summaryrefslogtreecommitdiff
path: root/arch/arm/mach-tegra/odm_kit/platform/accelerometer/nvodm_accelerometer_kxtf9.c
blob: 1605cbe542d48c6ffd55549248c938c218f9501d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
/*
 * Copyright (c) 2010 NVIDIA Corporation.
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *
 * Redistributions of source code must retain the above copyright notice,
 * this list of conditions and the following disclaimer.
 *
 * Redistributions in binary form must reproduce the above copyright notice,
 * this list of conditions and the following disclaimer in the documentation
 * and/or other materials provided with the distribution.
 *
 * Neither the name of the NVIDIA Corporation nor the names of its contributors
 * may be used to endorse or promote products derived from this software
 * without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGE.
 *
 */

#include "nvodm_priv_accelerometer.h"

/* kxtf9 register address */
#define kxtf9_XOUT_HPF_LSB           0x00
#define kxtf9_XOUT_HPF_MSB           0x01
#define kxtf9_YOUT_HPF_LSB           0x02
#define kxtf9_YOUT_HPF_MSB           0x03
#define kxtf9_ZOUT_HPF_LSB           0x04
#define kxtf9_ZOUT_HPF_MSB           0x05

#define kxtf9_X_AXIS_LSB           0x06
#define kxtf9_X_AXIS_MSB           0x07
#define kxtf9_Y_AXIS_LSB           0x08
#define kxtf9_Y_AXIS_MSB           0x09
#define kxtf9_Z_AXIS_LSB           0x0A
#define kxtf9_Z_AXIS_MSB           0x0B

#define kxtf9_DCSTRESP              0x0C
// WHO_AM_I reg
#define kxtf9_CHIP_ID              0x0F

#define kxtf9_TILT_CUR             0x10
#define kxtf9_TILT_PRE             0x11

#define kxtf9_INT_SRC_REG1            0x15
#define kxtf9_INT_SRC_REG2            0x16

#define kxtf9_STATUS         0x18
#define kxtf9_INT_REL            0x1A
#define kxtf9_CTRL_REG1            0x1B
#define kxtf9_CTRL_REG2            0x1C
#define kxtf9_CTRL_REG3            0x1D

#define kxtf9_INT_CTRL_REG1            0x1E
#define kxtf9_INT_CTRL_REG2            0x1F
#define kxtf9_INT_CTRL_REG3            0x20

#define kxtf9_DATA_CTRL             0x21

#define kxtf9_TILT_TIMER             0x28
#define kxtf9_WUF_TIMER             0x29
#define kxtf9_TDT_TIMER             0x2B
#define kxtf9_TDT_H_THRESH         0x2C
#define kxtf9_TDT_L_THRESH         0x2D

#define kxtf9_TDT_TAP_TIMER            0x2E
#define kxtf9_TDT_TOTAL_TIMER        0x2F
#define kxtf9_TDT_LATENCY_TIMER    0x30
#define kxtf9_TDT_WINDOW_TIMER    0x31
#define kxtf9_SELF_TEST                   0x3A

#define kxtf9_WUF_THRESH         0x5A
#define kxtf9_TILT_ANGLE         0x5C
#define kxtf9_HYST_SET             0x5F
/* kxtf9 register address info ends here*/

#define kxtf9_CHIP_ID_VAL      0x01        // POR value- device identification

// set following macros based on requirement
#define TILT_ONLY_ENABLE 1
#define TAP_ONLY_ENABLE 1
#define MOTION_ONLY_ENABLE 1

// I2C clock speed.
#define I2C_CLK_SPEED 400

#define ACCEL_VER0_GUID NV_ODM_GUID('k','x','t','9','-','0','0','0')
#define ACCEL_VER1_GUID NV_ODM_GUID('k','x','t','9','-','0','9','0')

#define NV_DEBOUNCE_TIME_MS 0
#define ENABLE_XYZ_POLLING 0

static NvU8 s_ReadBuffer[I2C_ACCELRATOR_PACKET_SIZE];
static NvU8 s_WriteBuffer[I2C_ACCELRATOR_PACKET_SIZE];
static NvU8 s_IntSrcReg1;
static NvU8 s_IntSrcReg2;

typedef struct discovery_entry_rec
{
   NvU64 guid;
   NvU32 axesmapping;
} discovery_entry;

static discovery_entry disc_entry[] = {
    {ACCEL_VER0_GUID, 1},
    {ACCEL_VER1_GUID, 2},
};


static void
ConfigPowerRail(
    NvOdmServicesPmuHandle hPMUDevice,
    NvU32 Id,
    NvBool IsEnable)
{
    NvOdmServicesPmuVddRailCapabilities vddrailcap;
    NvU32 settletime;

    if (hPMUDevice && Id)
    {
        NvOdmServicesPmuGetCapabilities(hPMUDevice, Id, &vddrailcap);
        if (IsEnable)
        {
            NvOdmServicesPmuSetVoltage(hPMUDevice, Id,
                vddrailcap.requestMilliVolts, &settletime);
        }
        else
        {
            NvOdmServicesPmuSetVoltage(hPMUDevice, Id,
                vddrailcap.MinMilliVolts, &settletime);
        }
    if (settletime)
        NvOdmOsWaitUS(settletime);
    }
}

static NvBool
WriteReg(
    NvOdmAccelHandle hDevice,
    NvU8 RegAddr,
    NvU8* value,
    NvU32 len)
{
    NvOdmI2cTransactionInfo TransactionInfo;

    if ( (NULL == hDevice) || (NULL == value) ||
         (len > I2C_ACCELRATOR_PACKET_SIZE-1 ) )
    {
        NVODMACCELEROMETER_PRINTF((
            "NvOdmI2c Set Regs Failed, max size is %d bytes\n",
            I2C_ACCELRATOR_PACKET_SIZE-1));
        return NV_FALSE;
    }

    s_WriteBuffer[0] = RegAddr;
    NvOdmOsMemcpy(&s_WriteBuffer[1], value, len);

    TransactionInfo.Address = hDevice->nDevAddr;
    TransactionInfo.Buf = s_WriteBuffer;
    TransactionInfo.Flags = NVODM_I2C_IS_WRITE;
    TransactionInfo.NumBytes = len+1;

    // Write the accelerator RegAddr (from where data is to be read).
    if (NvOdmI2cTransaction(hDevice->hOdmI2C, &TransactionInfo, 1, I2C_CLK_SPEED,
            I2C_ACCELRATOR_TRANSACTION_TIMEOUT) != NvOdmI2cStatus_Success)
        return NV_FALSE;

    return NV_TRUE;
}

static NvBool
ReadReg(
    NvOdmAccelHandle hDevice,
    NvU8 RegAddr,
    NvU8* value,
    NvU32 len)
{
    NvOdmI2cTransactionInfo TransactionInfo;

    if ( (NULL == hDevice) || (NULL == value) ||
         (len > I2C_ACCELRATOR_PACKET_SIZE-1 ) )
    {
        NVODMACCELEROMETER_PRINTF((
            "NvOdmI2c Get Regs Failed, max size is %d bytes\n",
            I2C_ACCELRATOR_PACKET_SIZE-1));
        return NV_FALSE;
    }

    s_WriteBuffer[0] = RegAddr;
    TransactionInfo.Address = hDevice->nDevAddr;
    TransactionInfo.Buf = s_WriteBuffer;
    TransactionInfo.Flags = NVODM_I2C_IS_WRITE;
    TransactionInfo.NumBytes = 1;

    // Write the accelerometor RegAddr (from where data is to be read).
    if (NvOdmI2cTransaction(hDevice->hOdmI2C, &TransactionInfo, 1, I2C_CLK_SPEED,
            I2C_ACCELRATOR_TRANSACTION_TIMEOUT) != NvOdmI2cStatus_Success)
        return NV_FALSE;

    s_ReadBuffer[0] = 0;
    TransactionInfo.Address = (hDevice->nDevAddr| 0x1);
    TransactionInfo.Buf = s_ReadBuffer;
    TransactionInfo.Flags = 0;
    TransactionInfo.NumBytes = len;

    //Read the data from the eeprom at the specified RegAddr
    if (NvOdmI2cTransaction(hDevice->hOdmI2C, &TransactionInfo, 1, I2C_CLK_SPEED,
            I2C_ACCELRATOR_TRANSACTION_TIMEOUT) != NvOdmI2cStatus_Success)
        return NV_FALSE;

    NvOdmOsMemcpy(value, &s_ReadBuffer[0], len);
    return NV_TRUE;
}

static NvBool WRITE_VERIFY(NvOdmAccelHandle hDevice, NvU8 Reg,NvU8 Val)
{
    NvU8 TestVal = 0;
    NvBool ret = NV_TRUE;
    if (!WriteReg(hDevice, Reg, &Val, 1))
    {
        NVODMACCELEROMETER_PRINTF(("\n write to Reg[0x%x] val [0x%x]failed",
            Reg, Val));
        ret = NV_FALSE;
    }
    if (!ReadReg(hDevice, Reg, &Val, 1))
    {
        NVODMACCELEROMETER_PRINTF(("\n read after write to Reg[0x%x] val \
         [0x%x]failed", Reg, Val));
        ret = NV_FALSE;
    }
    if (TestVal != Val)
    {
        NVODMACCELEROMETER_PRINTF(("\n read validation fail: Reg[0x%x] val \
         [0x%x]failed", Reg, Val));
    }
    return ret;
}

static void kxtf9_ResetInterrupt(NvOdmAccelHandle hDevice)
{
    NvU8 Data[2];
    if (!ReadReg(hDevice, kxtf9_INT_SRC_REG1, Data, 2))
        return; // NV_FALSE;
    s_IntSrcReg1  = Data[0];
    s_IntSrcReg2  = Data[1];
    // To clear the interrupts.
    ReadReg(hDevice, kxtf9_INT_REL, Data, 1);
}

#define SET_INT_RAISING_EDGE 0
static void GpioInterruptHandler(void *arg)
{
    NvU32 pinValue;
    NvOdmAccelHandle hDevice =  (NvOdmAccelHandle)arg;

    NvOdmGpioGetState(hDevice->hGpioINT, hDevice->hPinINT, &pinValue);
#if SET_INT_RAISING_EDGE
    if (pinValue == 1)
#else
    if (pinValue == 0)
#endif
    {
        kxtf9_ResetInterrupt(hDevice);

        NvOdmOsSemaphoreSignal(hDevice->SemaphoreForINT);
    }
    NvOdmGpioInterruptDone(hDevice->hGpioInterrupt);
    return;
}

static NvBool ConfigInterrupt(NvOdmAccelHandle hDevice)
{
    NvOdmGpioPinMode mode;
    NvOdmInterruptHandler callback =
        (NvOdmInterruptHandler)GpioInterruptHandler;

    hDevice->hGpioINT = (NvOdmServicesGpioHandle)NvOdmGpioOpen();
    if (!(hDevice->hGpioINT))
    {
        NVODMACCELEROMETER_PRINTF(("kxtf9: GpioOpen Error \n"));
        return NV_FALSE;
    }
    hDevice->hPinINT = NULL;
    hDevice->hPinINT = NvOdmGpioAcquirePinHandle(hDevice->hGpioINT,
                           hDevice->GPIOPortINT,
                           hDevice->GPIOPinINT);
    if (!hDevice->hPinINT)
    {
        NVODMACCELEROMETER_PRINTF(("kxtf9: GpioAcquirePinHandle Error\n"));
        goto CloseGpioHandle;
    }
    hDevice->SemaphoreForINT = NvOdmOsSemaphoreCreate(0);

    if (!(hDevice->SemaphoreForINT))
    {
        NVODMACCELEROMETER_PRINTF(("kxtf9: OsSemaphoreCreate Error \n"));
        goto ReleasePinHandle;
    }

    NvOdmGpioConfig(hDevice->hGpioINT, hDevice->hPinINT, NvOdmGpioPinMode_InputData);

#if SET_INT_RAISING_EDGE
    mode = NvOdmGpioPinMode_InputInterruptHigh;
#else
    mode = NvOdmGpioPinMode_InputInterruptLow;
#endif
    if (NvOdmGpioInterruptRegister(hDevice->hGpioINT,
        &hDevice->hGpioInterrupt, hDevice->hPinINT, mode, callback,
        hDevice, NV_DEBOUNCE_TIME_MS) == NV_FALSE)
    {
        NVODMACCELEROMETER_PRINTF(("kxtf9: GpioInterruptRegister failure\n"));
        goto SemDestroy;
    }

    if (!(hDevice->hGpioInterrupt))
    {
        NVODMACCELEROMETER_PRINTF(("kxtf9: Invalid interrupt handle\n"));
        goto SemDestroy;
    }
    return NV_TRUE;
SemDestroy:
    NvOdmOsSemaphoreDestroy(hDevice->SemaphoreForINT);
ReleasePinHandle:
    NvOdmGpioReleasePinHandle(hDevice->hGpioINT, hDevice->hPinINT);
CloseGpioHandle:
    NvOdmGpioClose(hDevice->hGpioINT);
    return NV_FALSE;
}

// For 12 bit resolution, Max reading possible with msb left for sign bit.
static NvS32 s_MaxAccelReading = 1 << 11;
// Considering g variation to be +/-2g, Max g value in milli g's.
static NvS32 s_MaxGValInMilliGs = 2000;
static NvBool kxtf9_Init(NvOdmAccelHandle hDevice)
{
    NvU8 TestVal;
    NvU8 RegVal = 0;

    // wait for 110 msec.
    NvOdmOsSleepMS(110);
    NVODMACCELEROMETER_PRINTF(("\n kxtf9 I2C addr: 0x%x",hDevice->nDevAddr));

    ReadReg(hDevice, kxtf9_CHIP_ID, &TestVal, 1);
    if (TestVal != kxtf9_CHIP_ID_VAL)
    {
        NVODMACCELEROMETER_PRINTF(("\n Unknown kxtf9 ID = 0x%x\n", TestVal));
        goto error;
    }
    else
    {
        NVODMACCELEROMETER_PRINTF(("\n kxtf9 ID is 0x%x\n", TestVal));
    }

#if SET_INT_RAISING_EDGE
    // set interrupt bits - IEN, IEA & IEL only active
    RegVal = 0x30;
#else
    RegVal = 0x20;
#endif
    if (!WriteReg(hDevice, kxtf9_INT_CTRL_REG1, &RegVal, 1))
    {
        NVODMACCELEROMETER_PRINTF(("\n Int Set failed\n"));
    }

    // set ODR to 25 Hz
    RegVal = 0x0;
    if (!WriteReg(hDevice, kxtf9_CTRL_REG3, &RegVal, 1))
    {
        NVODMACCELEROMETER_PRINTF(("\n LPF freq set failed\n"));
    }
    // Set WUF_TIMER to 2 ODR clock
    RegVal = 2;
    if (!WriteReg(hDevice, kxtf9_WUF_TIMER, &RegVal, 1))
    {
        NVODMACCELEROMETER_PRINTF(("\n LPF freq set failed\n"));
    }

    RegVal = 0;
#if TILT_ONLY_ENABLE
    //Activate Tilt Position Function
    WRITE_VERIFY(hDevice, kxtf9_TILT_TIMER, 0x01);
    RegVal = 0x81;
#endif

#if TAP_ONLY_ENABLE
    // Activate Tap/Double Tap Function
    RegVal |= 0x84;
#endif

#if MOTION_ONLY_ENABLE
    // For getting continuous data from accelerometer, set DRDY = 1.
    //set PC1, RES & WUFE to 1.
    RegVal |= 0XC2;
#endif
    if(!WRITE_VERIFY(hDevice, kxtf9_CTRL_REG1, RegVal))
        goto error;

    NVODMACCELEROMETER_PRINTF(("\n kxtf9_Init passed"));
    return NV_TRUE;
error:
    NVODMACCELEROMETER_PRINTF(("\n kxtf9_Init failed"));
    return NV_FALSE;
}

static void
kxtf9_ReadXYZ(
    NvOdmAccelHandle hDevice,
    NvS32* X,
    NvS32* Y,
    NvS32* Z)
{
    NvU8 Data[6];
    if (!ReadReg(hDevice, kxtf9_X_AXIS_LSB, Data, 6))
        return;

    *X = ((Data[1] << 4) | (Data[0] >> 4));
    *Y = ((Data[3] << 4) | (Data[2] >> 4));
    *Z = ((Data[5] << 4) | (Data[4] >> 4));

    if (*X & 0x800)
        *X |= 0xFFFFF000;
    if (*Y & 0x800)
        *Y |= 0xFFFFF000;
    if (*Z & 0x800)
        *Z |= 0xFFFFF000;
}

void kxtf9_deInit(NvOdmAccelHandle hDevice)
{
    if (hDevice)
    {
        if (hDevice->SemaphoreForINT && hDevice->hGpioINT &&
            hDevice->hPinINT && hDevice->hGpioInterrupt)
        {
            NvOdmGpioInterruptUnregister(hDevice->hGpioINT,
                hDevice->hPinINT, hDevice->hGpioInterrupt);
            NvOdmOsSemaphoreDestroy(hDevice->SemaphoreForINT);
            NvOdmGpioReleasePinHandle(hDevice->hGpioINT, hDevice->hPinINT);
            NvOdmGpioClose(hDevice->hGpioINT);
        }
        NvOdmI2cClose(hDevice->hOdmI2C);
        NVODMACCELEROMETER_PRINTF(("\n I2C handle: 0x%x slave addr1: 0x%x",
            hDevice->hOdmI2C, hDevice->nDevAddr));
        // Power off accelermeter
        ConfigPowerRail(hDevice->hPmu, hDevice->VddId, NV_FALSE);
        if (hDevice->hPmu)
        {
            //NvAccelerometerSetPowerOn(0);
            NvOdmServicesPmuClose(hDevice->hPmu);
        }
    }
}

static NvBool SetAccelerometerActive(NvOdmAccelHandle hDevice, NvBool State)
{
    NvU8 RegVal;

    // to clear PC1 of CTRL_REG1
    if (!ReadReg(hDevice, kxtf9_CTRL_REG1, &RegVal, 1))
    {
        NVODMACCELEROMETER_PRINTF(("\n %s-> %d failed\n", __func__,__LINE__));
        return NV_FALSE;
    }

    if (State)
        RegVal |= 0x80;
    else
        RegVal &= 0x7F;

    if(!WRITE_VERIFY(hDevice, kxtf9_CTRL_REG1, RegVal))
    {
        NVODMACCELEROMETER_PRINTF(("\n %s-> %d failed\n", __func__,__LINE__));
        return NV_FALSE;
    }
    return NV_TRUE;
}
NvBool
kxtf9_SetIntForceThreshold(
    NvOdmAccelHandle  hDevice,
    NvOdmAccelIntType IntType,
    NvU32             IntNum,
    NvU32             Threshold)
{
    NvU8 RegVal;
    NvU32 Reading;

    // If not motion Threshold, return from here
    if (IntType != NvOdmAccelInt_MotionThreshold)
        return NV_TRUE;

    if(!SetAccelerometerActive(hDevice, NV_FALSE))
        return NV_FALSE;

    Reading = (Threshold * s_MaxAccelReading)/ (s_MaxGValInMilliGs);
    RegVal = (NvU8) Reading;
    // To set requested Threshold Value.
    if(!WRITE_VERIFY(hDevice, kxtf9_WUF_THRESH, RegVal))
    {
        NvOdmOsPrintf("\nkxtf9:Set WUF_Threshold failed\n");
        return NV_FALSE;
    }

    if(!SetAccelerometerActive(hDevice, NV_TRUE))
        return NV_FALSE;
    NvOdmOsPrintf("\nkxtf9: set WUF_Threshold val:%d",Threshold);
    return NV_TRUE;
}

NvBool
kxtf9_SetIntTimeThreshold(
    NvOdmAccelHandle  hDevice,
    NvOdmAccelIntType IntType,
    NvU32             IntNum,
    NvU32             Threshold)
{
    return NV_TRUE;
}

NvBool
kxtf9_SetIntEnable(
    NvOdmAccelHandle  hDevice,
    NvOdmAccelIntType  IntType,
    NvOdmAccelAxisType IntAxis,
    NvU32              IntNum,
    NvBool             Toggle)
{
    return NV_TRUE;
}

void
kxtf9_WaitInt(
    NvOdmAccelHandle    hDevice,
    NvOdmAccelIntType  *IntType,
    NvOdmAccelAxisType *IntMotionAxis,
    NvOdmAccelAxisType *IntTapAxis)
{
    NV_ASSERT(hDevice);
    NV_ASSERT(IntType);
    NV_ASSERT(IntMotionAxis);
    NV_ASSERT(IntTapAxis);
    NvOdmOsSemaphoreWait( hDevice->SemaphoreForINT);
}

void kxtf9_Signal(NvOdmAccelHandle hDevice)
{
    NvOdmOsSemaphoreSignal(hDevice->SemaphoreForINT);
}

#if NVODMACCELEROMETER_ENABLE_PRINTF
static void PrintAccelEventInfo(NvOdmAccelHandle hDevice)
{
    NvU8 RegVal = 0;
    if (s_IntSrcReg2 & 1)
    {
        NVODMACCELEROMETER_PRINTF(("\nkxtf9 Tilt Int set"));
        ReadReg(hDevice, kxtf9_TILT_CUR, &RegVal, 1);

        if (s_IntSrcReg1 & 0x1)
        {
            NVODMACCELEROMETER_PRINTF(("\nkxtf9 Tilt: Face Up state"));
        }
        if (s_IntSrcReg1 & 0x2)
        {
            NVODMACCELEROMETER_PRINTF(("\nkxtf9 Tilt: Face Down state"));
        }
        if (s_IntSrcReg1 & 0x4)
        {
            NVODMACCELEROMETER_PRINTF(("\nkxtf9 Tilt: Up state"));
        }
        if (s_IntSrcReg1 & 0x8)
        {
            NVODMACCELEROMETER_PRINTF(("\nkxtf9 Tilt: Down state"));
        }
        if (s_IntSrcReg1 & 0x10)
        {
            NVODMACCELEROMETER_PRINTF(("\nkxtf9 Tilt: Right state"));
        }
        if (s_IntSrcReg1 & 0x20)
        {
            NVODMACCELEROMETER_PRINTF(("\nkxtf9 Tilt: Left state"));
        }
    }

    if (((s_IntSrcReg2 >> 2) & 3) == 1)
    {
        NVODMACCELEROMETER_PRINTF(("\nkxtf9 single Tap Int set"));
    }
    if (((s_IntSrcReg2 >> 2) & 3) == 2)
    {
        NVODMACCELEROMETER_PRINTF(("\nkxtf9 double Tap Int set"));
    }
    if ((s_IntSrcReg2 >> 1) & 1)
    {
        NVODMACCELEROMETER_PRINTF(("\n kxtf9 Motion event (WUFS) Int set"));
    }
    if ((s_IntSrcReg2 >> 4) & 1)
    {
        NVODMACCELEROMETER_PRINTF(("\n kxtf9 DRDY Int set"));
    }

    if (s_IntSrcReg1 & 0x1)
    {
        NVODMACCELEROMETER_PRINTF(("\nkxtf9 Tap In Z+ direction"));
    }
    if (s_IntSrcReg1 & 0x2)
    {
        NVODMACCELEROMETER_PRINTF(("\nkxtf9 Tap In Z- direction"));
    }
    if (s_IntSrcReg1 & 0x4)
    {
        NVODMACCELEROMETER_PRINTF(("\nkxtf9 Tap In Y+ direction"));
    }
    if (s_IntSrcReg1 & 0x8)
    {
        NVODMACCELEROMETER_PRINTF(("\nkxtf9 Tap In Y- direction"));
    }
    if (s_IntSrcReg1 & 0x10)
    {
        NVODMACCELEROMETER_PRINTF(("\nkxtf9 Tap In X+ direction"));
    }
    if (s_IntSrcReg1 & 0x20)
    {
        NVODMACCELEROMETER_PRINTF(("\nkxtf9 Tap In X- direction"));
    }
}
#endif

NvBool
kxtf9_GetAcceleration(
    NvOdmAccelHandle hDevice,
    NvS32           *AccelX,
    NvS32           *AccelY,
    NvS32           *AccelZ)
{
    NvS32 data;
    NvS32 TempAccelX = 0;
    NvS32 TempAccelY = 0;
    NvS32 TempAccelZ = 0;

#if NVODMACCELEROMETER_ENABLE_PRINTF
    static NvU32 PrintCount;
    // Print once only in every PRINT_FREQUENCY iterations.
    #define PRINT_FREQUENCY 50
#endif

    NV_ASSERT(NULL != hDevice);
    NV_ASSERT(NULL != AccelX);
    NV_ASSERT(NULL != AccelY);
    NV_ASSERT(NULL != AccelZ);

#if NVODMACCELEROMETER_ENABLE_PRINTF
    PrintAccelEventInfo(hDevice);
#endif

    kxtf9_ReadXYZ(hDevice, &TempAccelX, &TempAccelY, &TempAccelZ);

    data = (TempAccelX * s_MaxGValInMilliGs) / s_MaxAccelReading;
    switch(hDevice->AxisXMapping)
    {
        case NvOdmAccelAxis_X:
            *AccelX = data*hDevice->AxisXDirection;
            break;
        case NvOdmAccelAxis_Y:
            *AccelY = data*hDevice->AxisYDirection;
            break;
        case NvOdmAccelAxis_Z:
            *AccelZ = data*hDevice->AxisZDirection;
            break;
        default:
            return NV_FALSE;
    }

    data = (TempAccelY * s_MaxGValInMilliGs) / s_MaxAccelReading;
    switch(hDevice->AxisYMapping)
    {
        case NvOdmAccelAxis_X:
            *AccelX = data*hDevice->AxisXDirection;
            break;
        case NvOdmAccelAxis_Y:
            *AccelY = data*hDevice->AxisYDirection;
            break;
        case NvOdmAccelAxis_Z:
            *AccelZ = data*hDevice->AxisZDirection;
            break;
        default:
            return NV_FALSE;
    }

    data = (TempAccelZ * s_MaxGValInMilliGs) / s_MaxAccelReading;
    switch(hDevice->AxisZMapping)
    {
        case NvOdmAccelAxis_X:
            *AccelX = data*hDevice->AxisXDirection;
            break;
        case NvOdmAccelAxis_Y:
            *AccelY = data*hDevice->AxisYDirection;
            break;
        case NvOdmAccelAxis_Z:
            *AccelZ = data*hDevice->AxisZDirection;
            break;
        default:
            return NV_FALSE;
    }

    if (s_IntSrcReg2)
    {
#if NVODMACCELEROMETER_ENABLE_PRINTF
        if (!(PrintCount++ % PRINT_FREQUENCY))
        {
            NVODMACCELEROMETER_PRINTF(("\nkxtf9 milli g-Vals, x=%d,y=%d, z=%d",
            *AccelX, *AccelY, *AccelZ));
        }
#endif
        return NV_TRUE;
    }
    else
        return NV_FALSE;
}

NvOdmAccelerometerCaps kxtf9_GetCaps(NvOdmAccelHandle hDevice)
{
    NV_ASSERT(NULL != hDevice);
    return hDevice->Caption;
}

// FixMe: kxtf9 accelerometer supports only 4 sample rates - 25, 50, 100 & 200.
// So setting the param to the nearest max value below the requested one.
NvBool kxtf9_SetSampleRate(NvOdmAccelHandle hDevice, NvU32 SampleRate)
{
    NvU8 BitVal = 0;
    NvU8 RegVal = 0;

    if (SampleRate < 50)
        BitVal = 0; // set to 25
    else if (SampleRate < 100)
        BitVal = 1; // set to 50
    else if (SampleRate < 200)
        BitVal = 2; // set to 100
    else
        BitVal = 3; // set to 200

    if(!SetAccelerometerActive(hDevice, NV_FALSE))
        return NV_FALSE;

    // To set requested freq.
    ReadReg(hDevice, kxtf9_CTRL_REG3, &RegVal, 1);
    RegVal &= 0xFC;
    RegVal |= BitVal;
    WriteReg(hDevice, kxtf9_CTRL_REG3, &RegVal, 1);

    // to set PC1 of CTRL_REG1
    if(!SetAccelerometerActive(hDevice, NV_TRUE))
        return NV_FALSE;
    NVODMACCELEROMETER_PRINTF(("\naccel set freq: %d", SampleRate));
    return NV_TRUE;
}

NvBool kxtf9_GetSampleRate(NvOdmAccelHandle hDevice, NvU32 *pSampleRate)
{
    return NV_TRUE;
}

NvBool
kxtf9_SetPowerState(
    NvOdmAccelHandle hDevice,
    NvOdmAccelPowerType PowerState)
{
    if (PowerState == NvOdmAccelPower_Fullrun)
    {
        NVODMACCELEROMETER_PRINTF(("\nkxtf9: Resume"));
        return SetAccelerometerActive(hDevice, NV_TRUE);

    }
    else  // any other case, set accelerometer to standby.
    {
        NVODMACCELEROMETER_PRINTF(("\nkxtf9: Suspend"));
        return SetAccelerometerActive(hDevice, NV_FALSE);
    }
}

NvBool kxtf9_init(NvOdmAccelHandle* hDevice)
{
    NvU32 i;
    NvOdmAccelHandle hAccel;
    NvOdmIoModule IoModule = NvOdmIoModule_I2c;
    const NvOdmPeripheralConnectivity *pConnectivity;
    NvBool FoundGpio = NV_FALSE, FoundI2cModule = NV_FALSE;
    NvU32 AxesMapping = 0;
    hAccel = NvOdmOsAlloc(sizeof(NvOdmAccel));
    if (hAccel == NULL)
    {
        NVODMACCELEROMETER_PRINTF(("\nkxtf9: Error Allocating NvOdmAccel"));
        return NV_FALSE;
    }
    NvOdmOsMemset(hAccel, 0, sizeof(NvOdmAccel));

    // Info of accelerometer with current setting.
    hAccel->Caption.MaxForceInGs = 2000;
    hAccel->Caption.MaxTapTimeDeltaInUs = 255;
    hAccel->Caption.NumMotionThresholds = 1;
    hAccel->Caption.SupportsFreefallInt = 0;
    hAccel->Caption.MaxSampleRate = 100;
    hAccel->Caption.MinSampleRate = 3;
    hAccel->PowerState = NvOdmAccelPower_Fullrun;
    hAccel->hPmu = NvOdmServicesPmuOpen();
    if (!hAccel->hPmu)
    {
        NVODMACCELEROMETER_PRINTF(("kxtf9 NvOdmServicesPmuOpen Error \n"));
        goto error;
    }
    for ( i = 0 ; i < NV_ARRAY_SIZE(disc_entry); ++i )
    {
        pConnectivity = NvOdmPeripheralGetGuid(disc_entry[i].guid);
        if (pConnectivity)
        {
            AxesMapping = disc_entry[i].axesmapping;
            break;
        }
    }
    if (!pConnectivity)
        goto error;

    if (AxesMapping == 1)
    {
    // Axes mapping for display orientation aligning correctly in 3 orientations
    // (0, 90 & 270 degrees) on Tango with (froyo + K32).
        hAccel->AxisXMapping = NvOdmAccelAxis_Y;
        hAccel->AxisXDirection = 1;
        hAccel->AxisYMapping = NvOdmAccelAxis_X;
        hAccel->AxisYDirection = -1;
        hAccel->AxisZMapping = NvOdmAccelAxis_Z;
        hAccel->AxisZDirection = -1;
    }
    else
    {
        hAccel->AxisXMapping = NvOdmAccelAxis_X;
        hAccel->AxisXDirection = 1;
        hAccel->AxisYMapping = NvOdmAccelAxis_Y;
        hAccel->AxisYDirection = -1;
        hAccel->AxisZMapping = NvOdmAccelAxis_Z;
        hAccel->AxisZDirection = 1;
    }

    if (pConnectivity->Class != NvOdmPeripheralClass_Other)
    {
        NVODMACCELEROMETER_PRINTF(("\nkxtf9: NvOdmPeripheral class mismatch"));
        goto error;
    }

    for( i = 0; i < pConnectivity->NumAddress; i++)
    {
        switch(pConnectivity->AddressList[i].Interface)
        {
            case NvOdmIoModule_I2c:
            case NvOdmIoModule_I2c_Pmu:
                hAccel->I2CChannelId = pConnectivity->AddressList[i].Instance;
                hAccel->nDevAddr = (NvU8)pConnectivity->AddressList[i].Address;
                FoundI2cModule = NV_TRUE;
                IoModule = pConnectivity->AddressList[i].Interface;
                break;
            case NvOdmIoModule_Gpio:
                hAccel->GPIOPortINT = pConnectivity->AddressList[i].Instance;
                hAccel->GPIOPinINT = pConnectivity->AddressList[i].Address;
                FoundGpio = NV_TRUE;
                break;
            case NvOdmIoModule_Vdd:
                hAccel->VddId = pConnectivity->AddressList[i].Address;
                // Power on accelerometer according to Vddid
                ConfigPowerRail(hAccel->hPmu, hAccel->VddId, NV_TRUE);
                break;
            default:
                break;
        }
    }

    if (!FoundGpio || !FoundI2cModule)
    {
        NVODMACCELEROMETER_PRINTF(("kxtf9: didn't find any periperal\
            in discovery query for touch device Error \n"));
        goto error;
    }

    // Open I2C handle.
    hAccel->hOdmI2C = NvOdmI2cOpen(IoModule, hAccel->I2CChannelId);
    if (!hAccel->hOdmI2C)
    {
        NVODMACCELEROMETER_PRINTF(("kxtf9: I2c Open Fail\n"));
        goto error;
    }

    hAccel->RegsRead  = ReadReg;
    hAccel->RegsWrite = WriteReg;

    if (!kxtf9_Init(hAccel))
    {
        NVODMACCELEROMETER_PRINTF(("kxtf9: Init Failed\n"));
        goto error;
    }

    if (!ConfigInterrupt(hAccel))
    {
        NVODMACCELEROMETER_PRINTF(("kxtf9: ConfigInterrupt Failed \n"));
        goto error;
    }

    hAccel->AccelClose = kxtf9_deInit;
    hAccel->AccelSetIntForceThreshold = kxtf9_SetIntForceThreshold;
    hAccel->AccelSetIntTimeThreshold = kxtf9_SetIntTimeThreshold;
    hAccel->AccelSetIntEnable = kxtf9_SetIntEnable;
    hAccel->AccelWaitInt = kxtf9_WaitInt;
    hAccel->AccelSignal = kxtf9_Signal;
    hAccel->AccelGetAcceleration = kxtf9_GetAcceleration;
    hAccel->AccelGetCaps = kxtf9_GetCaps;
    hAccel->AccelSetPowerState = kxtf9_SetPowerState;
    hAccel->AccelSetSampleRate = kxtf9_SetSampleRate;
    hAccel->AccelGetSampleRate = kxtf9_GetSampleRate;

    *hDevice = hAccel;
    NVODMACCELEROMETER_PRINTF(("kxtf9 Accel Open success\n"));
    return NV_TRUE;
error:
    NVODMACCELEROMETER_PRINTF(("kxtf9: Error during NvOdmAccelOpen\n"));

    // Release all of resources requested.
    if (hAccel)
    {
        ConfigPowerRail(hAccel->hPmu, hAccel->VddId, NV_FALSE);
        NvOdmServicesPmuClose(hAccel->hPmu);
        hAccel->hPmu = NULL;
        NvOdmI2cClose(hAccel->hOdmI2C);
        hAccel->hOdmI2C = NULL;
        NvOdmOsFree(hAccel);
        *hDevice = NULL;
    }
    return NV_FALSE;
}