summaryrefslogtreecommitdiff
path: root/arch/arm/mach-tegra/nvrm/core/ap20/ap20rm_clock_config.c
blob: 3a7a7bb7b921eca72d966bc6730b618a5e5e06a4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
/*
 * Copyright (c) 2009 NVIDIA Corporation.
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *
 * Redistributions of source code must retain the above copyright notice,
 * this list of conditions and the following disclaimer.
 *
 * Redistributions in binary form must reproduce the above copyright notice,
 * this list of conditions and the following disclaimer in the documentation
 * and/or other materials provided with the distribution.
 *
 * Neither the name of the NVIDIA Corporation nor the names of its contributors
 * may be used to endorse or promote products derived from this software
 * without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGE.
 *
 */

#include "nvcommon.h"
#include "nvassert.h"
#include "nvrm_clocks.h"
#include "nvrm_hwintf.h"
#include "nvrm_drf.h"
#include "ap20rm_clocks.h"
#include "ap20/aremc.h"
#include "ap20/arclk_rst.h"
#include "ap20/arapbpm.h"
#include "ap15/ap15rm_private.h"
#include "nvodm_query.h"

// Enable CPU/EMC ratio policy
#define NVRM_LIMIT_CPU_EMC_RATIO (1)

// Use DRAM power down mode with EMC clock change
#define NVRM_EMC_CLKCHANGE_PD (1)

// Default CPU power good delay
#define NVRM_DEFAULT_CPU_PWRGOOD_US (2000) 

// Default PMU accuracy %
#define NVRM_DEFAULT_PMU_ACCURACY_PCT (3)

// Minimum core over CPU voltage margin (at SoC)
#define NV_AP20_CORE_OVER_CPU_MV (120)

/*****************************************************************************/

/*
 * TODO: Basic DFS clock control policy outline:
 */

// Limit frequencies ratio for AHB : System >= 1:2 and APB : System >= 1 : 4
#define LIMIT_SYS_TO_AHB_APB_RATIOS (1)

// PLLP2 must be used as a variable low frequency source for System clock.
#define PLLP_POLICY_ENTRY(KHz) \
 { NvRmClockSource_PllP2,\
   (NVRM_PLLP_FIXED_FREQ_KHZ * 2)/((NVRM_PLLP_FIXED_FREQ_KHZ * 2)/KHz),\
   ((NVRM_PLLP_FIXED_FREQ_KHZ * 2)/KHz - 2)\
 },
static const NvRmDfsSource s_Ap20PllPSystemClockPolicy[] =
{
    NVRM_AP20_PLLP_POLICY_SYSTEM_CLOCK
};
static const NvU32 s_Ap20PllPSystemClockPolicyEntries =
    NV_ARRAY_SIZE(s_Ap20PllPSystemClockPolicy);
#undef PLLP_POLICY_ENTRY


// PLLP4 must be used as a variable low frequency source for cpu clock.
#define PLLP_POLICY_ENTRY(KHz) \
 { NvRmClockSource_PllP4,\
   (NVRM_PLLP_FIXED_FREQ_KHZ * 2)/((NVRM_PLLP_FIXED_FREQ_KHZ * 2)/KHz),\
   ((NVRM_PLLP_FIXED_FREQ_KHZ * 2)/KHz - 2)\
 },
static const NvRmDfsSource s_Ap20PllPCpuClockPolicy[] =
{
    NVRM_AP20_PLLP_POLICY_CPU_CLOCK
};
static const NvU32 s_Ap20PllPCpuClockPolicyEntries =
    NV_ARRAY_SIZE(s_Ap20PllPCpuClockPolicy);
#undef PLLP_POLICY_ENTRY

// EMC timing registers
static const NvU32 s_EmcTimingRegAddrRev20[] =
{
    EMC_RC_0,                   /* RC */
    EMC_RFC_0,                  /* RFC */
    EMC_RAS_0,                  /* RAS */
    EMC_RP_0,                   /* RP */
    EMC_R2W_0,                  /* R2W */
    EMC_W2R_0,                  /* W2R */
    EMC_R2P_0,                  /* R2P */
    EMC_W2P_0,                  /* W2P */
    EMC_RD_RCD_0,               /* RD_RCD */
    EMC_WR_RCD_0,               /* WR_RCD */
    EMC_RRD_0,                  /* RRD */
    EMC_REXT_0,                 /* REXT */
    EMC_WDV_0,                  /* WDV */
    EMC_QUSE_0,                 /* QUSE */
    EMC_QRST_0,                 /* QRST */
    EMC_QSAFE_0,                /* QSAFE */
    EMC_RDV_0,                  /* RDV */
    EMC_REFRESH_0,              /* REFRESH */
    EMC_BURST_REFRESH_NUM_0,    /* BURST_REFRESH_NUM */
    EMC_PDEX2WR_0,              /* PDEX2WR */
    EMC_PDEX2RD_0,              /* PDEX2RD */
    EMC_PCHG2PDEN_0,            /* PCHG2PDEN */
    EMC_ACT2PDEN_0,             /* ACT2PDEN */
    EMC_AR2PDEN_0,              /* AR2PDEN */
    EMC_RW2PDEN_0,              /* RW2PDEN */
    EMC_TXSR_0,                 /* TXSR */
    EMC_TCKE_0,                 /* TCKE */
    EMC_TFAW_0,                 /* TFAW */
    EMC_TRPAB_0,                /* TRPAB */
    EMC_TCLKSTABLE_0,           /* TCLKSTABLE */
    EMC_TCLKSTOP_0,             /* TCLKSTOP */
    EMC_TREFBW_0,               /* TREFBW */
    EMC_QUSE_EXTRA_0,           /* QUSE_EXTRA */
    EMC_FBIO_CFG6_0,            /* FBIO_CFG6 */
    EMC_ODT_WRITE_0,            /* ODT_WRITE */
    EMC_ODT_READ_0,             /* ODT_READ */
    EMC_FBIO_CFG5_0,            /* FBIO_CFG5 */
    EMC_CFG_DIG_DLL_0,          /* CFG_DIG_DLL */
    EMC_DLL_XFORM_DQS_0,        /* DLL_XFORM_DQS */
    EMC_DLL_XFORM_QUSE_0,       /* DLL_XFORM_QUSE */
    EMC_ZCAL_REF_CNT_0,         /* ZCAL_REF_CNT */
    EMC_ZCAL_WAIT_CNT_0,        /* ZCAL_WAIT_CNT */
    EMC_AUTO_CAL_INTERVAL_0,    /* AUTO_CAL_INTERVAL */
    EMC_CFG_CLKTRIM_0_0,        /* CFG_CLKTRIM_0 */
    EMC_CFG_CLKTRIM_1_0,        /* CFG_CLKTRIM_1 */
    EMC_CFG_CLKTRIM_2_0,        /* CFG_CLKTRIM_2 */
};

// Sorted list of timing parameters for discrete set of EMC frequencies used
// by DFS; entry 0 specifies timing parameters for PLLM0 output frequency.
static NvRmAp20EmcTimingConfig
s_Ap20EmcConfigSortedTable[NVRM_AP20_DFS_EMC_FREQ_STEPS];

static struct Ap20EmcConfigRec
{
    // Index of selected EMC configuration entry
    NvU32 Index;

    // Status of undivided PLLM0 path
    NvBool UdPllM0;

    // Pointers to EMC clock state
    NvRmModuleClockState* pEmc2xState;

    // Pointers to EMC clock descriptors
    NvRmModuleClockInfo* pEmcInfo;

    // Array of EMC timing registers
    const NvU32* pEmcTimingReg;

    // Total number of EMC timing registers
    NvU32 EmcTimingRegNum;

} s_Ap20EmcConfig = {0};

static struct Ap20VdeConfigRec
{
    // Pointer to VDE clock descriptor
    NvRmModuleClockInfo* pVdeInfo;

    // Pointer to VDE clock state
    NvRmModuleClockState* pVdeState;

} s_Ap20VdeConfig = {0};

static struct Ap20CpuConfigRec
{
    // Number of PLLX frequency steps
    NvU32 PllXStepsNo;

    // PLLX frequency steps table pointer 
    const NvRmFreqKHz* pPllXStepsKHz;

    // Core over CPU voltage dependency parameters:
    // Vcore >= CoreOverCpuSlope * Vcpu + CoreOverCpuOffset
    NvU32 CoreOverCpuOffset;
    NvU32 CoreOverCpuSlope;

} s_Ap20CpuConfig = {0};

/*****************************************************************************/
/*****************************************************************************/

static void
Ap20Emc2xClockStateUpdate(
    NvRmDeviceHandle hRmDevice)
{
    NvU32 reg;
    NvRmFreqKHz SourceClockFreq;
    NvRmModuleClockInfo* pCinfo = s_Ap20EmcConfig.pEmcInfo;
    NvRmModuleClockState* pCstate = s_Ap20EmcConfig.pEmc2xState;

    NV_ASSERT(pCinfo && pCstate);

    // Determine EMC2x source and divider setting; update EMC2x clock state
    reg = NV_REGR(hRmDevice,
                  NvRmPrivModuleID_ClockAndReset, 0, pCinfo->ClkSourceOffset);
    pCstate->Divider =
        ((reg >> pCinfo->DivisorFieldShift) & pCinfo->DivisorFieldMask);
    pCstate->SourceClock =
        ((reg >> pCinfo->SourceFieldShift) & pCinfo->SourceFieldMask);
    s_Ap20EmcConfig.UdPllM0 = NV_DRF_VAL(CLK_RST_CONTROLLER,
        CLK_SOURCE_EMC, USE_PLLM_UD, reg) ? NV_TRUE : NV_FALSE;
    if (s_Ap20EmcConfig.UdPllM0)
    {
        NV_ASSERT(  // policy: Src/Div settings must be synced with UD path
            (pCstate->Divider == 0) && (pCstate->SourceClock ==
            CLK_RST_CONTROLLER_CLK_SOURCE_EMC_0_EMC_2X_CLK_SRC_PLLM_OUT0));
    }
    SourceClockFreq =
        NvRmPrivGetClockSourceFreq(pCinfo->Sources[pCstate->SourceClock]);

    // Fractional divider output = (Source Frequency * 2) / (divider + 2)
    pCstate->actual_freq = ((SourceClockFreq << 1) / (pCstate->Divider + 2));
}

static NvBool
Ap20EmcClkChangeConfig(
    NvRmDeviceHandle hRmDevice)
{
// NO-DEVICE for dummy MRW/MRS commands
#define NULL_DEV_SELECTN (3)

    NvU32 cfg2, cfg5;

    cfg2 = NV_REGR(hRmDevice, NvRmPrivModuleID_ExternalMemoryController, 0,
                   EMC_CFG_2_0);
    cfg5 = NV_REGR(hRmDevice, NvRmPrivModuleID_ExternalMemoryController, 0,
                   EMC_FBIO_CFG5_0);

    switch (NV_DRF_VAL(EMC, FBIO_CFG5, DRAM_TYPE, cfg5))
    {
        case EMC_FBIO_CFG5_0_DRAM_TYPE_LPDDR2:
#if NVRM_EMC_CLKCHANGE_PD
            // Dummy mode control command to activate PD state machine
            NV_REGW(hRmDevice,
                    NvRmPrivModuleID_ExternalMemoryController, 0, EMC_MRW_0,
                    NV_DRF_NUM(EMC, MRW, MRW_DEV_SELECTN, NULL_DEV_SELECTN));
            NvOsWaitUS(NVRM_CLOCK_CHANGE_DELAY);

            cfg2 = NV_FLD_SET_DRF_DEF(
                EMC, CFG_2, CLKCHANGE_PD_ENABLE, ENABLED, cfg2);
            cfg2 = NV_FLD_SET_DRF_DEF(
                EMC, CFG_2, CLKCHANGE_SR_ENABLE, DISABLED, cfg2);
            break;
#endif
        case EMC_FBIO_CFG5_0_DRAM_TYPE_DDR2:
#if NVRM_EMC_CLKCHANGE_PD
            // Dummy mode control command to activate PD state machine
            NV_REGW(hRmDevice,
                    NvRmPrivModuleID_ExternalMemoryController, 0, EMC_MRS_0,
                    NV_DRF_NUM(EMC, MRS, MRS_DEV_SELECTN, NULL_DEV_SELECTN));
            NvOsWaitUS(NVRM_CLOCK_CHANGE_DELAY);
#endif
            cfg2 = NV_FLD_SET_DRF_DEF(
                EMC, CFG_2, CLKCHANGE_PD_ENABLE, DISABLED, cfg2);
            cfg2 = NV_FLD_SET_DRF_DEF(
                EMC, CFG_2, CLKCHANGE_SR_ENABLE, ENABLED, cfg2);
            break;
        default:
            NV_ASSERT(!"Not supported DRAM type");
            return NV_FALSE;
    }
    cfg2 = NV_FLD_SET_DRF_DEF(
        EMC, CFG_2, CLKCHANGE_REQ_ENABLE, ENABLED, cfg2);
    NV_REGW(hRmDevice, NvRmPrivModuleID_ExternalMemoryController, 0,
                   EMC_CFG_2_0, cfg2);
    return NV_TRUE;
}

static NvRmFreqKHz Ap20CpuToEmcRatio(NvRmFreqKHz Emc2xKHz)
{
#if NVRM_LIMIT_CPU_EMC_RATIO
    /*
     * CPU/EMC ratio is limited by the policy curve tabulated below: when cpu
     * frequency is reduced by 25%, emc frequency along the curve is reduced
     * by 50%.
     */
    static const NvU32 CpuToEmc[] = { 0,
        7,  10, 11, 13, 14, 15, 17, 18, 18, 19, 20, 21, 22, 22, 23, 24,
        24, 25, 25, 26, 26, 27, 27, 28, 28, 29, 29, 30, 30, 31, 31, 32
    };
    #define CPU_TO_EMC_MAX_RATIO (12)
    
    NvRmFreqKHz CpuKHz;
    NvRmFreqKHz CpuMaxKHz = NvRmPrivGetSocClockLimits(NvRmModuleID_Cpu)->MaxKHz;
    NvRmFreqKHz Emc2xMaxKHz = NvRmPrivGetClockSourceFreq(NvRmClockSource_PllM0);

    NvU32 M = NV_ARRAY_SIZE(CpuToEmc) - 1;
    NvU32 x = (Emc2xKHz * M + Emc2xMaxKHz - 1) / Emc2xMaxKHz;
    NV_ASSERT((x >= 1) && (x <= M));
    CpuKHz = (CpuMaxKHz * CpuToEmc[x] + M - 1) / M;
    CpuKHz = NV_MIN(CpuKHz, (Emc2xKHz * (CPU_TO_EMC_MAX_RATIO / 2)));

    return CpuKHz;
#else
    return NvRmFreqMaximum;
#endif
}

static void Ap20EmcConfigInit(NvRmDeviceHandle hRmDevice)
{
    NvRmFreqKHz Emc2xKHz, SourceKHz;
    NvU32 i, j, k, Source, ConfigurationsCount, UndividedIndex;
    NvU32 Revision = 0;
    
    NvRmFreqKHz PllM0KHz = NvRmPrivGetClockSourceFreq(NvRmClockSource_PllM0);
    NvRmFreqKHz PllP0KHz = NvRmPrivGetClockSourceFreq(NvRmClockSource_PllP0);
    const NvRmModuleClockLimits* pEmcClockLimits =
         NvRmPrivGetSocClockLimits(NvRmPrivModuleID_ExternalMemoryController);
    const NvOdmSdramControllerConfigAdv* pEmcConfigurations =
        NvOdmQuerySdramControllerConfigGet(&ConfigurationsCount, &Revision);

    // Init memory configuration structure
    NV_ASSERT_SUCCESS(NvRmPrivGetClockState(
        hRmDevice, NvRmPrivModuleID_ExternalMemoryController,
        &s_Ap20EmcConfig.pEmcInfo, &s_Ap20EmcConfig.pEmc2xState));

     s_Ap20EmcConfig.pEmcTimingReg = &s_EmcTimingRegAddrRev20[0];
     s_Ap20EmcConfig.EmcTimingRegNum = NV_ARRAY_SIZE(s_EmcTimingRegAddrRev20);
     s_Ap20EmcConfig.Index = NVRM_AP20_DFS_EMC_FREQ_STEPS; // invalid index

     // Clean table, which invalidates PLLM0 entry - no EMC DFS if exits
     // before sorting below
     NvOsMemset(s_Ap20EmcConfigSortedTable, 0,
                sizeof(s_Ap20EmcConfigSortedTable));

     // Get EMC2x clock state from h/w
     Ap20Emc2xClockStateUpdate(hRmDevice);

     // Configure EMC clock change mechanism - exit if not supported
     if (!Ap20EmcClkChangeConfig(hRmDevice))
         return;

     // Check if configuration table is provided by ODM
     if ((ConfigurationsCount == 0) || (pEmcConfigurations == NULL))
         return;

    // EMC DVFS is supported on AP20 starting with A02 chip
    if ((hRmDevice->ChipId.Major == 1) && (hRmDevice->ChipId.Minor <= 1))
        return;

    // Only 2.0 table revision is supported
    if (Revision != 0x20)
    {
        NV_ASSERT(!"Invalid configuration table revision");
        return;
    }

     // Check PLLs clock range
     if ((PllP0KHz < pEmcClockLimits->MinKHz) ||
         (PllP0KHz > pEmcClockLimits->MaxKHz))
     {
         NV_ASSERT(!"PLLP0 is outside supported EMC range");
         return;
     }
     if ((PllM0KHz < pEmcClockLimits->MinKHz) ||
         (PllM0KHz > pEmcClockLimits->MaxKHz))
     {
         NV_ASSERT(!"PLLM0 is outside supported EMC range");
         return;
     }

     // Check if PLLM0 is configured by boot loader as EMC clock source
     if (s_Ap20EmcConfig.pEmc2xState->SourceClock !=
         CLK_RST_CONTROLLER_CLK_SOURCE_EMC_0_EMC_2X_CLK_SRC_PLLM_OUT0)
     {
         NV_ASSERT(!"Other than PLLM0 clock source is used for EMC");
         return;
     }

     // Sort list of EMC timing parameters in descending order of frequencies
     // evenly divided down from the selected source. Supported sources: PLLM0
     // PLLP0, and Oscillator
     Source = CLK_RST_CONTROLLER_CLK_SOURCE_EMC_0_EMC_2X_CLK_SRC_PLLM_OUT0;
     for (i = 0; i < NVRM_AP20_DFS_EMC_FREQ_STEPS; )
     {
         SourceKHz = Emc2xKHz = NvRmPrivGetClockSourceFreq(
             s_Ap20EmcConfig.pEmcInfo->Sources[Source]);

         for (k = 0, UndividedIndex = i; i < NVRM_AP20_DFS_EMC_FREQ_STEPS; )
         {
             s_Ap20EmcConfigSortedTable[i].Emc2xKHz = 0; // mark entry invalid
             for (j = 0; j < ConfigurationsCount; j++)
             {
                 // Find match with 0.4% accuracy for ODM configuration
                 if (((pEmcConfigurations[j].SdramKHz * 2) <=
                      (Emc2xKHz + (Emc2xKHz >> 8))) &&
                     ((pEmcConfigurations[j].SdramKHz * 2) >=
                      (Emc2xKHz - (Emc2xKHz >> 8))))
                 {
                     NV_ASSERT(pEmcConfigurations[j].Revision == Revision);
                     NV_ASSERT(pEmcConfigurations[j].EmcTimingParamNum ==
                               s_Ap20EmcConfig.EmcTimingRegNum);

                     s_Ap20EmcConfigSortedTable[i].pOdmEmcConfig =
                         &pEmcConfigurations[j];

                     s_Ap20EmcConfigSortedTable[i].Emc2xClockSource = Source;
                     s_Ap20EmcConfigSortedTable[i].Emc2xUndividedIndex =
                         UndividedIndex;
                     s_Ap20EmcConfigSortedTable[i].Emc2xKHz = Emc2xKHz;

                     /*
                      * The undivided table entry specifies parameters for
                      * EMC2xKHz = SourceKHz; the EMC divisor field is set to
                      * "0". Next table entries specify parameters for EMC2xKHz
                      * = SourceKHz / (2 * k); the EMC divisor field should be
                      * set as 2 * (2 * k) - 2 = 4 * k - 2.
                      */
                     if (k == 0)
                         s_Ap20EmcConfigSortedTable[i].Emc2xDivisor = 0;
                     else
                         s_Ap20EmcConfigSortedTable[i].Emc2xDivisor =
                                                            (k << 2) - 2;
                     // Check boot configuration (to be recognized boot Src/Div
                     // settings must be synced with UD path)
                     if ((SourceKHz == PllM0KHz) &&
                         (s_Ap20EmcConfigSortedTable[i].Emc2xDivisor ==
                          s_Ap20EmcConfig.pEmc2xState->Divider))
                     {
                         if (s_Ap20EmcConfig.UdPllM0 == (i == 0))
                             s_Ap20EmcConfig.Index = i;
                     }
                     s_Ap20EmcConfigSortedTable[i].CpuLimitKHz =
                         Ap20CpuToEmcRatio(Emc2xKHz);
                     break;
                 }
             }
             if (s_Ap20EmcConfigSortedTable[i].Emc2xKHz != 0)
                 i++;       // Entry found - advance sorting index
             else if (k == 0)
                 break;     // Abort sorting if undiveded source not found

             Emc2xKHz = SourceKHz / ((++k) << 1);
             if (Emc2xKHz < pEmcClockLimits->MinKHz)
                 break;     // Abort sorting if min frequency reached
         }

         if (i == 0) 
             break;         // Finish sorting if PLLM0 entry not found

         // Next source selection
         if (Source ==
             CLK_RST_CONTROLLER_CLK_SOURCE_EMC_0_EMC_2X_CLK_SRC_PLLM_OUT0)
         {
             Source =       // After PLLM0 try PLLP0 as a source
             CLK_RST_CONTROLLER_CLK_SOURCE_EMC_0_EMC_2X_CLK_SRC_PLLP_OUT0;
         }
         else
             break;     // Finish sorting
     }
}

static void
Ap20EmcTimingSet(
    NvRmDeviceHandle hRmDevice,
    const NvRmAp20EmcTimingConfig* pEmcConfig)
{
    NvU32 i, a, d;

    // EMC module virtual base address to speed up timing update
    static void* s_pEmcBaseReg = NULL;

    if (s_pEmcBaseReg == NULL)
    {
        NvRmModuleTable *tbl = NvRmPrivGetModuleTable(hRmDevice);
        s_pEmcBaseReg = (tbl->ModInst +
             tbl->Modules[NvRmPrivModuleID_ExternalMemoryController].Index)->VirtAddr;
    }
    a = (NvU32)s_pEmcBaseReg;

    for (i = 0; i < s_Ap20EmcConfig.EmcTimingRegNum; i++)
    {
        d = pEmcConfig->pOdmEmcConfig->EmcTimingParameters[i];
        a = (((NvU32)(s_pEmcBaseReg)) + s_Ap20EmcConfig.pEmcTimingReg[i]);
        NV_WRITE32(a, d);
    }
    d = NV_READ32(a);   // make sure writes are completed
}

static void
Ap20EmcDividerBackgroundSet( 
    NvRmDeviceHandle hRmDevice,
    NvU32 value)
{
    NvU32 cfg2, clk;

    // Check if divider is actually to be changed - exit if not
    clk = cfg2 = NV_REGR(hRmDevice, NvRmPrivModuleID_ClockAndReset, 0,
                  CLK_RST_CONTROLLER_CLK_SOURCE_EMC_0);
    clk = NV_FLD_SET_DRF_NUM(CLK_RST_CONTROLLER, CLK_SOURCE_EMC,
                             EMC_2X_CLK_DIVISOR, value, clk);
    if (cfg2 == clk)
        return;

    // Disable EMC clock change request, so that following EMC clock divider
    // change will not trigger EMC timing switch ("background change")
    cfg2 = NV_REGR(hRmDevice, NvRmPrivModuleID_ExternalMemoryController, 0,
                   EMC_CFG_2_0);
    NV_ASSERT(NV_DRF_VAL(EMC, CFG_2, CLKCHANGE_REQ_ENABLE, cfg2) == 1);
    cfg2 = NV_FLD_SET_DRF_DEF(EMC, CFG_2, CLKCHANGE_REQ_ENABLE,
                              DISABLED, cfg2);
    NV_REGW(hRmDevice, NvRmPrivModuleID_ExternalMemoryController, 0,
            EMC_CFG_2_0, cfg2);
    cfg2 = NV_REGR(hRmDevice, NvRmPrivModuleID_ExternalMemoryController, 0,
                   EMC_CFG_2_0);    // make sure write is completed

    // Set EMC clock divider (UD bit must be set during "background change")
    NV_ASSERT(NV_DRF_VAL(CLK_RST_CONTROLLER, CLK_SOURCE_EMC, USE_PLLM_UD, clk));
    NV_REGW(hRmDevice, NvRmPrivModuleID_ClockAndReset, 0,
            CLK_RST_CONTROLLER_CLK_SOURCE_EMC_0, clk);
    NvOsWaitUS(NVRM_CLOCK_CHANGE_DELAY);

    // Restore EMC clock change request
    cfg2 = NV_FLD_SET_DRF_DEF(EMC, CFG_2, CLKCHANGE_REQ_ENABLE,
                              ENABLED, cfg2);
    NV_REGW(hRmDevice, NvRmPrivModuleID_ExternalMemoryController, 0,
            EMC_CFG_2_0, cfg2);
    cfg2 = NV_REGR(hRmDevice, NvRmPrivModuleID_ExternalMemoryController, 0,
                   EMC_CFG_2_0);    // make sure write is completed
}

static void
Ap20EmcSwitchToUndividedPllM0(
        NvRmDeviceHandle hRmDevice,
        const NvRmAp20EmcTimingConfig* pEmcConfig)
{
    NvU32 reg;
    NV_ASSERT(pEmcConfig->Emc2xKHz);    // validate table entry

    // Update EMC shadow registers
    Ap20EmcTimingSet(hRmDevice, pEmcConfig);

    // Set EMC clock source as undivided PLLM0 (divider is "don't care" in this
    // case, so keep it as is to satisfy restriction: source and divider can not
    // be changed simultaneously)
    reg = NV_REGR(hRmDevice, NvRmPrivModuleID_ClockAndReset, 0,
                  CLK_RST_CONTROLLER_CLK_SOURCE_EMC_0);
    reg = NV_FLD_SET_DRF_NUM(CLK_RST_CONTROLLER, CLK_SOURCE_EMC,
                  EMC_2X_CLK_SRC, pEmcConfig->Emc2xClockSource, reg);
    reg = NV_FLD_SET_DRF_NUM(CLK_RST_CONTROLLER, CLK_SOURCE_EMC,
                             USE_PLLM_UD, 1, reg);
    NV_REGW(hRmDevice, NvRmPrivModuleID_ClockAndReset, 0,
            CLK_RST_CONTROLLER_CLK_SOURCE_EMC_0, reg);
    NvOsWaitUS(NVRM_CLOCK_CHANGE_DELAY);

    // Now set new divider value. Note that PLLM_UD bit is already set, so
    // the actual EMC frequency is not changed. Hence, no need to update EMC
    // timing - the old settings already match the frequency.
    Ap20EmcDividerBackgroundSet(hRmDevice, pEmcConfig->Emc2xDivisor);

    // Update EMC state
    s_Ap20EmcConfig.UdPllM0 = NV_TRUE;
    s_Ap20EmcConfig.pEmc2xState->SourceClock = pEmcConfig->Emc2xClockSource;
    s_Ap20EmcConfig.pEmc2xState->Divider = pEmcConfig->Emc2xDivisor;
    s_Ap20EmcConfig.pEmc2xState->actual_freq = pEmcConfig->Emc2xKHz;
    NvRmPrivMemoryClockReAttach(
        hRmDevice, s_Ap20EmcConfig.pEmcInfo, s_Ap20EmcConfig.pEmc2xState);
}

static void
Ap20EmcSwitchFromUndividedPllM0(
        NvRmDeviceHandle hRmDevice,
        const NvRmAp20EmcTimingConfig* pEmcConfig)
{
    NvU32 reg;
    NV_ASSERT(pEmcConfig->Emc2xKHz);    // validate table entry

    // 1st set new divider value. Note that PLLM_UD bit is still set, so the
    // actual EMC frequency is not changed. Hence, no need to update EMC
    // timing - the old settings already match the frequency.
    Ap20EmcDividerBackgroundSet(hRmDevice, pEmcConfig->Emc2xDivisor);

    // Update EMC shadow registers
    Ap20EmcTimingSet(hRmDevice, pEmcConfig);

    // Now set new EMC clock source and disable undivided path (can be done
    // in one shot - cumulatively it is considered as source change only)
    reg = NV_REGR(hRmDevice, NvRmPrivModuleID_ClockAndReset, 0,
                  CLK_RST_CONTROLLER_CLK_SOURCE_EMC_0);
    reg = NV_FLD_SET_DRF_NUM(CLK_RST_CONTROLLER, CLK_SOURCE_EMC,
                  EMC_2X_CLK_SRC, pEmcConfig->Emc2xClockSource, reg);
    reg = NV_FLD_SET_DRF_NUM(CLK_RST_CONTROLLER, CLK_SOURCE_EMC,
                             USE_PLLM_UD, 0, reg);
    NV_REGW(hRmDevice, NvRmPrivModuleID_ClockAndReset, 0,
            CLK_RST_CONTROLLER_CLK_SOURCE_EMC_0, reg);
    NvOsWaitUS(NVRM_CLOCK_CHANGE_DELAY);

    // Update EMC state
    s_Ap20EmcConfig.UdPllM0 = NV_FALSE;
    s_Ap20EmcConfig.pEmc2xState->SourceClock = pEmcConfig->Emc2xClockSource;
    s_Ap20EmcConfig.pEmc2xState->Divider = pEmcConfig->Emc2xDivisor;
    s_Ap20EmcConfig.pEmc2xState->actual_freq = pEmcConfig->Emc2xKHz;
    NvRmPrivMemoryClockReAttach(
        hRmDevice, s_Ap20EmcConfig.pEmcInfo, s_Ap20EmcConfig.pEmc2xState);
}

static void
Ap20EmcSwitchDividedSources(
        NvRmDeviceHandle hRmDevice,
        const NvRmAp20EmcTimingConfig* pEmcConfig)
{
    NvU32 reg, div, src;
    NV_ASSERT(pEmcConfig->Emc2xKHz);    // validate table entry

    // Update EMC shadow registers
    Ap20EmcTimingSet(hRmDevice, pEmcConfig);

    // This switch must be called only when original and target configurations
    // have either common source or common divider - switch in one shot.
    reg = NV_REGR(hRmDevice, NvRmPrivModuleID_ClockAndReset, 0,
                  CLK_RST_CONTROLLER_CLK_SOURCE_EMC_0);
    src = NV_DRF_VAL(
        CLK_RST_CONTROLLER, CLK_SOURCE_EMC, EMC_2X_CLK_SRC, reg);
    div = NV_DRF_VAL(
        CLK_RST_CONTROLLER, CLK_SOURCE_EMC, EMC_2X_CLK_DIVISOR, reg);
    NV_ASSERT((src == pEmcConfig->Emc2xClockSource) ||
              (div == pEmcConfig->Emc2xDivisor));

    reg = NV_FLD_SET_DRF_NUM(CLK_RST_CONTROLLER, CLK_SOURCE_EMC,
                  EMC_2X_CLK_DIVISOR, pEmcConfig->Emc2xDivisor, reg);
    reg = NV_FLD_SET_DRF_NUM(CLK_RST_CONTROLLER, CLK_SOURCE_EMC,
                  EMC_2X_CLK_SRC, pEmcConfig->Emc2xClockSource, reg);
    NV_REGW(hRmDevice, NvRmPrivModuleID_ClockAndReset, 0,
            CLK_RST_CONTROLLER_CLK_SOURCE_EMC_0, reg);
    NvOsWaitUS(NVRM_CLOCK_CHANGE_DELAY);

    // Update EMC state (undivided path status not changed)
    NV_ASSERT(!s_Ap20EmcConfig.UdPllM0);
    s_Ap20EmcConfig.pEmc2xState->SourceClock = pEmcConfig->Emc2xClockSource;
    s_Ap20EmcConfig.pEmc2xState->Divider = pEmcConfig->Emc2xDivisor;
    s_Ap20EmcConfig.pEmc2xState->actual_freq = pEmcConfig->Emc2xKHz;
    NvRmPrivMemoryClockReAttach(
        hRmDevice, s_Ap20EmcConfig.pEmcInfo, s_Ap20EmcConfig.pEmc2xState);
}

static NvBool
Ap20Emc2xClockSourceFind(
    NvRmDeviceHandle hRmDevice,
    NvRmFreqKHz MaxKHz,
    NvRmFreqKHz DomainKHz,
    NvRmFreqKHz* pCpuTargetKHz,
    NvRmDfsSource* pDfsSource)
{
    NvU32 i;
    NvBool FinalStep = NV_TRUE;
    NV_ASSERT(DomainKHz <= MaxKHz);
    NV_ASSERT(s_Ap20EmcConfigSortedTable[0].Emc2xKHz <= MaxKHz);

    // If PLLM0 entry in EMC frequeuncies table is invalid, EMC frequency
    // will not be scaled; just fill in current EMC frequency
    if (s_Ap20EmcConfigSortedTable[0].Emc2xKHz == 0)
    {
        pDfsSource->SourceId = NvRmClockSource_Invalid;  // invalidate source
        pDfsSource->DividerSetting = NVRM_AP20_DFS_EMC_FREQ_STEPS;
        pDfsSource->SourceKHz = s_Ap20EmcConfig.pEmc2xState->actual_freq;
        pDfsSource->MinMv = NvRmVoltsMaximum; // no v-scaling in this case
        return FinalStep;
    }

    // Search sorted pre-defind EMC frequencies for the entry above and closest
    // to the traget that also has CPU limit above the CPU target. Use PLLM0
    // entry if not found.
    for (i = NVRM_AP20_DFS_EMC_FREQ_STEPS; i > 0;)
    {
        i--;
        if ((DomainKHz <= s_Ap20EmcConfigSortedTable[i].Emc2xKHz) &&
            (*pCpuTargetKHz <= s_Ap20EmcConfigSortedTable[i].CpuLimitKHz))
            break;
    }

    // In case, when boot EMC configuration does not match any entry in
    // EMC sorted table switch to undivided PLLM0 first
    if ((i != 0) && (s_Ap20EmcConfig.Index >= NVRM_AP20_DFS_EMC_FREQ_STEPS))
    {
        i = 0;
        FinalStep = NV_FALSE;
    }

    // Target can be reached in one step, provided: 
    // - either current or target entry is PLLM0     OR
    // - current and target entries have same source OR
    // - current and target entries have same divider
    if ((i != 0) && (s_Ap20EmcConfig.Index != 0) &&
        (s_Ap20EmcConfigSortedTable[i].Emc2xDivisor !=
         s_Ap20EmcConfigSortedTable[s_Ap20EmcConfig.Index].Emc2xDivisor) &&
        (s_Ap20EmcConfigSortedTable[i].Emc2xClockSource !=
         s_Ap20EmcConfigSortedTable[s_Ap20EmcConfig.Index].Emc2xClockSource))
    {
        i = 0;  // one-step check failed - use PLLM0 as intermediate target
        FinalStep = NV_FALSE;
    }

    // Record found EMC target, and limit CPU target if necessary
    pDfsSource->DividerSetting = i;
    pDfsSource->SourceId = s_Ap20EmcConfig.pEmcInfo->Sources[
        s_Ap20EmcConfigSortedTable[i].Emc2xClockSource];
    pDfsSource->SourceKHz = s_Ap20EmcConfigSortedTable[i].Emc2xKHz;
    pDfsSource->MinMv =
        s_Ap20EmcConfigSortedTable[i].pOdmEmcConfig->EmcCoreVoltageMv;
    if (*pCpuTargetKHz > s_Ap20EmcConfigSortedTable[i].CpuLimitKHz)
        *pCpuTargetKHz = s_Ap20EmcConfigSortedTable[i].CpuLimitKHz;
    return FinalStep;
}

static void
Ap20Emc2xClockConfigure(
    NvRmDeviceHandle hRmDevice,
    NvRmFreqKHz MaxKHz,
    NvRmFreqKHz* pDomainKHz,
    const NvRmDfsSource* pDfsSource)
{
    NvU32 Index;

    // Always return the requested source frequency
    *pDomainKHz = pDfsSource->SourceKHz;
    NV_ASSERT(*pDomainKHz);

    // If no valid source is found, EMC frequency is not scaled.
    if (pDfsSource->SourceId == NvRmClockSource_Invalid)
        return;

    // Divider settings in EMC source descriptor is an index into the table of
    // pre-defined EMC configurations in descending frequency order.
    Index = pDfsSource->DividerSetting;
    if (Index == s_Ap20EmcConfig.Index)
        return;     // do nothing if new index is the same as current

    // Switch EMC to the new target
    if (Index == 0)
    {
        Ap20EmcSwitchToUndividedPllM0(
            hRmDevice, &s_Ap20EmcConfigSortedTable[Index]);
    }
    else if (s_Ap20EmcConfig.Index == 0)
    {
        Ap20EmcSwitchFromUndividedPllM0(
            hRmDevice, &s_Ap20EmcConfigSortedTable[Index]);
    }
    else
    {
        Ap20EmcSwitchDividedSources(
            hRmDevice, &s_Ap20EmcConfigSortedTable[Index]);
    }
    s_Ap20EmcConfig.Index = Index;
}

/*****************************************************************************/

NvRmFreqKHz
NvRmPrivAp20GetEmcSyncFreq(
    NvRmDeviceHandle hRmDevice,
    NvRmModuleID Module)
{
    NvRmFreqKHz FreqKHz;

    switch (Module)
    {
        case NvRmModuleID_2D:
        case NvRmModuleID_Epp:
            // Scale down 2D/EPP whith EMC clock (set 2D/EPP frequency at
            // 50% of max when EMC clock is at or below 50% of max)
            FreqKHz = NvRmPrivGetSocClockLimits(Module)->MaxKHz;
            if ((0 < s_Ap20EmcConfig.Index) &&
                (s_Ap20EmcConfig.Index < NVRM_AP20_DFS_EMC_FREQ_STEPS))
                FreqKHz >>= 1;
            break;

        case NvRmModuleID_GraphicsHost:
            FreqKHz = NVRM_AP20_HOST_KHZ;
            break;

        default:
            NV_ASSERT(!"Invalid module for EMC synchronization");
            FreqKHz = NvRmPrivGetSocClockLimits(Module)->MaxKHz;
            break;
    }
    return FreqKHz;
}

void
NvRmPrivAp20ClipCpuEmcHighLimits(
    NvRmDeviceHandle hRmDevice,
    NvRmFreqKHz* pCpuHighKHz,
    NvRmFreqKHz* pEmcHighKHz)
{
#if !NV_OAL
    NvU32 i;
    NvRmFreqKHz EmcKHz;
    NvRmFreqKHz MinKHz = NvRmPrivDfsGetMinKHz(NvRmDfsClockId_Emc);
    NV_ASSERT(pEmcHighKHz && pCpuHighKHz);

    // Nothing to do if no EMC scaling.
    if (s_Ap20EmcConfigSortedTable[0].Emc2xKHz == 0)
        return;

    // Clip strategy: "throttling" - find the floor for EMC high limit
    // (above domain minimum, of course)
    if ((*pEmcHighKHz) < MinKHz)
        *pEmcHighKHz = MinKHz;
    for (i = 0; i < NVRM_AP20_DFS_EMC_FREQ_STEPS; i++)
    {
        EmcKHz = s_Ap20EmcConfigSortedTable[i].Emc2xKHz >> 1;
        if (EmcKHz <= (*pEmcHighKHz))
            break;
    }
    if ((i == NVRM_AP20_DFS_EMC_FREQ_STEPS) || (EmcKHz < MinKHz))
    {
        i--;
        EmcKHz = s_Ap20EmcConfigSortedTable[i].Emc2xKHz >> 1;
    }
    *pEmcHighKHz = EmcKHz;

#if NVRM_LIMIT_CPU_EMC_RATIO
    // Clip strategy: "throttling" - restrict CPU high limit by EMC
    // configuration ((above domain minimum, of course)
    if ((*pCpuHighKHz) > s_Ap20EmcConfigSortedTable[i].CpuLimitKHz)
        (*pCpuHighKHz) = s_Ap20EmcConfigSortedTable[i].CpuLimitKHz;
    if ((*pCpuHighKHz) < NvRmPrivDfsGetMinKHz(NvRmDfsClockId_Cpu))
        *pCpuHighKHz = NvRmPrivDfsGetMinKHz(NvRmDfsClockId_Cpu);
#endif
#endif
}

static void
Ap20VdeClockStateUpdate(
    NvRmDeviceHandle hRmDevice)
{
    NvU32 reg;
    NvRmFreqKHz SourceClockFreq;
    NvRmModuleClockInfo* pCinfo = s_Ap20VdeConfig.pVdeInfo;
    NvRmModuleClockState* pCstate = s_Ap20VdeConfig.pVdeState;

    NV_ASSERT(pCinfo && pCstate);

    // Determine VDE source and divider setting; update VDE clock state
    reg = NV_REGR(hRmDevice,
                  NvRmPrivModuleID_ClockAndReset, 0, pCinfo->ClkSourceOffset);
    pCstate->Divider =
        ((reg >> pCinfo->DivisorFieldShift) & pCinfo->DivisorFieldMask);
    pCstate->SourceClock =
        ((reg >> pCinfo->SourceFieldShift) & pCinfo->SourceFieldMask);
    SourceClockFreq =
        NvRmPrivGetClockSourceFreq(pCinfo->Sources[pCstate->SourceClock]);

    // Fractional divider output = (Source Frequency * 2) / (divider + 2)
    pCstate->actual_freq = ((SourceClockFreq << 1) / (pCstate->Divider + 2));
}

static void Ap20VdeConfigInit(NvRmDeviceHandle hRmDevice)
{
    // Init VDE configuration shadow structure
    NV_ASSERT_SUCCESS(NvRmPrivGetClockState(
        hRmDevice, NvRmModuleID_Vde,
        &s_Ap20VdeConfig.pVdeInfo, &s_Ap20VdeConfig.pVdeState));

     // Get VDE clock state from h/w
     Ap20VdeClockStateUpdate(hRmDevice);
}

static void
Ap20VdeClockSourceFind(
    NvRmDeviceHandle hRmDevice,
    NvRmFreqKHz MaxKHz,
    NvRmFreqKHz DomainKHz,
    NvRmDfsSource* pDfsSource)
{
    NvU32 c, m, p;
    NvRmFreqKHz SourceKHz, ReachedKHzP, ReachedKHzC, ReachedKHzM, BestKHz;
    NV_ASSERT(DomainKHz <= MaxKHz);

    // VDE clock is disabled - can not change configuration at all,
    // and does not have any voltage requirements
    if (s_Ap20VdeConfig.pVdeState->refCount == 0)
    {
        pDfsSource->SourceId = NvRmClockSource_Invalid;
        pDfsSource->MinMv = NvRmVoltsOff;
        return;
    }

    // 1st try oscillator through VDE divider
    SourceKHz = NvRmPrivGetClockSourceFreq(NvRmClockSource_ClkM);
    if (DomainKHz <= SourceKHz)
    {
        pDfsSource->SourceId = NvRmClockSource_ClkM;
        pDfsSource->DividerSetting = NvRmPrivFindFreqMinAbove(
            s_Ap20VdeConfig.pVdeInfo->Divider, SourceKHz, MaxKHz, &DomainKHz);
        goto get_mv;
    }

    // 2nd option - PLLP0 through VDE divider selected unconditionally if
    // target is below half of PLLP0 output (divider granularity is "fair"
    ReachedKHzP = DomainKHz;
    SourceKHz = NvRmPrivGetClockSourceFreq(NvRmClockSource_PllP0);
    p = NvRmPrivFindFreqMinAbove(
        s_Ap20VdeConfig.pVdeInfo->Divider, SourceKHz, MaxKHz, &ReachedKHzP);
    if (DomainKHz <= (SourceKHz >> 1))
    {
        pDfsSource->SourceId = NvRmClockSource_PllP0;
        pDfsSource->DividerSetting = p;
        DomainKHz = ReachedKHzP;
        goto get_mv;
    }

    /*
     * For high target frequencies add 3rd and 4th options - PLLC0, or PLLM0
     * through VDE divider, respectively. Select the option that provides
     * minimum output frequency equal or above the target, if all output
     * frequencies within domain maximum limit are below the target, select
     * the option with maximum output frequency.
     */
    ReachedKHzC = ReachedKHzM = DomainKHz;
    SourceKHz = NvRmPrivGetClockSourceFreq(NvRmClockSource_PllC0);
    c = NvRmPrivFindFreqMinAbove(
        s_Ap20VdeConfig.pVdeInfo->Divider, SourceKHz, MaxKHz, &ReachedKHzC);
    SourceKHz = NvRmPrivGetClockSourceFreq(NvRmClockSource_PllM0);
    m = NvRmPrivFindFreqMinAbove(
        s_Ap20VdeConfig.pVdeInfo->Divider, SourceKHz, MaxKHz, &ReachedKHzM);

    BestKHz = NV_MAX(NV_MAX(ReachedKHzP, ReachedKHzC), ReachedKHzM);
    if ((DomainKHz <= ReachedKHzP) && (ReachedKHzP < BestKHz))
        BestKHz = ReachedKHzP;
    if ((DomainKHz <= ReachedKHzC) && (ReachedKHzC < BestKHz))
        BestKHz = ReachedKHzC;
    // PLLM0 may be selected as the last resort if two others are below target

    // Set souce clock parameters for selected option
    if (BestKHz == ReachedKHzP)
    {
        SourceKHz = NvRmPrivGetClockSourceFreq(NvRmClockSource_PllP0);
        pDfsSource->SourceId = NvRmClockSource_PllP0;
        pDfsSource->DividerSetting = p;
        DomainKHz = ReachedKHzP;             // use PLLP0 as source
    }
    else if (BestKHz == ReachedKHzC)
    {
        SourceKHz = NvRmPrivGetClockSourceFreq(NvRmClockSource_PllC0);
        pDfsSource->SourceId = NvRmClockSource_PllC0;
        pDfsSource->DividerSetting = c;
        DomainKHz = ReachedKHzC;             // use PLLC0 as source
    }
    else
    {
        SourceKHz = NvRmPrivGetClockSourceFreq(NvRmClockSource_PllM0);
        pDfsSource->SourceId = NvRmClockSource_PllM0;
        pDfsSource->DividerSetting = m;
        DomainKHz = ReachedKHzM;            // use PLLM0 as source
    }

get_mv:
    // Finally get operational voltage for the found source/divider settings,
    // and store new domain frequency
    pDfsSource->MinMv =
        NvRmPrivModuleVscaleGetMV(hRmDevice, NvRmModuleID_Vde, DomainKHz);
    if (pDfsSource->MinMv < NvRmPrivSourceVscaleGetMV(hRmDevice, SourceKHz))
        pDfsSource->MinMv = NvRmPrivSourceVscaleGetMV(hRmDevice, SourceKHz);
    pDfsSource->SourceKHz = DomainKHz;
}

static void
Ap20VdeClockConfigure(
    NvRmDeviceHandle hRmDevice,
    NvRmFreqKHz MaxKHz,
    NvRmFreqKHz* pDomainKHz,
    const NvRmDfsSource* pDfsSource)
{
// Shortcut - number of AP20 VDE sources (instead of checking descriptor)
#define AP20_VDE_SOURCES_NUMBER (4)

    NvU32 SourceIndex;
    NvRmModuleClockInfo* pCinfo = s_Ap20VdeConfig.pVdeInfo;
    NvRmModuleClockState* pCstate = s_Ap20VdeConfig.pVdeState;

    // Configuration can not be changed (VDE clock disabled) - exit
    if (pDfsSource->SourceId == NvRmClockSource_Invalid)
    {
        *pDomainKHz = pCstate->actual_freq;
        return;
    }

    // Convert Source ID into VDE source selector index
    for (SourceIndex = 0; SourceIndex < AP20_VDE_SOURCES_NUMBER; SourceIndex++)
    {
        NvRmClockSource SourceId = pCinfo->Sources[SourceIndex];
        if (SourceId == pDfsSource->SourceId)
            break;
    }
    NV_ASSERT(SourceIndex < AP20_VDE_SOURCES_NUMBER);

    // No changes in VDE clock configuration - exit
    if ((pCstate->SourceClock == SourceIndex) &&
        (pCstate->Divider == pDfsSource->DividerSetting))
    {
        *pDomainKHz = pCstate->actual_freq;
        return;
    }

    // Set new VDE clock state and update PLL, V-scale references
    NvRmPrivLockModuleClockState();
    pCstate->SourceClock = SourceIndex;
    pCstate->Divider = pDfsSource->DividerSetting;
    pCstate->actual_freq = pDfsSource->SourceKHz;
    NvRmPrivModuleClockSet(hRmDevice, pCinfo, pCstate);

    NvRmPrivModuleClockReAttach(hRmDevice, pCinfo, pCstate);
    NvRmPrivModuleVscaleReAttach(
        hRmDevice, pCinfo, pCstate, pCstate->actual_freq,
        NvRmPrivGetClockSourceFreq(pDfsSource->SourceId), NV_FALSE);
    NvRmPrivUnlockModuleClockState();

    *pDomainKHz = pCstate->actual_freq;
}

/*****************************************************************************/

static void
Ap20SystemClockSourceFind(
    NvRmDeviceHandle hRmDevice,
    NvRmFreqKHz MaxKHz,
    NvRmFreqKHz DomainKHz,
    NvRmDfsSource* pDfsSource)
{
    NvU32 i, m, c;
    NvRmMilliVolts DivMv;
    NvRmFreqKHz SourceKHz, M1KHz, C1KHz, P2KHz;
    NV_ASSERT(DomainKHz <= MaxKHz);
    DivMv = pDfsSource->DividerSetting = 0; // no 2ndary divider by default

    // 1st try oscillator
    SourceKHz = NvRmPrivGetClockSourceFreq(NvRmClockSource_ClkM);
    NV_ASSERT(SourceKHz <= MaxKHz);
    if (DomainKHz <= SourceKHz)
    {
        pDfsSource->SourceId = NvRmClockSource_ClkM;
        pDfsSource->SourceKHz = SourceKHz;
        goto get_mv;
    }
#if NVRM_AP20_USE_OSC_DOUBLER
    // 2nd choice - doubler
    SourceKHz = NvRmPrivGetClockSourceFreq(NvRmClockSource_ClkD);
    NV_ASSERT(SourceKHz <= MaxKHz);
    if (DomainKHz <= SourceKHz)
    {
        pDfsSource->SourceId = NvRmClockSource_ClkD;
        pDfsSource->SourceKHz = SourceKHz;
        goto get_mv;
    }
#endif
    /*
     * 3rd option - PLLP divider per policy specification. Find
     * the policy entry with source frequency closest and above requested.
     * If requested frequency exceeds all policy options within domain
     * maximum limit, select the entry with the highest possible frequency.
     */
    for (i = 0; i < s_Ap20PllPSystemClockPolicyEntries; i++)
    {
        SourceKHz = s_Ap20PllPSystemClockPolicy[i].SourceKHz;
        if (SourceKHz > MaxKHz)
        {
            NV_ASSERT(i);
            i--;
            break;
        }
        if (DomainKHz <= SourceKHz)
        {
            break;
        }
    }
    if (i == s_Ap20PllPSystemClockPolicyEntries)
    {
        i--;    // last/highest source is the best we can do
    }
    SourceKHz = P2KHz = s_Ap20PllPSystemClockPolicy[i].SourceKHz;

    /*
     * 4th and 5th options - PLLM1 and PLLC1 secondary dividers. Use these
     * options only if target frequency is above half of PLLP0 output. Select
     * the option that provides minimum output frequency equal or above the
     * target, if all output frequencies within domain maximum are below the
     * target, select the maximum option.
     */
    if (DomainKHz > (NvRmPrivGetClockSourceFreq(NvRmClockSource_PllP0) >> 1))
    {
        C1KHz = M1KHz = DomainKHz;
        c = NvRmPrivFindFreqMinAbove(NvRmClockDivider_Fractional_2,
                NvRmPrivGetClockSourceFreq(NvRmClockSource_PllC0),
                MaxKHz, &C1KHz);
        m = NvRmPrivFindFreqMinAbove(NvRmClockDivider_Fractional_2,
                NvRmPrivGetClockSourceFreq(NvRmClockSource_PllM0),
                MaxKHz, &M1KHz);

        SourceKHz = NV_MAX(NV_MAX(C1KHz, M1KHz), P2KHz);
        if ((DomainKHz <= P2KHz) && (P2KHz < SourceKHz))
            SourceKHz = P2KHz;
        if ((DomainKHz <= C1KHz) && (C1KHz < SourceKHz))
            SourceKHz = C1KHz;
        // PLLM1 is selected as the last resort if two others are below target

        if (C1KHz == SourceKHz)
        {
            pDfsSource->SourceKHz = C1KHz;  // Selected PLLC 2ndary divider
            pDfsSource->SourceId = NvRmClockSource_PllC1;
            pDfsSource->DividerSetting = c;
            DivMv = NvRmPrivSourceVscaleGetMV(hRmDevice,
                NvRmPrivGetClockSourceFreq(NvRmClockSource_PllC0));
            goto get_mv;
        }
        if (M1KHz == SourceKHz)
        {
            pDfsSource->SourceKHz = M1KHz;  // Selected PLLM 2ndary divider
            pDfsSource->SourceId = NvRmClockSource_PllM1;
            pDfsSource->DividerSetting = m;
            DivMv = NvRmPrivSourceVscaleGetMV(hRmDevice,
                NvRmPrivGetClockSourceFreq(NvRmClockSource_PllM0));
            goto get_mv;
        }
    }
    // Selected PLLP 2ndary divider
    pDfsSource->SourceKHz = s_Ap20PllPSystemClockPolicy[i].SourceKHz;
    pDfsSource->SourceId = s_Ap20PllPSystemClockPolicy[i].SourceId;
    pDfsSource->DividerSetting = s_Ap20PllPSystemClockPolicy[i].DividerSetting;
    DivMv = NvRmPrivSourceVscaleGetMV(hRmDevice,
        NvRmPrivGetClockSourceFreq(NvRmClockSource_PllP0));

get_mv:
    // Finally get operational voltage for found source
    pDfsSource->MinMv = NvRmPrivModuleVscaleGetMV(
        hRmDevice, NvRmPrivModuleID_System, pDfsSource->SourceKHz);
    if (pDfsSource->MinMv < DivMv)
        pDfsSource->MinMv = DivMv;
}

static void
Ap20SystemBusClockConfigure(
    NvRmDeviceHandle hRmDevice,
    NvRmFreqKHz MaxKHz,
    NvRmFreqKHz* pDomainKHz,
    const NvRmDfsSource* pDfsSource)
{
    NvRmClockSource SourceId = pDfsSource->SourceId;
    const NvRmCoreClockInfo* pCinfo =
        NvRmPrivGetClockSourceHandle(NvRmClockSource_SystemBus)->pInfo.pCore;

    switch(SourceId)
    {
        case NvRmClockSource_PllP2:
        case NvRmClockSource_PllC1:
        case NvRmClockSource_PllM1:
            // Reconfigure secondary divider if it is used as a source
            NvRmPrivDividerSet(hRmDevice,
                NvRmPrivGetClockSourceHandle(SourceId)->pInfo.pDivider,
                pDfsSource->DividerSetting);
            // fall through
        case NvRmClockSource_ClkD:
        case NvRmClockSource_ClkM:
            break;  // fixed sources - do nothing
        default:
            NV_ASSERT(!"Invalid source (per policy)");
    }
    NV_ASSERT_SUCCESS(NvRmPrivCoreClockConfigure(
        hRmDevice, pCinfo, MaxKHz, pDomainKHz, &SourceId));
}

/*****************************************************************************/

// Fixed point calculation bits
#define FIXED_POINT_BITS (10)

static void Ap20CpuConfigInit(NvRmDeviceHandle hRmDevice)
{
    NvOdmPmuProperty PmuProperty;

    // Init PLLX frequency steps table based on chacterization data, so that
    // each entry corresponds to the v-scale level
    s_Ap20CpuConfig.pPllXStepsKHz = NvRmPrivModuleVscaleGetMaxKHzList(
        hRmDevice, NvRmModuleID_Cpu, &s_Ap20CpuConfig.PllXStepsNo);
    NV_ASSERT(s_Ap20CpuConfig.pPllXStepsKHz && s_Ap20CpuConfig.PllXStepsNo);
    NV_ASSERT(s_Ap20CpuConfig.pPllXStepsKHz[0] >= NVRM_PLLP_FIXED_FREQ_KHZ);

    // Init CPU power good delay and Core over CPU voltage dependency
    // parameters based on PMU property.
    if (!NvOdmQueryGetPmuProperty(&PmuProperty))
    {
        PmuProperty.AccuracyPercent = NVRM_DEFAULT_PMU_ACCURACY_PCT;
    }
    NV_ASSERT(PmuProperty.AccuracyPercent);
    NV_ASSERT(PmuProperty.AccuracyPercent < 5);  // 5% is a must for PMU

    s_Ap20CpuConfig.CoreOverCpuOffset = (NV_AP20_CORE_OVER_CPU_MV * 100) /
                                        (100 - PmuProperty.AccuracyPercent);
    s_Ap20CpuConfig.CoreOverCpuSlope =
        ((0x1 << FIXED_POINT_BITS) * (100 + PmuProperty.AccuracyPercent)) /
        (100 - PmuProperty.AccuracyPercent);
}

static void
Ap20CpuClockSourceFind(
    NvRmDeviceHandle hRmDevice,
    NvRmFreqKHz MaxKHz,
    NvRmFreqKHz DomainKHz,
    NvRmDfsSource* pDfsSource,
    NvRmMilliVolts* pSystemMv)
{
    NvU32 i;
    NvRmMilliVolts DivMv = 0;
    NvRmMilliVolts CpuMv = 0;
    NvRmFreqKHz SourceKHz;

    NV_ASSERT(DomainKHz <= MaxKHz);
    NV_ASSERT(s_Ap20CpuConfig.pPllXStepsKHz);
    pDfsSource->DividerSetting = 0; // no 2ndary divider by default

    // 1st try oscillator
    SourceKHz = NvRmPrivGetClockSourceFreq(NvRmClockSource_ClkM);
    NV_ASSERT(SourceKHz <= MaxKHz);
    if (DomainKHz <= SourceKHz)
    {
        pDfsSource->SourceId = NvRmClockSource_ClkM;
        pDfsSource->SourceKHz = SourceKHz;
        goto get_mv;
    }

    // 2nd choice - PLLP divider per policy specification
    SourceKHz =
        s_Ap20PllPCpuClockPolicy[s_Ap20PllPCpuClockPolicyEntries-1].SourceKHz;
    NV_ASSERT(SourceKHz <= MaxKHz);
    if (DomainKHz <= SourceKHz)
    {
        // The requested frequency is within PLLP divider policy table, and all
        // policy entries are within domain maximum limit. Then, find the entry
        // with source frequency closest and above the requested.
        for (i = 0; i < s_Ap20PllPCpuClockPolicyEntries; i++)
        {
            SourceKHz = s_Ap20PllPCpuClockPolicy[i].SourceKHz;
            if (DomainKHz <= SourceKHz)
                break;
        }
        if (s_Ap20PllPCpuClockPolicy[i].DividerSetting == 0)
            pDfsSource->SourceId = NvRmClockSource_PllP0;   // Bypass 1:1 divider
        else
        {
            pDfsSource->SourceId = s_Ap20PllPCpuClockPolicy[i].SourceId;
            DivMv = NvRmPrivSourceVscaleGetMV(hRmDevice,
                NvRmPrivGetClockSourceFreq(NvRmClockSource_PllP0));
        }
        pDfsSource->SourceKHz = s_Ap20PllPCpuClockPolicy[i].SourceKHz;
        pDfsSource->DividerSetting = s_Ap20PllPCpuClockPolicy[i].DividerSetting;
        goto get_mv;
    }

    /*
     * 3rd and final choice - PLLX base output. Clip PllX policy entries to
     * domain maximum limit, and find the entry with source frequency closest
     * and above the requested. If not found, use the last entry with the
     * highest frequency. 
     */
    for (i = 0; i < s_Ap20CpuConfig.PllXStepsNo; i++)
    {
        SourceKHz = NV_MIN(s_Ap20CpuConfig.pPllXStepsKHz[i], MaxKHz);
        if (DomainKHz <= SourceKHz)
            break;
    }
    pDfsSource->SourceId = NvRmClockSource_PllX0;
    pDfsSource->SourceKHz = SourceKHz;

get_mv:
    // Finally get operational voltage for found source
    pDfsSource->MinMv = NvRmPrivModuleVscaleGetMV(
        hRmDevice, NvRmModuleID_Cpu, pDfsSource->SourceKHz);
#if !NV_OAL
    NvRmPrivGetLowVoltageThreshold(NvRmDfsVoltageRailId_Cpu, &CpuMv, NULL);
#endif
    CpuMv = NV_MAX(CpuMv, pDfsSource->MinMv);
    *pSystemMv = ((CpuMv * s_Ap20CpuConfig.CoreOverCpuSlope) >>
                  FIXED_POINT_BITS) + s_Ap20CpuConfig.CoreOverCpuOffset;
    *pSystemMv = NV_MAX(DivMv, (*pSystemMv));
}

static void
Ap20CpuBusClockConfigure(
    NvRmDeviceHandle hRmDevice,
    NvRmFreqKHz MaxKHz,
    NvRmFreqKHz* pDomainKHz,
    const NvRmDfsSource* pDfsSource)
{
    NvRmFreqKHz SourceKHz = pDfsSource->SourceKHz;
    NvRmClockSource SourceId = pDfsSource->SourceId;
    const NvRmCoreClockInfo* pCinfo =
        NvRmPrivGetClockSourceHandle(NvRmClockSource_CpuBus)->pInfo.pCore;

    switch(SourceId)
    {
        case NvRmClockSource_PllX0:
            // Reconfigure PLLX if it is used as a source
            NvRmPrivReConfigurePllX(hRmDevice, SourceKHz);
            break;
        case NvRmClockSource_PllP4:
            // Reconfigure PLLP variable divider if it is used as a source
            NvRmPrivDividerSet(hRmDevice,
                NvRmPrivGetClockSourceHandle(SourceId)->pInfo.pDivider,
                pDfsSource->DividerSetting);
            // fall through
        case NvRmClockSource_PllP0:
        case NvRmClockSource_ClkM:
            break;  // fixed sources - do nothing
        default:
            NV_ASSERT(!"Invalid source (per policy)");
    }
    NV_ASSERT_SUCCESS(NvRmPrivCoreClockConfigure(
        hRmDevice, pCinfo, MaxKHz, pDomainKHz, &SourceId));
}

/*****************************************************************************/
/*****************************************************************************/

void
NvRmPrivAp20ScaledClockConfigInit(NvRmDeviceHandle hRmDevice)
{
    Ap20EmcConfigInit(hRmDevice);
    Ap20VdeConfigInit(hRmDevice);
    Ap20CpuConfigInit(hRmDevice);
}

NvBool NvRmPrivAp20DfsClockConfigure(
    NvRmDeviceHandle hRmDevice,
    const NvRmDfsFrequencies* pMaxKHz,
    NvRmDfsFrequencies* pDfsKHz)
{
    NvBool Status;
    NvRmFreqKHz FreqKHz;
    NvRmMilliVolts SystemMv;
    NvRmDfsSource CpuClockSource, Emc2xClockSource;
    NvRmDfsSource SystemClockSource, VdeClockSource;

    NV_ASSERT(hRmDevice);
    NV_ASSERT(pMaxKHz && pDfsKHz);

    /*
     * Adjust System bus core clock. It should be sufficient to supply AVP,
     * and all bus clocks. Also make sure that AHB bus frequency is above
     * the one requested for APB clock.
     */
    pDfsKHz->Domains[NvRmDfsClockId_Ahb] = NV_MAX(
        pDfsKHz->Domains[NvRmDfsClockId_Ahb],
        pDfsKHz->Domains[NvRmDfsClockId_Apb]);
    FreqKHz = pDfsKHz->Domains[NvRmDfsClockId_System];
    FreqKHz = NV_MAX(FreqKHz, pDfsKHz->Domains[NvRmDfsClockId_Ahb]);
    FreqKHz = NV_MAX(FreqKHz, pDfsKHz->Domains[NvRmDfsClockId_Avp]);
    pDfsKHz->Domains[NvRmDfsClockId_System] = FreqKHz;

#if LIMIT_SYS_TO_AHB_APB_RATIOS
    if (pDfsKHz->Domains[NvRmDfsClockId_Apb] < (FreqKHz >> 2))
    {
        pDfsKHz->Domains[NvRmDfsClockId_Apb] = (FreqKHz >> 2);
    }
    if (pDfsKHz->Domains[NvRmDfsClockId_Ahb] < (FreqKHz >> 1))
    {
        pDfsKHz->Domains[NvRmDfsClockId_Ahb] = (FreqKHz >> 1);
    }
#endif

    // Find clock sources for CPU, System, VDE and Memory clocks.
    Ap20VdeClockSourceFind(hRmDevice,
        pMaxKHz->Domains[NvRmDfsClockId_Vpipe],
        pDfsKHz->Domains[NvRmDfsClockId_Vpipe],
        &VdeClockSource);
    Ap20SystemClockSourceFind(hRmDevice,
        pMaxKHz->Domains[NvRmDfsClockId_System],
        pDfsKHz->Domains[NvRmDfsClockId_System],
        &SystemClockSource);
    Status = Ap20Emc2xClockSourceFind(hRmDevice,
        (pMaxKHz->Domains[NvRmDfsClockId_Emc] << 1),
        (pDfsKHz->Domains[NvRmDfsClockId_Emc] << 1),
        &pDfsKHz->Domains[NvRmDfsClockId_Cpu], // Need for CPU/EMC ratio policy
        &Emc2xClockSource);
    Ap20CpuClockSourceFind(hRmDevice,
        pMaxKHz->Domains[NvRmDfsClockId_Cpu],
        pDfsKHz->Domains[NvRmDfsClockId_Cpu],
        &CpuClockSource, &SystemMv);
    // CPU and VDE clocks affect system core voltage as well
    SystemMv = NV_MAX(SystemMv, SystemClockSource.MinMv);
    SystemMv = NV_MAX(SystemMv, VdeClockSource.MinMv);

#if !NV_OAL
    // Adjust core and cpu voltage for the new clock sources before actual
    // change. Note that core voltage dependencies on CPU and VDE are already
    // included into system voltage requirement.
    NvRmPrivVoltageScale(NV_TRUE, CpuClockSource.MinMv,
                         SystemMv, Emc2xClockSource.MinMv);
#endif

    // Configure VDE, System bus and derived clocks (do not care about MIO on
    // AP20). Note that APB is the only clock in system complex that may have
    // different (lower) maximum limit - pass it explicitly to set function.
    Ap20SystemBusClockConfigure(hRmDevice,
        pMaxKHz->Domains[NvRmDfsClockId_System],
        &pDfsKHz->Domains[NvRmDfsClockId_System],
        &SystemClockSource);
    pDfsKHz->Domains[NvRmDfsClockId_Avp] = FreqKHz = // no AVP clock skipping
        pDfsKHz->Domains[NvRmDfsClockId_System];        
    NvRmPrivBusClockFreqSet(hRmDevice,
        pDfsKHz->Domains[NvRmDfsClockId_System],
        &FreqKHz,                                       // VDE decoupled
        &pDfsKHz->Domains[NvRmDfsClockId_Ahb],
        &pDfsKHz->Domains[NvRmDfsClockId_Apb],
        pMaxKHz->Domains[NvRmDfsClockId_Apb]);
    Ap20VdeClockConfigure(hRmDevice,
        pMaxKHz->Domains[NvRmDfsClockId_Vpipe],
        &pDfsKHz->Domains[NvRmDfsClockId_Vpipe],
        &VdeClockSource);

    // Configure Memory clocks and convert frequency to DFS EMC 1x domain
    FreqKHz = pDfsKHz->Domains[NvRmDfsClockId_Emc] << 1;
    Ap20Emc2xClockConfigure(hRmDevice,
        (pMaxKHz->Domains[NvRmDfsClockId_Emc] << 1),
        &FreqKHz, &Emc2xClockSource);
    pDfsKHz->Domains[NvRmDfsClockId_Emc] = FreqKHz >> 1;

    // Configure CPU core clock 
    Ap20CpuBusClockConfigure(hRmDevice,
        pMaxKHz->Domains[NvRmDfsClockId_Cpu],
        &pDfsKHz->Domains[NvRmDfsClockId_Cpu],
        &CpuClockSource);

#if !NV_OAL
    // Adjust core and cpu voltage after actual clock change.
    NvRmPrivVoltageScale(NV_FALSE, CpuClockSource.MinMv,
                         SystemMv, Emc2xClockSource.MinMv);
#endif
    return Status;
}

void
NvRmPrivAp20DfsClockFreqGet(
    NvRmDeviceHandle hRmDevice,
    NvRmDfsFrequencies* pDfsKHz)
{
    NvRmFreqKHz SystemFreq;
    const NvRmCoreClockInfo* pCinfo;
    NV_ASSERT(hRmDevice && pDfsKHz);

    // Get frequencies of the System core clock, AVP clock (the same as System
    // - no clock skipping), AHB, APB, and V-pipe bus clock. Note that on AP20
    // V-pipe is decoupled from the System bus, and has its own controls.
    pCinfo = NvRmPrivGetClockSourceHandle(NvRmClockSource_SystemBus)->pInfo.pCore;
    SystemFreq = NvRmPrivCoreClockFreqGet(hRmDevice, pCinfo);
    pDfsKHz->Domains[NvRmDfsClockId_System] = SystemFreq;
    pDfsKHz->Domains[NvRmDfsClockId_Avp] = SystemFreq;

    NvRmPrivBusClockFreqGet(
        hRmDevice, SystemFreq,
        &pDfsKHz->Domains[NvRmDfsClockId_Vpipe],
        &pDfsKHz->Domains[NvRmDfsClockId_Ahb],
        &pDfsKHz->Domains[NvRmDfsClockId_Apb]);
    Ap20VdeClockStateUpdate(hRmDevice);
    pDfsKHz->Domains[NvRmDfsClockId_Vpipe] =
        s_Ap20VdeConfig.pVdeState->actual_freq;

    // Get CPU core clock frequencies
    pCinfo = NvRmPrivGetClockSourceHandle(NvRmClockSource_CpuBus)->pInfo.pCore;
    pDfsKHz->Domains[NvRmDfsClockId_Cpu] =
        NvRmPrivCoreClockFreqGet(hRmDevice, pCinfo);

    // Get EMC clock frequency (DFS monitors EMC 1x domain)
    Ap20Emc2xClockStateUpdate(hRmDevice);   // Get EMC2x clock state from h/w
    pDfsKHz->Domains[NvRmDfsClockId_Emc] =
        (s_Ap20EmcConfig.pEmc2xState->actual_freq >> 1);
}

void
NvRmPrivAp20DfsSuspendFreqGet(
    NvRmDeviceHandle hRmDevice,
    NvRmMilliVolts TargetMv,
    NvRmDfsFrequencies* pDfsKHz)
{
    NvU32 i;
    NvRmMilliVolts v;
    NvRmFreqKHz Fa, Fb, f;
    NvRmDfsSource DfsClockSource;
    NvRmFreqKHz CpuMaxKHz =
        NvRmPrivGetSocClockLimits(NvRmModuleID_Cpu)->MaxKHz;
    NvRmFreqKHz SysMaxKHz =
        NvRmPrivGetSocClockLimits(NvRmPrivModuleID_System)->MaxKHz;
    NV_ASSERT(hRmDevice && pDfsKHz);

    // Binary search for maximum System/Avp frequency, with source that
    // can be used at target voltage or below
    Fb = SysMaxKHz;
    Fa = NvRmPrivGetClockSourceFreq(NvRmClockSource_ClkM);
    NV_ASSERT(Fa <= Fb);
    while ((Fb - Fa) > 1000)    // 1MHz resolution
    {
        f = (Fa + Fb) >> 1;
        Ap20SystemClockSourceFind(hRmDevice, SysMaxKHz, f, &DfsClockSource);
        v = DfsClockSource.MinMv;
        if (v <= TargetMv)
            Fa = f;
        else
            Fb = f;
    }
    pDfsKHz->Domains[NvRmDfsClockId_System] = Fa;
    pDfsKHz->Domains[NvRmDfsClockId_Avp] = Fa;
    pDfsKHz->Domains[NvRmDfsClockId_Ahb] = Fa;
    pDfsKHz->Domains[NvRmDfsClockId_Apb] = Fa;
    // On AP20 Vde clock has its own voltage scale; however, it is disabled
    // on suspend entry; hence, the setting below is "don't care"
    pDfsKHz->Domains[NvRmDfsClockId_Vpipe] = Fa;

    // If PLLM0 entry in EMC scaling table is valid, search the table for
    // the entry below and closest to the traget voltage. Otherwise, there
    // is no EMC scaling - just return current EMC frequency.
    pDfsKHz->Domains[NvRmDfsClockId_Emc] =
        (s_Ap20EmcConfig.pEmc2xState->actual_freq >> 1);
    if (s_Ap20EmcConfigSortedTable[0].Emc2xKHz != 0)
    {
        for (i = 0; i < (NVRM_AP20_DFS_EMC_FREQ_STEPS - 1); i++)
        {
            if ((s_Ap20EmcConfigSortedTable[i+1].Emc2xKHz == 0) ||
                (s_Ap20EmcConfigSortedTable[i].pOdmEmcConfig->EmcCoreVoltageMv
                 <= TargetMv))
                break;  // exit if found entry or next entry is invalid
        }
        pDfsKHz->Domains[NvRmDfsClockId_Emc] =
            (s_Ap20EmcConfigSortedTable[i].Emc2xKHz >> 1);
        f = s_Ap20EmcConfigSortedTable[i].CpuLimitKHz;
        CpuMaxKHz = NV_MIN(CpuMaxKHz, f);     // throttle CPU if necessary
    }

    // CPU voltage is turned Off in suspend. Use CPU frequency derived from
    // PLLP as LP1 resume start-up clock
    f = s_Ap20PllPCpuClockPolicy[s_Ap20PllPCpuClockPolicyEntries-1].SourceKHz;
    pDfsKHz->Domains[NvRmDfsClockId_Cpu] = NV_MIN(CpuMaxKHz, f);

    NvOsDebugPrintf("LP1 entry/exit kHz: Cpu = %6d, Emc = %6d, Sys = %6d\n",
                    pDfsKHz->Domains[NvRmDfsClockId_Cpu],
                    pDfsKHz->Domains[NvRmDfsClockId_Emc],
                    pDfsKHz->Domains[NvRmDfsClockId_System]);
}

/*****************************************************************************/
/*****************************************************************************/

void
NvRmPrivAp20FastClockConfig(NvRmDeviceHandle hRmDevice)
{
#if !NV_OAL
    static NvBool resume = NV_FALSE;

    NvU32 divc1, divm1, divp2;
    NvRmFreqKHz SclkKHz, CpuKHz, PllP2KHz, PllM1KHz, PllC1KHz;
    NvRmDfsSource VdeSource;

    NvRmFreqKHz FreqKHz = NvRmPrivGetClockSourceFreq(NvRmClockSource_PllM0);
    if (NvRmPrivGetExecPlatform(hRmDevice) != ExecPlatform_Soc)
        return; // fast clocks on SoC only

    // Set fastest EMC/MC configuration provided PLLM0 boot frequency matches
    // one of the pre-defined configurations, i.e, it is the first entry in the
    // sorted table. Preserve warm boot EMC configuration during resume.
    if ((s_Ap20EmcConfigSortedTable[0].Emc2xKHz == FreqKHz) &&
        (s_Ap20EmcConfig.Index != 0) && (!resume))
    {
        Ap20EmcSwitchToUndividedPllM0(hRmDevice, s_Ap20EmcConfigSortedTable);
        s_Ap20EmcConfig.Index = 0;
    }

    // Set AVP/System Bus clock to maximum during initialization (core voltage
    // is already nominal). During resume core voltage maybe below nominal,
    // hence, preserve system bus frequency set by the warm boot code, but
    // re-arrange source selection, and dividers settings per RM convention.
    if (!resume)
        SclkKHz = NvRmPrivGetSocClockLimits(NvRmModuleID_Avp)->MaxKHz;
    else
        SclkKHz = NvRmPrivGetClockSourceFreq(NvRmClockSource_SystemBus);
    NV_ASSERT(SclkKHz);

    // First determine settings for PLLP/PLLM/PLLC secondary dividers to get
    // closest target approximation from below
    FreqKHz = NvRmPrivGetClockSourceFreq(NvRmClockSource_PllP0);
    PllP2KHz = SclkKHz;
    divp2 = NvRmPrivFindFreqMaxBelow(
        NvRmClockDivider_Fractional_2, FreqKHz, PllP2KHz, &PllP2KHz);

    FreqKHz = NvRmPrivGetClockSourceFreq(NvRmClockSource_PllM0);
    PllM1KHz = SclkKHz;
    divm1 = NvRmPrivFindFreqMaxBelow(
        NvRmClockDivider_Fractional_2, FreqKHz, PllM1KHz, &PllM1KHz);

    FreqKHz = NvRmPrivGetClockSourceFreq(NvRmClockSource_PllC0);
    PllC1KHz = SclkKHz;
    divc1 = NvRmPrivFindFreqMaxBelow(
        NvRmClockDivider_Fractional_2, FreqKHz, PllC1KHz, &PllC1KHz);

    // Now configure secondary dividers and select the output with highest
    // frequency // as a source for the system bus clock.
    SclkKHz = NV_MAX(PllC1KHz, NV_MAX(PllM1KHz, PllP2KHz)); 
    NvRmPrivDividerSet(
        hRmDevice,
        NvRmPrivGetClockSourceHandle(NvRmClockSource_PllP2)->pInfo.pDivider,
        divp2);
    NvRmPrivDividerSet(
        hRmDevice,
        NvRmPrivGetClockSourceHandle(NvRmClockSource_PllM1)->pInfo.pDivider,
        divm1);
    NvRmPrivDividerSet(
        hRmDevice,
        NvRmPrivGetClockSourceHandle(NvRmClockSource_PllC1)->pInfo.pDivider,
        divc1);
    if (SclkKHz == PllP2KHz)
    {
        NvRmPrivCoreClockSet(hRmDevice,
            NvRmPrivGetClockSourceHandle(NvRmClockSource_SystemBus)->pInfo.pCore,
            NvRmClockSource_PllP2, 0, 0);
    }
    else if (SclkKHz == PllM1KHz)
    {
        NvRmPrivCoreClockSet(hRmDevice,
            NvRmPrivGetClockSourceHandle(NvRmClockSource_SystemBus)->pInfo.pCore,
            NvRmClockSource_PllM1, 0, 0);
    }
    else
    {
        NvRmPrivCoreClockSet(hRmDevice,
            NvRmPrivGetClockSourceHandle(NvRmClockSource_SystemBus)->pInfo.pCore,
            NvRmClockSource_PllC1, 0, 0);
    }
    NvRmPrivBusClockInit(hRmDevice, SclkKHz);

    // No need for VDE re-configurations during resume.
    if (!resume)
    {
        // Set VDE maximum clock during initialization (VDE is disabled
        // after basic reset - need to temporary enable it for configuration)
        FreqKHz = NvRmPrivGetSocClockLimits(NvRmModuleID_Vde)->MaxKHz;
        NvRmPowerModuleClockControl(hRmDevice, NvRmModuleID_Vde, 0, NV_TRUE);
        Ap20VdeClockSourceFind(hRmDevice, FreqKHz, FreqKHz, &VdeSource);
        Ap20VdeClockConfigure(hRmDevice, FreqKHz, &FreqKHz, &VdeSource);
        NvRmPowerModuleClockControl(hRmDevice, NvRmModuleID_Vde, 0, NV_FALSE);
    }

    // Set PLLX0 and CPU clock to SoC maximum (cpu voltage is guaranteed to
    // be nominal during initialization and resume as well)
    CpuKHz = NvRmPrivGetSocClockLimits(NvRmModuleID_Cpu)->MaxKHz;
    FreqKHz = NvRmPrivGetClockSourceFreq(NvRmClockSource_PllX0);
    if (CpuKHz != FreqKHz)
    {
        NvRmPrivReConfigurePllX(hRmDevice, CpuKHz);
    }
    NvRmPrivCoreClockSet(hRmDevice,
        NvRmPrivGetClockSourceHandle(NvRmClockSource_CpuBus)->pInfo.pCore,
        NvRmClockSource_PllX0, 0, 0);

    // Set PLLP4 fixed frequency to be used by external device(s)
    NvRmPrivDividerSet(
        hRmDevice,
        NvRmPrivGetClockSourceHandle(NvRmClockSource_PllP4)->pInfo.pDivider,
        NVRM_AP20_FIXED_PLLP4_SETTING);

    resume = NV_TRUE;
#endif
}

/*****************************************************************************/

void
NvRmPrivAp20SdioTapDelayConfigure(
    NvRmDeviceHandle hRmDevice,
    NvRmModuleID ModuleId,
    NvU32 ClkSourceOffset,
    NvRmFreqKHz ConfiguredFreqKHz)
{
    NvU32 Module   = NVRM_MODULE_ID_MODULE( ModuleId );
    NvU32 Instance = NVRM_MODULE_ID_INSTANCE( ModuleId );
    const NvOdmQuerySdioInterfaceProperty *pSdioInterfaceProps = NULL;
    NvU32 ClkSrcReg;
    
    if (Module != NvRmModuleID_Sdio)
        return;
    pSdioInterfaceProps = NvOdmQueryGetSdioInterfaceProperty(Instance);
    if (pSdioInterfaceProps == NULL)
        return;

    // Allow only less than 16 as tap delay.
    NV_ASSERT(pSdioInterfaceProps->TapDelay < 0x10);
    
    if (pSdioInterfaceProps->TapDelay > 0)
    {
        ClkSrcReg = NV_REGR(hRmDevice, NvRmPrivModuleID_ClockAndReset, 0, 
                        ClkSourceOffset);

        // CLK_RST_CONTROLLER_CLK_SOURCE_SDMMC1_0_SDMMC1_INT_FB_SEL_RANGE 
        ClkSrcReg = NV_FLD_SET_DRF_NUM(CLK_RST_CONTROLLER, CLK_SOURCE_SDMMC1,
                                SDMMC1_INT_FB_SEL, 1, ClkSrcReg);
        
        // CLK_RST_CONTROLLER_CLK_SOURCE_SDMMC1_0_SDMMC1_INT_FB_DLY_RANGE
        ClkSrcReg = NV_FLD_SET_DRF_NUM(CLK_RST_CONTROLLER, CLK_SOURCE_SDMMC1,
                            SDMMC1_INT_FB_DLY, pSdioInterfaceProps->TapDelay, ClkSrcReg);
        NV_REGW(hRmDevice, NvRmPrivModuleID_ClockAndReset, 0, 
                        ClkSourceOffset, ClkSrcReg);
    }
}

/*****************************************************************************/