summaryrefslogtreecommitdiff
path: root/arch/arm/mach-tegra/timer.c
blob: 9aeea71f37d67c958517c4d4b16483938e167bf4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
/*
 * arch/arch/mach-tegra/timer.c
 *
 * Copyright (C) 2010 Google, Inc.
 *
 * Author:
 *	Colin Cross <ccross@google.com>
 *
 * Copyright (C) 2010-2013 NVIDIA CORPORATION.  All rights reserved.
 *
 * This software is licensed under the terms of the GNU General Public
 * License version 2, as published by the Free Software Foundation, and
 * may be copied, distributed, and modified under those terms.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 */

#include <linux/init.h>
#include <linux/err.h>
#include <linux/time.h>
#include <linux/interrupt.h>
#include <linux/irq.h>
#include <linux/clockchips.h>
#include <linux/clocksource.h>
#include <linux/clk.h>
#include <linux/cpu.h>
#include <linux/io.h>
#include <linux/syscore_ops.h>
#include <linux/cpu_pm.h>
#include <linux/rtc.h>

#include <asm/mach/time.h>
#include <asm/arch_timer.h>
#include <asm/cputype.h>
#include <asm/smp_twd.h>
#include <asm/system.h>
#include <asm/sched_clock.h>

#include <mach/iomap.h>
#include <mach/io.h>
#include <mach/irqs.h>
#include <mach/hardware.h>

#include "board.h"
#include "clock.h"
#include "timer.h"
#include "fuse.h"

extern int __init arch_timer_register(struct arch_timer *at);

static void __iomem *timer_reg_base = IO_ADDRESS(TEGRA_TMR1_BASE);
static void __iomem *rtc_base = IO_ADDRESS(TEGRA_RTC_BASE);

#ifdef CONFIG_ARM_ARCH_TIMER
static u32 arch_timer_us_mult, arch_timer_us_shift;
#endif
static u64 persistent_ms, last_persistent_ms;
static struct timespec persistent_ts;
static u32 usec_config;

#ifdef CONFIG_ARCH_TEGRA_2x_SOC
static u32 system_timer = (TEGRA_TMR3_BASE - TEGRA_TMR1_BASE);
#else
static u32 system_timer = 0;
#endif

#define timer_writel(value, reg) \
	__raw_writel(value, timer_reg_base + (reg))
#define timer_readl(reg) \
	__raw_readl(timer_reg_base + (reg))

static int tegra_timer_set_next_event(unsigned long cycles,
					 struct clock_event_device *evt)
{
	u32 reg;

	reg = 0x80000000 | ((cycles > 1) ? (cycles-1) : 0);
	timer_writel(reg, system_timer + TIMER_PTV);

	return 0;
}

static void tegra_timer_set_mode(enum clock_event_mode mode,
				    struct clock_event_device *evt)
{
	u32 reg;

	timer_writel(0, system_timer + TIMER_PTV);

	switch (mode) {
	case CLOCK_EVT_MODE_PERIODIC:
		reg = 0xC0000000 | ((1000000/HZ)-1);
		timer_writel(reg, system_timer + TIMER_PTV);
		break;
	case CLOCK_EVT_MODE_ONESHOT:
		break;
	case CLOCK_EVT_MODE_UNUSED:
	case CLOCK_EVT_MODE_SHUTDOWN:
	case CLOCK_EVT_MODE_RESUME:
		break;
	}
}

static struct clock_event_device tegra_clockevent = {
	.name		= "timer0",
	.rating		= 300,
	.features	= CLOCK_EVT_FEAT_ONESHOT | CLOCK_EVT_FEAT_PERIODIC,
	.set_next_event	= tegra_timer_set_next_event,
	.set_mode	= tegra_timer_set_mode,
};

u32 notrace tegra_read_usec_raw(void)
{
	return timer_readl(TIMERUS_CNTR_1US);
}

static u32 notrace tegra_read_sched_clock(void)
{
	return timer_readl(TIMERUS_CNTR_1US);
}

/*
 * tegra_rtc_read - Reads the Tegra RTC registers
 * Care must be taken that this funciton is not called while the
 * tegra_rtc driver could be executing to avoid race conditions
 * on the RTC shadow register
 */
u64 tegra_rtc_read_ms(void)
{
	u32 ms = readl(rtc_base + RTC_MILLISECONDS);
	u32 s = readl(rtc_base + RTC_SHADOW_SECONDS);
	return (u64)s * MSEC_PER_SEC + ms;
}

/*
 * read_persistent_clock -  Return time from a persistent clock.
 *
 * Reads the time from a source which isn't disabled during PM, the
 * 32k sync timer.  Convert the cycles elapsed since last read into
 * nsecs and adds to a monotonically increasing timespec.
 * Care must be taken that this funciton is not called while the
 * tegra_rtc driver could be executing to avoid race conditions
 * on the RTC shadow register
 */
void read_persistent_clock(struct timespec *ts)
{
	u64 delta;
	struct timespec *tsp = &persistent_ts;

	last_persistent_ms = persistent_ms;
	persistent_ms = tegra_rtc_read_ms();
	delta = persistent_ms - last_persistent_ms;

	timespec_add_ns(tsp, delta * NSEC_PER_MSEC);
	*ts = *tsp;
}

static irqreturn_t tegra_timer_interrupt(int irq, void *dev_id)
{
	struct clock_event_device *evt = (struct clock_event_device *)dev_id;
	timer_writel(1<<30, system_timer + TIMER_PCR);
	evt->event_handler(evt);
	return IRQ_HANDLED;
}

static struct irqaction tegra_timer_irq = {
	.name		= "timer0",
	.flags		= IRQF_DISABLED | IRQF_TIMER | IRQF_TRIGGER_HIGH,
	.handler	= tegra_timer_interrupt,
	.dev_id		= &tegra_clockevent,
#ifdef CONFIG_ARCH_TEGRA_2x_SOC
	.irq		= INT_TMR3,
#else
	.irq		= INT_TMR1,
#endif
};

static int tegra_timer_suspend(void)
{
	usec_config = timer_readl(TIMERUS_USEC_CFG);
	return 0;
}

static void tegra_timer_resume(void)
{
	timer_writel(usec_config, TIMERUS_USEC_CFG);
}

static struct syscore_ops tegra_timer_syscore_ops = {
	.suspend = tegra_timer_suspend,
	.resume = tegra_timer_resume,
};

#ifdef CONFIG_HAVE_ARM_TWD
static DEFINE_TWD_LOCAL_TIMER(twd_local_timer,
			      TEGRA_ARM_PERIF_BASE + 0x600,
			      IRQ_LOCALTIMER);
static void __iomem *tegra_twd_base = IO_ADDRESS(TEGRA_ARM_PERIF_BASE + 0x600);

void __init tegra_cpu_timer_init(void)
{
	struct clk *cpu, *twd_clk;
	int err;

	/* The twd clock is a detached child of the CPU complex clock.
	   Force an update of the twd clock after DVFS has updated the
	   CPU clock rate. */

	twd_clk = tegra_get_clock_by_name("twd");
	BUG_ON(!twd_clk);
	cpu = tegra_get_clock_by_name("cpu");
	err = clk_set_rate(twd_clk, clk_get_rate(cpu));

	if (err)
		pr_err("Failed to set twd clock rate: %d\n", err);
	else
		pr_debug("TWD clock rate: %ld\n", clk_get_rate(twd_clk));
}

int tegra_twd_get_state(struct tegra_twd_context *context)
{
	context->twd_ctrl = readl(tegra_twd_base + TWD_TIMER_CONTROL);
	context->twd_load = readl(tegra_twd_base + TWD_TIMER_LOAD);
	context->twd_cnt = readl(tegra_twd_base + TWD_TIMER_COUNTER);

	return 0;
}

void tegra_twd_suspend(struct tegra_twd_context *context)
{
	context->twd_ctrl = readl(tegra_twd_base + TWD_TIMER_CONTROL);
	context->twd_load = readl(tegra_twd_base + TWD_TIMER_LOAD);
	if ((context->twd_load == 0) &&
	    (context->twd_ctrl & TWD_TIMER_CONTROL_PERIODIC) &&
	    (context->twd_ctrl & (TWD_TIMER_CONTROL_ENABLE |
				  TWD_TIMER_CONTROL_IT_ENABLE))) {
		WARN("%s: TWD enabled but counter was 0\n", __func__);
		context->twd_load = 1;
	}
	__raw_writel(0, tegra_twd_base + TWD_TIMER_CONTROL);
}

void tegra_twd_resume(struct tegra_twd_context *context)
{
	BUG_ON((context->twd_load == 0) &&
	       (context->twd_ctrl & TWD_TIMER_CONTROL_PERIODIC) &&
	       (context->twd_ctrl & (TWD_TIMER_CONTROL_ENABLE |
				     TWD_TIMER_CONTROL_IT_ENABLE)));
	writel(context->twd_load, tegra_twd_base + TWD_TIMER_LOAD);
	writel(context->twd_ctrl, tegra_twd_base + TWD_TIMER_CONTROL);
}

static void __init tegra_init_late_timer(void)
{
	int err = twd_local_timer_register(&twd_local_timer);
	if (err)
		pr_err("twd_timer_register failed %d\n", err);
}
#else
#define tegra_twd_get_state	do {} while(0)
#define tegra_twd_suspend	do {} while(0)
#define tegra_twd_resume	do {} while(0)
#endif

#ifdef CONFIG_ARM_ARCH_TIMER

static bool arch_timer_initialized;

/* Is the optional system timer available? */
static int local_timer_is_architected(void)
{
	return (cpu_architecture() >= CPU_ARCH_ARMv7) &&
	       ((read_cpuid_ext(CPUID_EXT_PFR1) >> 16) & 0xf) == 1;
}

void __init tegra_cpu_timer_init(void)
{
	u32 tsc_ref_freq;

	if (!local_timer_is_architected())
		return;

	tsc_ref_freq = tegra_clk_measure_input_freq();
	if (tsc_ref_freq == 115200 || tsc_ref_freq == 230400) {
		/*
		 * OSC detection function will bug out if revision is not
		 * QT and the detected frequency is one of these two.
		 */
		tsc_ref_freq = 13000000;
		pr_info("fake tsc_ref_req=%d in QT\n", tsc_ref_freq);
	}

	clocks_calc_mult_shift(&arch_timer_us_mult, &arch_timer_us_shift,
				tsc_ref_freq, USEC_PER_SEC, 0);
	return;
}

static void tegra_arch_timer_per_cpu_init(void)
{
#ifdef CONFIG_TRUSTED_FOUNDATIONS
	return;
#else
	if (arch_timer_initialized) {
		u32 tsc_ref_freq = tegra_clk_measure_input_freq();

		/*
		 * OSC detection function will bug out if revision is not QT and
		 * the detected frequency is one of these two.
		 */
		if (tsc_ref_freq == 115200 || tsc_ref_freq == 230400)
			tsc_ref_freq = 13000000;

		/* Program CNTFRQ to the input frequency.
		   NOTE: this is a write once (per CPU reset) register. */
		__asm__("mcr p15, 0, %0, c14, c0, 0\n" : : "r" (tsc_ref_freq));
	}
#endif
}

static int arch_timer_cpu_notify(struct notifier_block *self,
				    unsigned long action, void *data)
{
	switch (action) {
	case CPU_STARTING:
	case CPU_STARTING_FROZEN:
		tegra_arch_timer_per_cpu_init();
		break;
	default:
		break;
	}

	return NOTIFY_OK;
}

static struct notifier_block arch_timer_cpu_nb = {
	.notifier_call = arch_timer_cpu_notify,
};

static int arch_timer_cpu_pm_notify(struct notifier_block *self,
				    unsigned long action, void *data)
{
	switch (action) {
	case CPU_PM_EXIT:
		tegra_arch_timer_per_cpu_init();
		break;
	}

	return NOTIFY_OK;
}

static struct notifier_block arch_timer_cpu_pm_nb = {
	.notifier_call = arch_timer_cpu_pm_notify,
};

static int __init tegra_init_arch_timer(void)
{
	int err;

	if (!local_timer_is_architected())
		return -ENODEV;

	err = arch_timer_sched_clock_init();
	if (err) {
		pr_err("%s: Unable to initialize arch timer sched_clock: %d\n",
		     __func__, err);
		return err;
	}

	register_cpu_notifier(&arch_timer_cpu_nb);
	cpu_pm_register_notifier(&arch_timer_cpu_pm_nb);
	arch_timer_initialized = true;
	return 0;
}

static struct arch_timer tegra_arch_timer = {
	.res[0] = {
		.start	= 29,
		.end	= 29,
		.flags	= IORESOURCE_IRQ,
	},
	.res[1] = {
		.start	= 30,
		.end	= 30,
		.flags	= IORESOURCE_IRQ,
	},
};

static void __init tegra_init_late_timer(void)
{
	int err = -ENODEV;

	if (arch_timer_initialized) {
		err = arch_timer_register(&tegra_arch_timer);
		if (err)
			pr_err("%s: Unable to register arch timer: %d\n",
			     __func__, err);
	}
}

#ifdef CONFIG_PM_SLEEP

static void __iomem *pmc = IO_ADDRESS(TEGRA_PMC_BASE);
static u32 tsc_suspend_start;
static u32 tsc_resume_start;

#define pmc_writel(value, reg) \
		writel(value, (u32)pmc + (reg))
#define pmc_readl(reg) \
		readl((u32)pmc + (reg))

#define PMC_DPD_ENABLE			0x24
#define PMC_DPD_ENABLE_TSC_MULT_ENABLE	(1 << 1)

#define PMC_TSC_MULT			0x2b4
#define PMC_TSC_MULT_FREQ_STS		(1 << 16)

#define TSC_TIMEOUT_US			32

void tegra_tsc_suspend(void)
{
	if (arch_timer_initialized) {
		u32 reg = pmc_readl(PMC_DPD_ENABLE);
		BUG_ON(reg & PMC_DPD_ENABLE_TSC_MULT_ENABLE);
		reg |= PMC_DPD_ENABLE_TSC_MULT_ENABLE;
		pmc_writel(reg, PMC_DPD_ENABLE);
		tsc_suspend_start = timer_readl(TIMERUS_CNTR_1US);
	}
}

void tegra_tsc_resume(void)
{
	if (arch_timer_initialized) {
		u32 reg = pmc_readl(PMC_DPD_ENABLE);
		BUG_ON(!(reg & PMC_DPD_ENABLE_TSC_MULT_ENABLE));
		reg &= ~PMC_DPD_ENABLE_TSC_MULT_ENABLE;
		pmc_writel(reg, PMC_DPD_ENABLE);
		tsc_resume_start = timer_readl(TIMERUS_CNTR_1US);
	}
}

void tegra_tsc_wait_for_suspend(void)
{
	if (arch_timer_initialized) {
		while ((timer_readl(TIMERUS_CNTR_1US) - tsc_suspend_start) <
			TSC_TIMEOUT_US) {
			if (pmc_readl(PMC_TSC_MULT) & PMC_TSC_MULT_FREQ_STS)
				break;
			cpu_relax();
		}
	}
}

void tegra_tsc_wait_for_resume(void)
{
	if (arch_timer_initialized) {
		while ((timer_readl(TIMERUS_CNTR_1US) - tsc_resume_start) <
			TSC_TIMEOUT_US) {
			if (!(pmc_readl(PMC_TSC_MULT) & PMC_TSC_MULT_FREQ_STS))
				break;
			cpu_relax();
		}
	}
}

int tegra_cpu_timer_get_remain(s64 *time)
{
	s32 cntp_tval;
	int ret = 0;

	asm volatile("mrc p15, 0, %0, c14, c2, 0" : "=r" (cntp_tval));

	if (cntp_tval <= 0)
		ret = -ETIME;
	else
		*time = (s64)((s64)cntp_tval * arch_timer_us_mult)
			>> arch_timer_us_shift;

	return ret;
}

#endif

#else
static inline int tegra_init_arch_timer(void) { return -ENODEV; }
static inline int tegra_init_late_arch_timer(void) { return -ENODEV; }
#endif

#ifdef CONFIG_RTC_CLASS
/**
 * has_readtime - check rtc device has readtime ability
 * @dev: current device
 * @name_ptr: name to be returned
 *
 * This helper function checks to see if the rtc device can be
 * used for reading time
 */
static int has_readtime(struct device *dev, void *name_ptr)
{
	struct rtc_device *candidate = to_rtc_device(dev);

	if (!candidate->ops->read_time)
		return 0;

	return 1;
}

/**
 * tegra_get_linear_age - helper function to return linear age
 * from Jan 2012.
 *
 * @return
 * 1 - Jan 2012,
 * 2 - Feb 2012,
 * .....
 * 13 - Jan 2013
 */
int tegra_get_linear_age(void)
{
	struct rtc_time tm;
	int year, month, linear_age;
	struct rtc_device *rtc_dev = NULL;
	const char *name = NULL;
	int ret;
	struct device *dev = NULL;

	linear_age = -1;
	year = month = 0;
	dev = class_find_device(rtc_class, NULL, &name, has_readtime);

	if (!dev) {
		pr_err("DVFS: No device with readtime capability\n");
		goto done;
	}

	name = dev_name(dev);

	pr_info("DVFS: Got RTC device name:%s\n", name);

	if (name)
		rtc_dev = rtc_class_open((char *)name);

	if (!rtc_dev) {
		pr_err("DVFS: No RTC device\n");
		goto error_dev;
	}

	ret = rtc_read_time(rtc_dev, &tm);

	if (ret < 0) {
		pr_err("DVFS: Can't read RTC time\n");
		goto error_rtc;
	}

	year = tm.tm_year;
	/*Normalize it to 2012*/
	year -= 112;
	month = tm.tm_mon + 1;

	if (year >= 0)
		linear_age = year * 12 + month;

error_rtc:
	rtc_class_close(rtc_dev);
error_dev:
	put_device(dev);
done:
	return linear_age;

}

#else
int tegra_get_linear_age()
{
	return -1;
}
#endif

void __init tegra_init_timer(void)
{
	struct clk *clk;
	int ret;
	unsigned long rate;

	clk = clk_get_sys("timer", NULL);
	if (IS_ERR(clk)) {
		pr_warn("Unable to get timer clock."
			" Assuming 12Mhz input clock.\n");
		rate = 12000000;
	} else {
		tegra_clk_prepare_enable(clk);
		rate = clk_get_rate(clk);
	}

	/*
	 * rtc registers are used by read_persistent_clock, keep the rtc clock
	 * enabled
	 */
	clk = clk_get_sys("rtc-tegra", NULL);
	if (IS_ERR(clk))
		pr_warn("Unable to get rtc-tegra clock\n");
	else
		tegra_clk_prepare_enable(clk);

	switch (rate) {
	case 12000000:
		timer_writel(0x000b, TIMERUS_USEC_CFG);
		break;
	case 13000000:
		timer_writel(0x000c, TIMERUS_USEC_CFG);
		break;
	case 19200000:
		timer_writel(0x045f, TIMERUS_USEC_CFG);
		break;
	case 26000000:
		timer_writel(0x0019, TIMERUS_USEC_CFG);
		break;
#ifndef CONFIG_ARCH_TEGRA_2x_SOC
	case 16800000:
		timer_writel(0x0453, TIMERUS_USEC_CFG);
		break;
	case 38400000:
		timer_writel(0x04BF, TIMERUS_USEC_CFG);
		break;
	case 48000000:
		timer_writel(0x002F, TIMERUS_USEC_CFG);
		break;
#endif
	default:
		if (tegra_revision == TEGRA_REVISION_QT) {
			timer_writel(0x000c, TIMERUS_USEC_CFG);
			break;
		}
		WARN(1, "Unknown clock rate");
	}

#ifdef CONFIG_ARCH_TEGRA_2x_SOC
	tegra20_init_timer();
#else
	tegra30_init_timer();
#endif

	/* Architectural timers take precedence over broadcast timers.
	   Only register a broadcast clockevent device if architectural
	   timers do not exist or cannot be initialized. */
	if (tegra_init_arch_timer())
		/* Architectural timers do not exist or cannot be initialzied.
		   Fall back to using the broadcast timer as the sched clock. */
		setup_sched_clock(tegra_read_sched_clock, 32, 1000000);

	ret = clocksource_mmio_init(timer_reg_base + TIMERUS_CNTR_1US,
		"timer_us", 1000000, 300, 32,
		clocksource_mmio_readl_up);
	if (ret) {
		pr_err("%s: Failed to register clocksource: %d\n",
			__func__, ret);
		BUG();
	}

	ret = setup_irq(tegra_timer_irq.irq, &tegra_timer_irq);
	if (ret) {
		pr_err("%s: Failed to register timer IRQ: %d\n",
			__func__, ret);
		BUG();
	}

	clockevents_calc_mult_shift(&tegra_clockevent, 1000000, 5);
	tegra_clockevent.max_delta_ns =
		clockevent_delta2ns(0x1fffffff, &tegra_clockevent);
	tegra_clockevent.min_delta_ns =
		clockevent_delta2ns(0x1, &tegra_clockevent);
	tegra_clockevent.cpumask = cpu_all_mask;
	tegra_clockevent.irq = tegra_timer_irq.irq;
	clockevents_register_device(&tegra_clockevent);

	register_syscore_ops(&tegra_timer_syscore_ops);
	late_time_init = tegra_init_late_timer;
}

struct sys_timer tegra_timer = {
	.init = tegra_init_timer,
};