTMIP_REG_UPDATE_NUM(
        DEBOUNCE_CFG0, UTMIP_BIAS_DEBOUNCE_A, s_UsbBiasDebounceATime[FreqIndex]);

    // PLL Delay CONFIGURATION settings
    // The following parameters control the bring up of the plls:
    USB_UTMIP_REG_UPDATE_NUM(MISC_CFG0, UTMIP_SUSPEND_EXIT_ON_EDGE, 0);

    RegVal = USB_UTMIP_REG_RD(MISC_CFG1);
    RegVal = USB_UTMIP_FLD_SET_DRF_DEF(MISC_CFG1, UTMIP_PLLU_STABLE_COUNT,
                s_UsbPllDelayParams[FreqIndex].StableCount, RegVal);
    RegVal = USB_UTMIP_FLD_SET_DRF_DEF(MISC_CFG1, UTMIP_PLL_ACTIVE_DLY_COUNT,
                s_UsbPllDelayParams[FreqIndex].ActiveDelayCount, RegVal);
    USB_UTMIP_REG_WR(MISC_CFG1, RegVal);

    // Set PLL enable delay count and Crystal frequency count

    RegVal = USB_UTMIP_REG_RD(PLL_CFG1);
    RegVal = USB_UTMIP_FLD_SET_DRF_DEF(PLL_CFG1, UTMIP_PLLU_ENABLE_DLY_COUNT,
                s_UsbPllDelayParams[FreqIndex].EnableDelayCount, RegVal);
    RegVal = USB_UTMIP_FLD_SET_DRF_DEF(PLL_CFG1, UTMIP_XTAL_FREQ_COUNT,
                s_UsbPllDelayParams[FreqIndex].XtalFreqCount, RegVal);
    USB_UTMIP_REG_WR(PLL_CFG1, RegVal);

    return NvSuccess;
}

static void
Ap20UsbPhyUtmiPowerControl(
    NvDdkUsbPhy *pUsbPhy,
    NvBool Enable)
{
    NvU32 RegVal = 0;

    /* UTMIP_XCVR_SETUP setting of 0x9, in conjunction with
       UTMIP_XCVR_TERM_RANGE_ADJ of 0x6, gives the maximum guard band around
       the USB electrical spec. This is true across fast and slow chips, high
       and low voltage, and hot and cold temperature. */
    NvU32 XcvrSetupValue = 0x9;
    NvU32 XcvrTermRangeAdj = 0x6;

    if (Enable)
    {
        if (pUsbPhy->pProperty->UsbMode == NvOdmUsbModeType_Device)
        {
            // Disable the automatic phy enable on wakeup event
            USB1_IF_REG_UPDATE_DEF(USB_SUSP_CTRL, USB_WAKE_ON_CNNT_EN_DEV, DISABLE);
        }

        // USB Power Up sequence
        if (!pUsbPhy->pUtmiPadConfig->PadOnRefCount)
        {
            /* UTMI PAD control logic is common to all UTMIP phys and 
               they are controlled from USB1 controller */
            // Power Up OTG and Bias config pad circuitry
            RegVal = NV_READ32(pUsbPhy->pUtmiPadConfig->pVirAdr + ((USB1_UTMIP_BIAS_CFG0_0)/4));
            RegVal = USB_UTMIP_FLD_SET_DRF_DEF(BIAS_CFG0, UTMIP_OTGPD, 0, RegVal);
            RegVal = USB_UTMIP_FLD_SET_DRF_DEF(BIAS_CFG0, UTMIP_BIASPD, 0, RegVal);
            NV_WRITE32(pUsbPhy->pUtmiPadConfig->pVirAdr + ((USB1_UTMIP_BIAS_CFG0_0)/4), 
                       RegVal);
        }
        /* Increment the reference count to turn off the UTMIP pads */
        pUsbPhy->pUtmiPadConfig->PadOnRefCount++;

        // Turn on power in the tranciver
        RegVal = USB_UTMIP_REG_RD(XCVR_CFG0);
        RegVal = USB_UTMIP_FLD_SET_DRF_DEF(
                    XCVR_CFG0, UTMIP_FORCE_PDZI_POWERDOWN, 0, RegVal);
        RegVal = USB_UTMIP_FLD_SET_DRF_DEF(
                    XCVR_CFG0, UTMIP_FORCE_PD2_POWERDOWN, 0, RegVal);
        RegVal = USB_UTMIP_FLD_SET_DRF_DEF(
                    XCVR_CFG0, UTMIP_FORCE_PD_POWERDOWN, 0, RegVal);
        RegVal = USB_UTMIP_FLD_SET_DRF_DEF(
                    XCVR_CFG0, UTMIP_XCVR_SETUP, XcvrSetupValue, RegVal);
        if (pUsbPhy->pProperty->UsbMode == NvOdmUsbModeType_Host)
        {
            // To slow rise/ fall times in low-speed eye diagrams in host mode
            RegVal = USB_UTMIP_FLD_SET_DRF_DEF(
                        XCVR_CFG0, UTMIP_XCVR_LSFSLEW, 2, RegVal);
            RegVal = USB_UTMIP_FLD_SET_DRF_DEF(
                        XCVR_CFG0, UTMIP_XCVR_LSRSLEW, 2, RegVal);
        }
        else
        {
            RegVal = USB_UTMIP_FLD_SET_DRF_DEF(
                        XCVR_CFG0, UTMIP_XCVR_HSSLEW_MSB, 0, RegVal);
        }

        USB_UTMIP_REG_WR(XCVR_CFG0, RegVal);

        RegVal = USB_UTMIP_REG_RD(XCVR_CFG1);
        RegVal = USB_UTMIP_FLD_SET_DRF_DEF(
                    XCVR_CFG1, UTMIP_FORCE_PDDISC_POWERDOWN, 0, RegVal);
        RegVal = USB_UTMIP_FLD_SET_DRF_DEF(
                    XCVR_CFG1, UTMIP_FORCE_PDCHRP_POWERDOWN, 0, RegVal);
        RegVal = USB_UTMIP_FLD_SET_DRF_DEF(
                    XCVR_CFG1, UTMIP_FORCE_PDDR_POWERDOWN, 0, RegVal);
        RegVal = USB_UTMIP_FLD_SET_DRF_DEF(
                    XCVR_CFG1, UTMIP_XCVR_TERM_RANGE_ADJ, XcvrTermRangeAdj, RegVal);
        USB_UTMIP_REG_WR(XCVR_CFG1, RegVal);

        // Enable Batery charge enabling bit, set to '0' for enable
        USB_UTMIP_REG_UPDATE_NUM(BAT_CHRG_CFG0, UTMIP_PD_CHRG, 0);

        if (pUsbPhy->Instance == 2)
        {
            // Enable UTMIP PHY for USB3 controller
            RegVal = USB_IF_REG_RD(SUSP_CTRL);
            RegVal = USB3_IF_FLD_SET_DRF_DEF(
                        SUSP_CTRL, UTMIP_PHY_ENB, ENABLE, RegVal);
            USB_IF_REG_WR(SUSP_CTRL, RegVal);
        }

        // Release reset to UTMIP
        RegVal =USB_IF_REG_RD(SUSP_CTRL);
        RegVal = USB3_IF_FLD_SET_DRF_DEF(SUSP_CTRL, UTMIP_RESET, DISABLE, RegVal);
        USB_IF_REG_WR(SUSP_CTRL, RegVal);

        if (pUsbPhy->Instance == 0)
        {
            RegVal = USB1_IF_REG_RD(USB1_LEGACY_CTRL);
            RegVal = USB1_IF_FLD_SET_DRF_DEF(
                        USB1_LEGACY_CTRL, USB1_VBUS_SENSE_CTL, A_SESS_VLD, RegVal);
            USB1_IF_REG_WR(USB1_LEGACY_CTRL, RegVal);
        }
        if (pUsbPhy->Instance == 0)
        {
            USB1_IF_REG_UPDATE_DEF(USB_SUSP_CTRL, USB_SUSP_SET, UNSET);
        }
        USB_IF_REG_UPDATE_DEF(SUSP_CTRL, USB_SUSP_CLR, SET);
        NvOsWaitUS(10);
        USB_IF_REG_UPDATE_DEF(SUSP_CTRL, USB_SUSP_CLR, UNSET);
    }
    else
    {
        // Put the Phy in the suspend mode
        if (pUsbPhy->Instance == 0)
        {
            USB1_IF_REG_UPDATE_DEF(USB_SUSP_CTRL, USB_SUSP_SET, SET);
            NvOsWaitUS(10);
            USB1_IF_REG_UPDATE_DEF(USB_SUSP_CTRL, USB_SUSP_SET, UNSET);
        }

        // Put the Phy in the suspend mode
        if (pUsbPhy->Instance == 2)
        {
            RegVal = USB_REG_RD(PORTSC1);
            RegVal = USB_FLD_SET_DRF_DEF(PORTSC1, PHCD, ENABLE, RegVal); 
            USB_REG_WR(PORTSC1, RegVal);
        }

        // wait untill phy in suspend..
        Ap20UsbPhyWaitForInValidPhyClock(pUsbPhy);

        if (pUsbPhy->pProperty->UsbMode == NvOdmUsbModeType_Device)
        {
            // Setup debounce time for wakeup event 5 HCLK cycles
            USB_IF_REG_UPDATE_NUM(SUSP_CTRL, USB_WAKEUP_DEBOUNCE_COUNT, 5);
            // ENABLE the automatic phy enable on wakeup event
            USB1_IF_REG_UPDATE_DEF(USB_SUSP_CTRL, USB_WAKE_ON_CNNT_EN_DEV, ENABLE);
        }
        // Hold UTMIP in reset
        RegVal =USB_IF_REG_RD(SUSP_CTRL);
        RegVal = USB3_IF_FLD_SET_DRF_DEF(SUSP_CTRL, UTMIP_RESET, ENABLE, RegVal);
        USB_IF_REG_WR(SUSP_CTRL, RegVal);

        // Disable Batery charge enabling bit set to '1' for disable
        USB_UTMIP_REG_UPDATE_NUM(BAT_CHRG_CFG0, UTMIP_PD_CHRG, 1);

        // Turn off power in the tranciver
        RegVal = USB_UTMIP_REG_RD(XCVR_CFG0);
        RegVal = USB_UTMIP_FLD_SET_DRF_DEF(
                    XCVR_CFG0, UTMIP_FORCE_PDZI_POWERDOWN, 1, RegVal);
        RegVal = USB_UTMIP_FLD_SET_DRF_DEF(
                    XCVR_CFG0, UTMIP_FORCE_PD2_POWERDOWN, 1, RegVal);
        RegVal = USB_UTMIP_FLD_SET_DRF_DEF(
                    XCVR_CFG0, UTMIP_FORCE_PD_POWERDOWN, 1, RegVal);
        USB_UTMIP_REG_WR(XCVR_CFG0, RegVal);

        RegVal = USB_UTMIP_REG_RD(XCVR_CFG1);
        RegVal = USB_UTMIP_FLD_SET_DRF_DEF(
                    XCVR_CFG1, UTMIP_FORCE_PDDISC_POWERDOWN, 1, RegVal);
        RegVal = USB_UTMIP_FLD_SET_DRF_DEF(
                    XCVR_CFG1, UTMIP_FORCE_PDCHRP_POWERDOWN, 1, RegVal);
        RegVal = USB_UTMIP_FLD_SET_DRF_DEF(
                    XCVR_CFG1, UTMIP_FORCE_PDDR_POWERDOWN, 1, RegVal);
        USB_UTMIP_REG_WR(XCVR_CFG1, RegVal);


        // USB Power down sequence
        /* decrement the pad control refernce count */
        pUsbPhy->pUtmiPadConfig->PadOnRefCount--;
        if (!pUsbPhy->pUtmiPadConfig->PadOnRefCount)
        {
            /* since there is no reference to the pads turn off */
            RegVal = NV_READ32(pUsbPhy->pUtmiPadConfig->pVirAdr + ((USB1_UTMIP_BIAS_CFG0_0)/4));
            // Power down OTG and Bias circuitry
            RegVal = USB_UTMIP_FLD_SET_DRF_DEF(BIAS_CFG0, UTMIP_OTGPD, 1, RegVal);
            RegVal = USB_UTMIP_FLD_SET_DRF_DEF(BIAS_CFG0, UTMIP_BIASPD, 1, RegVal);
            NV_WRITE32(pUsbPhy->pUtmiPadConfig->pVirAdr + ((USB1_UTMIP_BIAS_CFG0_0)/4),
                       RegVal);
        }
    }
}

static void 
Ap20UsbPhySelectUsbMode(
    NvDdkUsbPhy *pUsbPhy)
{
    NvU32 RegVal = 0;

    if ((pUsbPhy->pProperty->UsbInterfaceType == NvOdmUsbInterfaceType_Utmi) &&
        (pUsbPhy->Instance == 2))
    {
        // Disable ICUSB interface 
        USB_REG_UPDATE_DEF(ICUSB_CTRL, IC_ENB1, DISABLE);

        // set UTMIP PHY and parallel UTMI interface
        RegVal = USB_REG_RD(PORTSC1);
        RegVal = USB_FLD_SET_DRF_DEF(PORTSC1, PTS, UTMI, RegVal); 
        RegVal = USB_FLD_SET_DRF_DEF(PORTSC1, STS, PARALLEL_IF, RegVal); 
        USB_REG_WR(PORTSC1, RegVal);
    }
}


static void 
Ap20UsbPhyUlpiNullModeConfigure(
    NvDdkUsbPhy *pUsbPhy)
{
    // default trimmer values for ap20
    NvOdmUsbTrimmerCtrl trimmerCtrl = {0, 0, 4, 4};

    if (pUsbPhy->pProperty->TrimmerCtrl.UlpiShadowClkDelay ||
        pUsbPhy->pProperty->TrimmerCtrl.UlpiClockOutDelay ||
        pUsbPhy->pProperty->TrimmerCtrl.UlpiDataTrimmerSel ||
        pUsbPhy->pProperty->TrimmerCtrl.UlpiStpDirNxtTrimmerSel)
    {
        // update the trimmer values if they are specified in nvodm_query
        NvOsMemcpy(&trimmerCtrl, &pUsbPhy->pProperty->TrimmerCtrl, sizeof(NvOdmUsbTrimmerCtrl));
    }

    // Put the UHSIC in the reset
    USB_IF_REG_UPDATE_DEF(SUSP_CTRL, UHSIC_RESET, ENABLE);

    // Bypass the Pin Mux on the ULPI outputs and ULPI clock output enable
    ULPI_IF_REG_WR(TIMING_CTRL_0, 
                ULPI_IF_REG_RD(TIMING_CTRL_0) |
                ULPI_IF_DRF_DEF(TIMING_CTRL_0, ULPI_OUTPUT_PINMUX_BYP, ENABLE) |
                ULPI_IF_DRF_DEF(TIMING_CTRL_0, ULPI_CLKOUT_PINMUX_BYP, ENABLE));

    // Enable ULPI clock from clk_gen
    USB_IF_REG_UPDATE_DEF(SUSP_CTRL, ULPI_PHY_ENB, ENABLE);

    // Set the timming perameters
    ULPI_IF_REG_WR(TIMING_CTRL_0, 
                    ULPI_IF_REG_RD(TIMING_CTRL_0) |
                    ULPI_IF_DRF_DEF(TIMING_CTRL_0, ULPI_SHADOW_CLK_LOOPBACK_EN, ENABLE) |
                    ULPI_IF_DRF_DEF(TIMING_CTRL_0, ULPI_SHADOW_CLK_SEL, POST_PAD) |
                    ULPI_IF_DRF_DEF(TIMING_CTRL_0, ULPI_OUTPUT_PINMUX_BYP, ENABLE) |
                    ULPI_IF_DRF_DEF(TIMING_CTRL_0, ULPI_CLKOUT_PINMUX_BYP, ENABLE) |
                    ULPI_IF_DRF_DEF(TIMING_CTRL_0, ULPI_LBK_PAD_EN, OUTPUT) |
                    ULPI_IF_DRF_NUM(TIMING_CTRL_0, ULPI_SHADOW_CLK_DELAY, trimmerCtrl.UlpiShadowClkDelay) |
                    ULPI_IF_DRF_NUM(TIMING_CTRL_0, ULPI_CLOCK_OUT_DELAY, trimmerCtrl.UlpiClockOutDelay) |
                    ULPI_IF_DRF_NUM(TIMING_CTRL_0, ULPI_LBK_PAD_E_INPUT_OR, 0));

    // Set all the trimmers to 0 at the start
    ULPI_IF_REG_WR(TIMING_CTRL_1, 0);

    // wait for 10 micro seconds
    NvOsWaitUS(10);

    // Set USB2 controller to null ulpi mode (ULPIS2S_ENA = 1)
    // Enable PLLU (ULPIS2S_PLLU_MASTER_BLASTER60 = 1)
    //  ULPIS2S_SPARE[0] = VBUS active
    USB_IF_REG_WR(ULPIS2S_CTRL, 
                    USB_IF_DRF_DEF(ULPIS2S_CTRL, ULPIS2S_ENA, ENABLE) |
                    USB_IF_DRF_DEF(ULPIS2S_CTRL, ULPIS2S_PLLU_MASTER_BLASTER60, ENABLE) |
                    USB_IF_DRF_NUM(ULPIS2S_CTRL, ULPIS2S_SPARE,
                    (pUsbPhy->pProperty->UsbMode == NvOdmUsbModeType_Host)?3:1));

    // Select ULPI_CORE_CLK_SEL to SHADOW_CLK
    ULPI_IF_REG_WR(TIMING_CTRL_0, 
                    ULPI_IF_REG_RD(TIMING_CTRL_0) |
                    ULPI_IF_DRF_DEF(TIMING_CTRL_0, ULPI_CORE_CLK_SEL, SHADOW_CLK));

    // wait for 10 micro seconds
    NvOsWaitUS(10);

    // Set ULPI_CLK_OUT_ENA to 1 to enable ULPI null clocks
    // Can't set the trimmers before this
    ULPI_IF_REG_WR(TIMING_CTRL_0, 
                    ULPI_IF_REG_RD(TIMING_CTRL_0) |
                    ULPI_IF_DRF_NUM(TIMING_CTRL_0, ULPI_CLK_OUT_ENA, 1));

    // wait for 10 micro seconds
    NvOsWaitUS(10);

    // Set the trimmer values
    ULPI_IF_REG_WR(TIMING_CTRL_1, 
                    ULPI_IF_DRF_NUM(TIMING_CTRL_1, ULPI_DATA_TRIMMER_LOAD, 0) |
                    ULPI_IF_DRF_NUM(TIMING_CTRL_1, ULPI_DATA_TRIMMER_SEL, trimmerCtrl.UlpiDataTrimmerSel) |
                    ULPI_IF_DRF_NUM(TIMING_CTRL_1, ULPI_STPDIRNXT_TRIMMER_LOAD, 0) |
                    ULPI_IF_DRF_NUM(TIMING_CTRL_1, ULPI_STPDIRNXT_TRIMMER_SEL, trimmerCtrl.UlpiStpDirNxtTrimmerSel) |
                    ULPI_IF_DRF_NUM(TIMING_CTRL_1, ULPI_DIR_TRIMMER_LOAD, 0) |
                    ULPI_IF_DRF_NUM(TIMING_CTRL_1, ULPI_DIR_TRIMMER_SEL, 4));

    // wait for 10 micro seconds
    NvOsWaitUS(10);

    //Load the trimmers by toggling the load bits
    ULPI_IF_REG_WR(TIMING_CTRL_1, 
                    ULPI_IF_DRF_NUM(TIMING_CTRL_1, ULPI_DATA_TRIMMER_LOAD, 1) |
                    ULPI_IF_DRF_NUM(TIMING_CTRL_1, ULPI_DATA_TRIMMER_SEL, trimmerCtrl.UlpiDataTrimmerSel) |
                    ULPI_IF_DRF_NUM(TIMING_CTRL_1, ULPI_STPDIRNXT_TRIMMER_LOAD, 1) |
                    ULPI_IF_DRF_NUM(TIMING_CTRL_1, ULPI_STPDIRNXT_TRIMMER_SEL, trimmerCtrl.UlpiStpDirNxtTrimmerSel) |
                    ULPI_IF_DRF_NUM(TIMING_CTRL_1, ULPI_DIR_TRIMMER_LOAD, 1) |
                    ULPI_IF_DRF_NUM(TIMING_CTRL_1, ULPI_DIR_TRIMMER_SEL, 4));

    // wait for 10 micro seconds
    NvOsWaitUS(10);

    // Set ULPI_CLK_PADOUT_ENA  to 1 to enable ULPI null clock going out to
    // ulpi clk pad (ulpi_clk)
    ULPI_IF_REG_WR(TIMING_CTRL_0, 
                    ULPI_IF_REG_RD(TIMING_CTRL_0) |
                    ULPI_IF_DRF_NUM(TIMING_CTRL_0, ULPI_CLK_PADOUT_ENA, 1));
}


static void 
Ap20UsbPhyUlpiLinkModeConfigure(
    NvDdkUsbPhy *pUsbPhy, NvBool Enable)
{
    NvU32 RegVal;
    NvU32 TimeOut = USB_PHY_HW_TIMEOUT_US;

    if (Enable)
    {
        // Put the UHSIC in the reset
        USB_IF_REG_UPDATE_DEF(SUSP_CTRL, UHSIC_RESET, ENABLE);

        // Bypass the Pin Mux on the ULPI outputs and ULPI clock output enable
        ULPI_IF_REG_WR(TIMING_CTRL_0, 
            ULPI_IF_REG_RD(TIMING_CTRL_0) |
            ULPI_IF_DRF_DEF(TIMING_CTRL_0, ULPI_OUTPUT_PINMUX_BYP, ENABLE) |
            ULPI_IF_DRF_DEF(TIMING_CTRL_0, ULPI_CLKOUT_PINMUX_BYP, ENABLE));

        // Enable ULPI clock from clk_gen
        USB_IF_REG_UPDATE_DEF(SUSP_CTRL, ULPI_PHY_ENB, ENABLE);

        // Set all the trimmers to 0 at the start
        ULPI_IF_REG_WR(TIMING_CTRL_1, 0);

        // Set the trimmer values
        ULPI_IF_REG_WR(TIMING_CTRL_1, 
            ULPI_IF_DRF_NUM(TIMING_CTRL_1, ULPI_DATA_TRIMMER_LOAD, 0) |
            ULPI_IF_DRF_NUM(TIMING_CTRL_1, ULPI_DATA_TRIMMER_SEL, 4) |
            ULPI_IF_DRF_NUM(TIMING_CTRL_1, ULPI_STPDIRNXT_TRIMMER_LOAD, 0) |
            ULPI_IF_DRF_NUM(TIMING_CTRL_1, ULPI_STPDIRNXT_TRIMMER_SEL, 4) |
            ULPI_IF_DRF_NUM(TIMING_CTRL_1, ULPI_DIR_TRIMMER_LOAD, 0) |
            ULPI_IF_DRF_NUM(TIMING_CTRL_1, ULPI_DIR_TRIMMER_SEL, 4));

        // wait for 10 micro seconds
        NvOsWaitUS(10);

        //Load the trimmers by toggling the load bits
        ULPI_IF_REG_WR(TIMING_CTRL_1, 
            ULPI_IF_DRF_NUM(TIMING_CTRL_1, ULPI_DATA_TRIMMER_LOAD, 1) |
            ULPI_IF_DRF_NUM(TIMING_CTRL_1, ULPI_DATA_TRIMMER_SEL, 4) |
            ULPI_IF_DRF_NUM(TIMING_CTRL_1, ULPI_STPDIRNXT_TRIMMER_LOAD, 1) |
            ULPI_IF_DRF_NUM(TIMING_CTRL_1, ULPI_STPDIRNXT_TRIMMER_SEL, 4) |
            ULPI_IF_DRF_NUM(TIMING_CTRL_1, ULPI_DIR_TRIMMER_LOAD, 1) |
            ULPI_IF_DRF_NUM(TIMING_CTRL_1, ULPI_DIR_TRIMMER_SEL, 4));

        RegVal = USB_FLD_SET_DRF_DEF(ULPI_VIEWPORT, ULPI_WAKEUP, SET, 0xFFFFFFFF);
        RegVal = USB_FLD_SET_DRF_DEF(ULPI_VIEWPORT, ULPI_RUN, CLEAR, RegVal);
        RegVal = USB_FLD_SET_DRF_DEF(ULPI_VIEWPORT, ULPI_RD_WR, WRITE, RegVal);
        RegVal = USB_FLD_SET_DRF_NUM(ULPI_VIEWPORT, ULPI_PORT, 0, RegVal);
        USB_REG_WR(ULPI_VIEWPORT, RegVal);

        // wait for ULPI wake up is cleared
        do {
            RegVal = USB_REG_RD(ULPI_VIEWPORT);
            if (!TimeOut)
            {
                NvOsDebugPrintf("Error accessing ULPI view port\n");
                break;
            }
            NvOsWaitUS(1);
            TimeOut--;
        } while (USB_DRF_VAL(ULPI_VIEWPORT, ULPI_WAKEUP, RegVal));

        // fix VbusValid for Harmony due to floating VBUS
        Ap20UsbPhyUlpiViewPortProgramData(pUsbPhy, 0x08, 0x40);

        // set UseExternalVbusIndicator to 1 
        Ap20UsbPhyUlpiViewPortProgramData(pUsbPhy, 0x0B, 0x80);

        // enabling WKCN/WKDS/WKOC bit
        RegVal = USB_REG_RD(PORTSC1);
        RegVal = USB_FLD_SET_DRF_DEF(PORTSC1, WKCN, ENABLE, RegVal);
        RegVal = USB_FLD_SET_DRF_DEF(PORTSC1, WKDS, ENABLE, RegVal);
        RegVal = USB_FLD_SET_DRF_DEF(PORTSC1, WKOC, ENABLE, RegVal);
        USB_REG_WR(PORTSC1, RegVal);
    }
    else
    {
        // Programming  the ULPI register function control
        Ap20UsbPhyUlpiViewPortProgramData(pUsbPhy, 0x04, 0x4D);

        // Resetting  the ULPI register IndicatorPassThru
        Ap20UsbPhyUlpiViewPortProgramData(pUsbPhy, 0x09, 0x40);

        // USB Interrupt Rising - making sure vbus comparator and id are off
        Ap20UsbPhyUlpiViewPortProgramData(pUsbPhy, 0x0D, 0x00);

        // USB Interrupt Falling
        Ap20UsbPhyUlpiViewPortProgramData(pUsbPhy, 0x10, 0x00);

        //Carkit Control
        Ap20UsbPhyUlpiViewPortProgramData(pUsbPhy, 0x19, 0x00);

        // Disabling ID float Rise/Fall (Carkit Enable)
        Ap20UsbPhyUlpiViewPortProgramData(pUsbPhy, 0x1D, 0x00);

        // USB I/O and power
        Ap20UsbPhyUlpiViewPortProgramData(pUsbPhy, 0x39, 0x00);

        // clear WKCN/WKDS/WKOC wake-on events that can cause the USB
        // Controller to immediately bring the ULPI PHY out of low power mode
        RegVal = USB_REG_RD(PORTSC1);
        RegVal = USB_FLD_SET_DRF_DEF(PORTSC1, WKCN, DISBLE, RegVal);
        RegVal = USB_FLD_SET_DRF_DEF(PORTSC1, WKDS, DISBLE, RegVal);
        RegVal = USB_FLD_SET_DRF_DEF(PORTSC1, WKOC, DISBLE, RegVal);
        USB_REG_WR(PORTSC1, RegVal);
    }
}

static void
Ap20UsbPhyUlpiPowerControl(
    NvDdkUsbPhy *pUsbPhy,
    NvBool Enable)
{
    NvU32 RegVal = 0;

    if (pUsbPhy->pProperty->UsbMode == NvOdmUsbModeType_Host)
    {
        if (Enable)
        {
            // Bring the Phy out of suspend mode
            USB_IF_REG_UPDATE_DEF(SUSP_CTRL, USB_SUSP_CLR, SET);
            NvOsWaitUS(100);
            USB_IF_REG_UPDATE_DEF(SUSP_CTRL, USB_SUSP_CLR, UNSET);
        }
        else
        {
            // Put the Phy in the suspend mode
            RegVal = USB_REG_RD(PORTSC1);
            RegVal = USB_FLD_SET_DRF_DEF(PORTSC1, PHCD, ENABLE, RegVal); 
            USB_REG_WR(PORTSC1, RegVal);
            // Wait for phy clock to go down
            Ap20UsbPhyWaitForInValidPhyClock(pUsbPhy);
        }
    }
}


static NvError 
Ap20UsbPhyIoctlVbusInterrupt(
    NvDdkUsbPhy *pUsbPhy, 
    const void *pInputArgs)
{
    NvDdkUsbPhyIoctl_VBusInterruptInputArgs *pVbusIntr = NULL;
    NvU32 RegVal = 0;

    if (!pInputArgs)
        return NvError_BadParameter;

    pVbusIntr = (NvDdkUsbPhyIoctl_VBusInterruptInputArgs *)pInputArgs;

    if (pUsbPhy->pProperty->UsbInterfaceType == NvOdmUsbInterfaceType_Utmi)
    {
        RegVal = USB1_IF_REG_RD(USB_PHY_VBUS_WAKEUP_ID);

        if (pVbusIntr->EnableVBusInterrupt)
        {
            RegVal = NV_FLD_SET_DRF_DEF(USB1_IF, USB_PHY_VBUS_WAKEUP_ID, 
                                        VBUS_WAKEUP_WAKEUP_EN, ENABLE, RegVal);
            RegVal = NV_FLD_SET_DRF_DEF(USB1_IF, USB_PHY_VBUS_WAKEUP_ID, 
                                        VBUS_WAKEUP_INT_EN, ENABLE, RegVal);
        }
        else
        {
            RegVal = NV_FLD_SET_DRF_DEF(USB1_IF, USB_PHY_VBUS_WAKEUP_ID, 
                                        VBUS_WAKEUP_WAKEUP_EN, DISABLE, RegVal);
            RegVal = NV_FLD_SET_DRF_DEF(USB1_IF, USB_PHY_VBUS_WAKEUP_ID,
                                        VBUS_WAKEUP_INT_EN, DISABLE, RegVal);
            RegVal = NV_FLD_SET_DRF_DEF(USB1_IF, USB_PHY_VBUS_WAKEUP_ID,
                                        VBUS_WAKEUP_CHG_DET, SET, RegVal);
        }

        USB1_IF_REG_WR(USB_PHY_VBUS_WAKEUP_ID, RegVal);
    }
    else if (pUsbPhy->pProperty->UsbInterfaceType == NvOdmUsbInterfaceType_UlpiExternalPhy)
    {
        if (pVbusIntr->EnableVBusInterrupt)
        {
            USB_REG_WR(USBINTR, USB_DRF_DEF(USBINTR, UE, ENABLE));
            RegVal = USB_REG_SET_DRF_DEF(OTGSC, BSVIE, ENABLE);
            USB_REG_WR(OTGSC, RegVal);
        }
        else
        {
            USB_REG_WR(USBSTS, USB_REG_RD(USBSTS));
            RegVal = USB_REG_SET_DRF_DEF(OTGSC, BSVIE, DISABLE);
            USB_REG_WR(OTGSC, RegVal);
        }
    }
    else
    {
        // In NULL phy mode this is not required as VBUS is always present
    }


    return NvSuccess;
}

static NvError 
Ap20UsbPhyIoctlVBusStatus(
    NvDdkUsbPhy *pUsbPhy, 
    void *pOutputArgs)
{
    NvDdkUsbPhyIoctl_VBusStatusOutputArgs *pVBusStatus = NULL;
    NvU32 RegVal = 0;

    if (!pOutputArgs)
        return NvError_BadParameter;

    pVBusStatus = (NvDdkUsbPhyIoctl_VBusStatusOutputArgs *)pOutputArgs;

    pVBusStatus = (NvDdkUsbPhyIoctl_VBusStatusOutputArgs *)pOutputArgs;

    if (pUsbPhy->pProperty->UsbInterfaceType == NvOdmUsbInterfaceType_Utmi)
    {
        RegVal = USB1_IF_REG_RD(USB_PHY_VBUS_WAKEUP_ID);
        if (NV_DRF_VAL(USB1_IF, USB_PHY_VBUS_WAKEUP_ID, VBUS_WAKEUP_STS, RegVal))
        {
            pVBusStatus->VBusDetected = NV_TRUE;
        }
        else
        {
            pVBusStatus->VBusDetected = NV_FALSE;
        }
    }
    else if (pUsbPhy->pProperty->UsbInterfaceType == NvOdmUsbInterfaceType_UlpiExternalPhy)
    {
        if (USB_REG_READ_VAL(OTGSC, BSV))
        {
            pVBusStatus->VBusDetected = NV_TRUE;
        }
        else
        {
            pVBusStatus->VBusDetected = NV_FALSE;
        }
    }
    else
    {
        // In NULL phy mode VBUS is always present
        pVBusStatus->VBusDetected = NV_TRUE;
    }

    return NvSuccess;
}

static NvError 
Ap20UsbPhyIoctlIdPinInterrupt(
    NvDdkUsbPhy *pUsbPhy, 
    const void *pInputArgs)
{
    NvDdkUsbPhyIoctl_IdPinInterruptInputArgs *pIdPinIntr = NULL;
    NvU32 RegVal = 0;

    if (!pInputArgs)
        return NvError_BadParameter;

    pIdPinIntr = (NvDdkUsbPhyIoctl_IdPinInterruptInputArgs *)pInputArgs;

    if (pUsbPhy->pProperty->UsbInterfaceType == NvOdmUsbInterfaceType_Utmi)
    {
        RegVal = USB1_IF_REG_RD(USB_PHY_VBUS_WAKEUP_ID);

        if (pIdPinIntr->EnableIdPinInterrupt)
        {
            RegVal = NV_FLD_SET_DRF_DEF(USB1_IF, USB_PHY_VBUS_WAKEUP_ID, 
                                        ID_PU, ENABLE, RegVal);
            RegVal = NV_FLD_SET_DRF_DEF(USB1_IF, USB_PHY_VBUS_WAKEUP_ID, 
                                        ID_INT_EN, ENABLE, RegVal);
        }
        else
        {
            RegVal = NV_FLD_SET_DRF_DEF(USB1_IF, USB_PHY_VBUS_WAKEUP_ID,
                                        ID_PU, DISABLE, RegVal);
            RegVal = NV_FLD_SET_DRF_DEF(USB1_IF, USB_PHY_VBUS_WAKEUP_ID,
                                        ID_INT_EN, DISABLE, RegVal);
            RegVal = NV_FLD_SET_DRF_DEF(USB1_IF, USB_PHY_VBUS_WAKEUP_ID,
                                        ID_CHG_DET, SET, RegVal);
        }
        USB1_IF_REG_WR(USB_PHY_VBUS_WAKEUP_ID, RegVal);
    }
    else
    {
        //TODO:ENable the ID pin interrupt for the ULPI
    }

    return NvSuccess;
}

static NvError 
Ap20UsbPhyIoctlIdPinStatus(
    NvDdkUsbPhy *pUsbPhy, 
    void *pOutputArgs)
{
    NvDdkUsbPhyIoctl_IdPinStatusOutputArgs *pIdPinStatus = NULL;
    NvU32 RegVal = 0;

    if (!pOutputArgs)
        return NvError_BadParameter;

    pIdPinStatus = (NvDdkUsbPhyIoctl_IdPinStatusOutputArgs *)pOutputArgs;

    pIdPinStatus = (NvDdkUsbPhyIoctl_IdPinStatusOutputArgs *)pOutputArgs;

    RegVal = USB1_IF_REG_RD(USB_PHY_VBUS_WAKEUP_ID);
    if (!NV_DRF_VAL(USB1_IF, USB_PHY_VBUS_WAKEUP_ID, ID_STS, RegVal))
    {
        pIdPinStatus->IdPinSetToLow = NV_TRUE;
    }
    else
    {
        pIdPinStatus->IdPinSetToLow = NV_FALSE;
    }

    return NvSuccess;
}

static NvError 
Ap20UsbPhyIoctlDedicatedChargerDetection(
    NvDdkUsbPhy *pUsbPhy, 
    const void *pInputArgs)
{
    // These values (in milli second) are taken from the battery charging spec.
    #define TDP_SRC_ON_MS    100
    #define TDPSRC_CON_MS    40
    NvDdkUsbPhyIoctl_DedicatedChargerDetectionInputArgs *pChargerDetection = NULL;
    NvU32 RegVal = 0;

    if (!pInputArgs)
        return NvError_BadParameter;

    pChargerDetection = (NvDdkUsbPhyIoctl_DedicatedChargerDetectionInputArgs *)pInputArgs;

    if (pUsbPhy->pProperty->UsbInterfaceType != NvOdmUsbInterfaceType_Utmi)
    {
        // Charger detection is not there for ULPI
        return NvSuccess;
    }

    if (pChargerDetection->EnableChargerDetection)
    {
        // Enable charger detection logic
        RegVal = USB_UTMIP_REG_RD(BAT_CHRG_CFG0);
        RegVal = NV_FLD_SET_DRF_NUM(USB1_UTMIP, BAT_CHRG_CFG0,
                                    UTMIP_OP_SRC_EN, 1, RegVal);
        RegVal = NV_FLD_SET_DRF_NUM(USB1_UTMIP, BAT_CHRG_CFG0,
                                   UTMIP_ON_SINK_EN, 1, RegVal);
        USB_UTMIP_REG_WR(BAT_CHRG_CFG0, RegVal);

        // Source should be on for 100 ms as per USB charging spec
        NvOsSleepMS(TDP_SRC_ON_MS);

        RegVal = USB1_IF_REG_RD(USB_PHY_VBUS_WAKEUP_ID);
        if (pChargerDetection->EnableChargerInterrupt)
        {
            RegVal = NV_FLD_SET_DRF_DEF(USB1_IF, USB_PHY_VBUS_WAKEUP_ID,
                                       VDAT_DET_INT_EN, ENABLE, RegVal);
        }
        else
        {
            // If charger is not connected disable the interrupt
            RegVal = NV_FLD_SET_DRF_DEF(USB1_IF, USB_PHY_VBUS_WAKEUP_ID,
                                       VDAT_DET_INT_EN, DISABLE, RegVal);
            RegVal = NV_FLD_SET_DRF_DEF(USB1_IF, USB_PHY_VBUS_WAKEUP_ID,
                                        VDAT_DET_CHG_DET, SET, RegVal);
        }
        USB1_IF_REG_WR(USB_PHY_VBUS_WAKEUP_ID, RegVal);
    }
    else
    {
        // disable the interrupt
        RegVal = USB1_IF_REG_RD(USB_PHY_VBUS_WAKEUP_ID);
        RegVal = NV_FLD_SET_DRF_DEF(USB1_IF, USB_PHY_VBUS_WAKEUP_ID,
                                    VDAT_DET_INT_EN, DISABLE, RegVal);
        RegVal = NV_FLD_SET_DRF_DEF(USB1_IF, USB_PHY_VBUS_WAKEUP_ID,
                                    VDAT_DET_CHG_DET, SET, RegVal);
        USB1_IF_REG_WR(USB_PHY_VBUS_WAKEUP_ID, RegVal);

        // Disable charger detection logic
        RegVal = USB_UTMIP_REG_RD(BAT_CHRG_CFG0);
        RegVal = NV_FLD_SET_DRF_NUM(USB1_UTMIP, BAT_CHRG_CFG0,
                                    UTMIP_OP_SRC_EN, 0, RegVal);
        RegVal = NV_FLD_SET_DRF_NUM(USB1_UTMIP, BAT_CHRG_CFG0,
                                    UTMIP_ON_SINK_EN, 0, RegVal);
        USB_UTMIP_REG_WR(BAT_CHRG_CFG0, RegVal);

        // Delay of 40 ms before we pull the D+ as per battery charger spec.
        NvOsSleepMS(TDPSRC_CON_MS);
    }

    return NvSuccess;
}

static NvError 
Ap20UsbPhyIoctlDedicatedChargerStatus(
    NvDdkUsbPhy *pUsbPhy, 
    void *pOutputArgs)
{
    NvDdkUsbPhyIoctl_DedicatedChargerStatusOutputArgs *pChargerStatus = NULL;
    NvU32 RegVal = 0;

    if (!pOutputArgs)
        return NvError_BadParameter;

    pChargerStatus = (NvDdkUsbPhyIoctl_DedicatedChargerStatusOutputArgs *)pOutputArgs;

    if (pUsbPhy->pProperty->UsbInterfaceType != NvOdmUsbInterfaceType_Utmi)
    {
        // Charger detection is not there for ULPI
        // return Charger not available
        pChargerStatus->ChargerDetected = NV_FALSE;
        return NvSuccess;
    }

    RegVal = USB1_IF_REG_RD(USB_PHY_VBUS_WAKEUP_ID);
    if (NV_DRF_VAL(USB1_IF, USB_PHY_VBUS_WAKEUP_ID, VDAT_DET_STS, RegVal))
    {
        pChargerStatus->ChargerDetected = NV_TRUE;
    }
    else
    {
        pChargerStatus->ChargerDetected = NV_FALSE;
    }

    return NvSuccess;
}


static NvError 
Ap20UsbPhyIoctl(
    NvDdkUsbPhy *pUsbPhy,
    NvDdkUsbPhyIoctlType IoctlType,
    const void *pInputArgs,
    void *pOutputArgs)
{
    NvError ErrStatus = NvSuccess;

    switch (IoctlType)
    {
        case NvDdkUsbPhyIoctlType_VBusStatus:
            ErrStatus = Ap20UsbPhyIoctlVBusStatus(pUsbPhy, pOutputArgs);
            break;
        case NvDdkUsbPhyIoctlType_VBusInterrupt:
            ErrStatus = Ap20UsbPhyIoctlVbusInterrupt(pUsbPhy, pInputArgs);
            break;
        case NvDdkUsbPhyIoctlType_IdPinStatus:
            ErrStatus = Ap20UsbPhyIoctlIdPinStatus(pUsbPhy, pOutputArgs);
            break;
        case NvDdkUsbPhyIoctlType_IdPinInterrupt:
            ErrStatus = Ap20UsbPhyIoctlIdPinInterrupt(pUsbPhy, pInputArgs);
            break;
        case NvDdkUsbPhyIoctlType_DedicatedChargerStatus:
            ErrStatus = Ap20UsbPhyIoctlDedicatedChargerStatus(pUsbPhy, pOutputArgs);
            break;
        case NvDdkUsbPhyIoctlType_DedicatedChargerDetection:
            ErrStatus = Ap20UsbPhyIoctlDedicatedChargerDetection(pUsbPhy, pInputArgs);
            break;
        default:
            return NvError_NotSupported;
    }

    return ErrStatus;
}

static NvError 
Ap20UsbPhyWaitForStableClock(
    NvDdkUsbPhy *pUsbPhy)
{
    NvU32 TimeOut = USB_PHY_HW_TIMEOUT_US;
    NvU32 PhyClkValid = 0;

    // Wait for the phy clock to become valid or hardware timeout
    do {
        PhyClkValid = USB_IF_REG_READ_VAL(SUSP_CTRL, USB_PHY_CLK_VALID);
        if (!TimeOut)
        {
            return NvError_Timeout;
        }
        NvOsWaitUS(1);
        TimeOut--;
    } while (PhyClkValid != USB3_IF_USB_SUSP_CTRL_0_USB_PHY_CLK_VALID_SET);

    return NvSuccess;
}

static void Ap20UsbPhyMemoryPrefetch(NvDdkUsbPhy* pUsbPhy, NvBool Enable)
{
    NvU32 regVal = 0;

    if (Enable)
    {
        // Setup the AHB MEM configuration for USB performance.
        // Enabling the AHB prefetch bits for USB1.
        // 64kiloByte boundaries.
        // 4096 cycles before prefetched data is invalidated due to inactivity.
        regVal = NV_DRF_NUM(AHB_AHB_MEM, PREFETCH_CFG1, ENABLE, 1) |
              NV_DRF_DEF(AHB_AHB_MEM, PREFETCH_CFG1, AHB_MST_ID, AHBDMA)|
              NV_DRF_NUM(AHB_AHB_MEM, PREFETCH_CFG1, ADDR_BNDRY, 0xC) |
              NV_DRF_NUM(AHB_AHB_MEM, PREFETCH_CFG1, SPEC_THROTTLE, 0x0) |
              NV_DRF_NUM(AHB_AHB_MEM, PREFETCH_CFG1, INACTIVITY_TIMEOUT, 0x1000);
        NV_REGW( pUsbPhy->hRmDevice, NvRmPrivModuleID_Ahb_Arb_Ctrl, 0,
             AHB_AHB_MEM_PREFETCH_CFG1_0, regVal);

        regVal = NV_DRF_NUM(AHB_AHB_MEM, PREFETCH_CFG2, ENABLE, 1) |
              NV_DRF_DEF(AHB_AHB_MEM, PREFETCH_CFG2, AHB_MST_ID, USB)|
              NV_DRF_NUM(AHB_AHB_MEM, PREFETCH_CFG2, ADDR_BNDRY, 0xC) |
              NV_DRF_NUM(AHB_AHB_MEM, PREFETCH_CFG2, SPEC_THROTTLE, 0x0) |
              NV_DRF_NUM(AHB_AHB_MEM, PREFETCH_CFG2, INACTIVITY_TIMEOUT, 0x1000);
        NV_REGW( pUsbPhy->hRmDevice, NvRmPrivModuleID_Ahb_Arb_Ctrl, 0,
                 AHB_AHB_MEM_PREFETCH_CFG2_0, regVal);
    }
    else
    {
        regVal = NV_DRF_NUM(AHB_AHB_MEM, PREFETCH_CFG1, ENABLE, 0);
        NV_REGW( pUsbPhy->hRmDevice, NvRmPrivModuleID_Ahb_Arb_Ctrl, 0,
                 AHB_AHB_MEM_PREFETCH_CFG1_0, regVal);

        regVal = NV_DRF_NUM(AHB_AHB_MEM, PREFETCH_CFG2, ENABLE, 0);
        NV_REGW( pUsbPhy->hRmDevice, NvRmPrivModuleID_Ahb_Arb_Ctrl, 0,
                 AHB_AHB_MEM_PREFETCH_CFG2_0, regVal);
    }
}

static NvError 
Ap20UsbPhyPowerUp(
    NvDdkUsbPhy *pUsbPhy)
{
    NvError ErrVal = NvSuccess;

    Ap20UsbPhyConfigUsbClockOverOn(pUsbPhy, NV_TRUE);

    switch (pUsbPhy->pProperty->UsbInterfaceType)
    {
        case NvOdmUsbInterfaceType_UlpiNullPhy:
            Ap20UsbPhyUlpiNullModeConfigure(pUsbPhy);
            Ap20UsbPhyUlpiPowerControl(pUsbPhy, NV_TRUE);
            break;
        case NvOdmUsbInterfaceType_UlpiExternalPhy:
            pUsbPhy->hOdmUlpi = NvOdmUsbUlpiOpen(pUsbPhy->Instance);
            Ap20UsbPhyUlpiLinkModeConfigure(pUsbPhy, NV_TRUE);
            Ap20UsbPhyUlpiPowerControl(pUsbPhy, NV_TRUE);
            break;
        case NvOdmUsbInterfaceType_Utmi:
            ErrVal = Ap20UsbPhyUtmiConfigure(pUsbPhy);
            if (ErrVal != NvSuccess)
                return ErrVal;
            Ap20UsbPhyUtmiPowerControl(pUsbPhy, NV_TRUE);
            default:
            break;
    }

    ErrVal = Ap20UsbPhyWaitForStableClock(pUsbPhy);

    if (ErrVal == NvSuccess)
    {
        Ap20UsbPhySelectUsbMode(pUsbPhy);

        if (pUsbPhy->pProperty->UsbInterfaceType ==
            NvOdmUsbInterfaceType_UlpiNullPhy)
            pUsbPhy->hOdmUlpi = NvOdmUsbUlpiOpen(pUsbPhy->Instance);
    }

    return ErrVal;
}

static NvError 
Ap20UsbPhyPowerDown(
    NvDdkUsbPhy *pUsbPhy)
{
    switch (pUsbPhy->pProperty->UsbInterfaceType)
    {
        case NvOdmUsbInterfaceType_UlpiNullPhy:
            break;
        case NvOdmUsbInterfaceType_UlpiExternalPhy:
            Ap20UsbPhyUlpiLinkModeConfigure(pUsbPhy, NV_FALSE);
            Ap20UsbPhyUlpiPowerControl(pUsbPhy, NV_FALSE);
            if (pUsbPhy->hOdmUlpi)
            {
                NvOdmUsbUlpiClose(pUsbPhy->hOdmUlpi);
                pUsbPhy->hOdmUlpi = NULL;
            }
            break;
        case NvOdmUsbInterfaceType_Utmi:
            Ap20UsbPhyUtmiPowerControl(pUsbPhy, NV_FALSE);
            default:
            break;
    }

    Ap20UsbPhyConfigUsbClockOverOn(pUsbPhy, NV_FALSE);

    return NvSuccess;
}

static void 
Ap20UsbPhyClose(
    NvDdkUsbPhy *pUsbPhy)
{
    // Power down the USB controller 
    NV_ASSERT_SUCCESS(Ap20UsbPhyPowerDown(pUsbPhy));
}

/* static void
PrintRegs(
    NvDdkUsbPhy *pUsbPhy)
{
    NvOsDebugPrintf("********** USB REG DUMP - Start\n");
    NvOsDebugPrintf("USBMODE:          0x%x\n",USB_REG_RD(USBMODE));
    NvOsDebugPrintf("OTGSC:            0x%x\n",USB_REG_RD(OTGSC));
    NvOsDebugPrintf("TXFILLTUNING:     0x%x\n",USB_REG_RD(TXFILLTUNING));
    NvOsDebugPrintf("ASYNCLISTADDR:    0x%x\n",USB_REG_RD(ASYNCLISTADDR));
    NvOsDebugPrintf("PERIODICLISTBASE: 0x%x\n",USB_REG_RD(PERIODICLISTBASE));
    NvOsDebugPrintf("USBCMD:           0x%x\n",USB_REG_RD(USBCMD));
    NvOsDebugPrintf("USBINTR:          0x%x\n",USB_REG_RD(USBINTR));
    NvOsDebugPrintf("USBSTS:           0x%x\n",USB_REG_RD(USBSTS));
    NvOsDebugPrintf("PORTSC1:          0x%x\n",USB_REG_RD(PORTSC1));
    NvOsDebugPrintf("********** USB REG DUMP - End\n");
} */

static void
Ap20PhyRemoveTristate(
    NvDdkUsbPhy *pUsbPhy)
{
    NvU32 RegVal = 0;
    // Remove ULPI pads from tristate.  This step will bring the PHY out of suspend, since
    // the controller will start driving the ULPI pads.
    RegVal = USB_MISC_REGR(pUsbPhy, APB_MISC_PP_TRISTATE_REG_B_0);
    RegVal = NV_FLD_SET_DRF_DEF(APB_MISC_PP, TRISTATE_REG_B, Z_UAA, NORMAL, RegVal);
    RegVal = NV_FLD_SET_DRF_DEF(APB_MISC_PP, TRISTATE_REG_B, Z_UAB, NORMAL, RegVal);
    RegVal = NV_FLD_SET_DRF_DEF(APB_MISC_PP, TRISTATE_REG_B, Z_UAC, NORMAL, RegVal);
    USB_MISC_REGW(pUsbPhy, APB_MISC_PP_TRISTATE_REG_B_0, RegVal);

    Ap20UsbPhyWaitForStableClock(pUsbPhy);
}

static void
Ap20PhyRestoreRegs(
    NvDdkUsbPhy *pUsbPhy)
{
    NvU16 RegCount = 0;

    RegCount = pUsbPhy->Context.UsbRegCount;
    RegCount--;
    USB_REG_WR(USBMODE, pUsbPhy->Context.UsbRegs[RegCount--]);
    USB_REG_WR(OTGSC, pUsbPhy->Context.UsbRegs[RegCount--]);
    USB_REG_WR(TXFILLTUNING, pUsbPhy->Context.UsbRegs[RegCount--]);
    USB_REG_WR(ASYNCLISTADDR, pUsbPhy->Context.UsbRegs[RegCount--]);
    USB_REG_WR(PERIODICLISTBASE, pUsbPhy->Context.UsbRegs[RegCount--]);
    // Restore interrupt context later
    RegCount--;
    USB_REG_WR(USBCMD, pUsbPhy->Context.UsbRegs[RegCount--]);

}

static void
Ap20PhySaveContext(
    NvDdkUsbPhy *pUsbPhy)
{
    NvU16 RegCount = 0;

    pUsbPhy->Context.UsbPortSpeed = (NvDdkUsbPhyPortSpeedType)USB_REG_READ_VAL(PORTSC1, PSPD);

    // If no device connection or invalid speeds just return
    if( pUsbPhy->Context.UsbPortSpeed > NvDdkUsbPhyPortSpeedType_High)
    {
        pUsbPhy->Context.IsValid = NV_FALSE;
        return;
    }
    // PrintRegs(pUsbPhy);

    pUsbPhy->Context.UsbRegs[RegCount++] = USB_REG_RD(USBCMD);
    pUsbPhy->Context.UsbRegs[RegCount++] = USB_REG_RD(USBINTR);
    pUsbPhy->Context.UsbRegs[RegCount++] = USB_REG_RD(PERIODICLISTBASE);
    pUsbPhy->Context.UsbRegs[RegCount++] = USB_REG_RD(ASYNCLISTADDR);
    pUsbPhy->Context.UsbRegs[RegCount++] = USB_REG_RD(TXFILLTUNING);
    pUsbPhy->Context.UsbRegs[RegCount++] = USB_REG_RD(OTGSC);
    pUsbPhy->Context.UsbRegs[RegCount++] = USB_REG_RD(USBMODE);
    pUsbPhy->Context.UsbRegCount = RegCount;
    pUsbPhy->Context.IsValid = NV_TRUE;
}

static void
Ap20PhyRestoreContext(
    NvDdkUsbPhy *pUsbPhy)
{
    NvU32 RegVal = 0;

    /* If any saved context is present, restore it */
    // In case of no valid context just return
    if (!pUsbPhy->Context.IsValid)
        return;

    // Restore register context
    Ap20PhyRestoreRegs(pUsbPhy);

    // Enable Port Power
    USB_REG_UPDATE_DEF(PORTSC1, PP, POWERED);
    NvOsWaitUS(10);

    // Program the field PTC in PORTSC based on the saved speed mode
    RegVal = USB_REG_RD(PORTSC1);
    if (pUsbPhy->Context.UsbPortSpeed == NvDdkUsbPhyPortSpeedType_High)
    {
        RegVal = USB_FLD_SET_DRF_NUM(PORTSC1, PTC, 0x05, RegVal);
    }
    else if (pUsbPhy->Context.UsbPortSpeed == NvDdkUsbPhyPortSpeedType_Full)
    {
        RegVal = USB_FLD_SET_DRF_NUM(PORTSC1, PTC, 0x06, RegVal);
    }
    else if (pUsbPhy->Context.UsbPortSpeed == NvDdkUsbPhyPortSpeedType_Low)
    {
        RegVal = USB_FLD_SET_DRF_NUM(PORTSC1, PTC, 0x07, RegVal);
    }
    else
    {
        NV_ASSERT(!"\n speed is not configureed properly");
    }
    USB_REG_WR(PORTSC1, RegVal);
    NvOsWaitUS(10);

    // Disable test mode by setting PTC field to NORMAL_OP
    USB_REG_UPDATE_DEF(PORTSC1, PTC, NORMAL_OP);

    // Poll until CCS is enabled
    do
    {
         RegVal = USB_REG_RD(PORTSC1);
     } while (!USB_DRF_VAL(PORTSC1, CCS, RegVal));

    // Poll until PE is enabled
    do
    {
        RegVal = USB_REG_RD(PORTSC1);
    } while (!USB_DRF_VAL(PORTSC1, PE, RegVal));

    // Clear the PCI status, to avoid an interrupt taken upon resume
    USB_REG_UPDATE_DEF(USBSTS, PCI, PORT_CHANGE);
    do
    {
        RegVal = USB_REG_RD(USBSTS);
    } while (USB_DRF_VAL(USBSTS, PCI, RegVal));

    // Put controller in suspend mode by writing 1 to SUSP bit of PORTSC
    USB_REG_UPDATE_DEF(PORTSC1, SUSP, SUSPEND);
    // Wait until port suspend completes
    while (!USB_REG_READ_VAL(PORTSC1, SUSP))
    {
        NvOsWaitUS(1);
    };
    if (pUsbPhy->pProperty->UsbInterfaceType == NvOdmUsbInterfaceType_UlpiExternalPhy)
    {
        Ap20PhyRemoveTristate(pUsbPhy);
    }

    // Restore interrupt register
    USB_REG_WR(USBINTR, pUsbPhy->Context.UsbRegs[1]);
    NvOsWaitUS(10);

    // PrintRegs(pUsbPhy);
}

void
Ap20UsbPhyOpenHwInterface(
    NvDdkUsbPhy *pUsbPhy)
{
    pUsbPhy->PowerUp = Ap20UsbPhyPowerUp;
    pUsbPhy->PowerDown = Ap20UsbPhyPowerDown;
    pUsbPhy->Ioctl = Ap20UsbPhyIoctl;
    pUsbPhy->WaitForStableClock = Ap20UsbPhyWaitForStableClock;
    pUsbPhy->MemoryPrefetch = Ap20UsbPhyMemoryPrefetch;
    pUsbPhy->CloseHwInterface = Ap20UsbPhyClose;
    pUsbPhy->SaveContext = Ap20PhySaveContext;
    pUsbPhy->RestoreContext = Ap20PhyRestoreContext;
}