summaryrefslogtreecommitdiff
path: root/block/blk-mq-sched.c
blob: ae5d8f10a27c59a957911dd66fa9b68a7fc5c6e6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
/*
 * blk-mq scheduling framework
 *
 * Copyright (C) 2016 Jens Axboe
 */
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/blk-mq.h>

#include <trace/events/block.h>

#include "blk.h"
#include "blk-mq.h"
#include "blk-mq-debugfs.h"
#include "blk-mq-sched.h"
#include "blk-mq-tag.h"
#include "blk-wbt.h"

void blk_mq_sched_free_hctx_data(struct request_queue *q,
				 void (*exit)(struct blk_mq_hw_ctx *))
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if (exit && hctx->sched_data)
			exit(hctx);
		kfree(hctx->sched_data);
		hctx->sched_data = NULL;
	}
}
EXPORT_SYMBOL_GPL(blk_mq_sched_free_hctx_data);

void blk_mq_sched_assign_ioc(struct request *rq, struct bio *bio)
{
	struct request_queue *q = rq->q;
	struct io_context *ioc = rq_ioc(bio);
	struct io_cq *icq;

	spin_lock_irq(q->queue_lock);
	icq = ioc_lookup_icq(ioc, q);
	spin_unlock_irq(q->queue_lock);

	if (!icq) {
		icq = ioc_create_icq(ioc, q, GFP_ATOMIC);
		if (!icq)
			return;
	}
	get_io_context(icq->ioc);
	rq->elv.icq = icq;
}

/*
 * Mark a hardware queue as needing a restart. For shared queues, maintain
 * a count of how many hardware queues are marked for restart.
 */
static void blk_mq_sched_mark_restart_hctx(struct blk_mq_hw_ctx *hctx)
{
	if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
		return;

	if (hctx->flags & BLK_MQ_F_TAG_SHARED) {
		struct request_queue *q = hctx->queue;

		if (!test_and_set_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
			atomic_inc(&q->shared_hctx_restart);
	} else
		set_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state);
}

static bool blk_mq_sched_restart_hctx(struct blk_mq_hw_ctx *hctx)
{
	if (!test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
		return false;

	if (hctx->flags & BLK_MQ_F_TAG_SHARED) {
		struct request_queue *q = hctx->queue;

		if (test_and_clear_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
			atomic_dec(&q->shared_hctx_restart);
	} else
		clear_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state);

	if (blk_mq_hctx_has_pending(hctx)) {
		blk_mq_run_hw_queue(hctx, true);
		return true;
	}

	return false;
}

void blk_mq_sched_dispatch_requests(struct blk_mq_hw_ctx *hctx)
{
	struct request_queue *q = hctx->queue;
	struct elevator_queue *e = q->elevator;
	const bool has_sched_dispatch = e && e->type->ops.mq.dispatch_request;
	bool do_sched_dispatch = true;
	LIST_HEAD(rq_list);

	/* RCU or SRCU read lock is needed before checking quiesced flag */
	if (unlikely(blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)))
		return;

	hctx->run++;

	/*
	 * If we have previous entries on our dispatch list, grab them first for
	 * more fair dispatch.
	 */
	if (!list_empty_careful(&hctx->dispatch)) {
		spin_lock(&hctx->lock);
		if (!list_empty(&hctx->dispatch))
			list_splice_init(&hctx->dispatch, &rq_list);
		spin_unlock(&hctx->lock);
	}

	/*
	 * Only ask the scheduler for requests, if we didn't have residual
	 * requests from the dispatch list. This is to avoid the case where
	 * we only ever dispatch a fraction of the requests available because
	 * of low device queue depth. Once we pull requests out of the IO
	 * scheduler, we can no longer merge or sort them. So it's best to
	 * leave them there for as long as we can. Mark the hw queue as
	 * needing a restart in that case.
	 */
	if (!list_empty(&rq_list)) {
		blk_mq_sched_mark_restart_hctx(hctx);
		do_sched_dispatch = blk_mq_dispatch_rq_list(q, &rq_list);
	} else if (!has_sched_dispatch) {
		blk_mq_flush_busy_ctxs(hctx, &rq_list);
		blk_mq_dispatch_rq_list(q, &rq_list);
	}

	/*
	 * We want to dispatch from the scheduler if there was nothing
	 * on the dispatch list or we were able to dispatch from the
	 * dispatch list.
	 */
	if (do_sched_dispatch && has_sched_dispatch) {
		do {
			struct request *rq;

			rq = e->type->ops.mq.dispatch_request(hctx);
			if (!rq)
				break;
			list_add(&rq->queuelist, &rq_list);
		} while (blk_mq_dispatch_rq_list(q, &rq_list));
	}
}

bool blk_mq_sched_try_merge(struct request_queue *q, struct bio *bio,
			    struct request **merged_request)
{
	struct request *rq;

	switch (elv_merge(q, &rq, bio)) {
	case ELEVATOR_BACK_MERGE:
		if (!blk_mq_sched_allow_merge(q, rq, bio))
			return false;
		if (!bio_attempt_back_merge(q, rq, bio))
			return false;
		*merged_request = attempt_back_merge(q, rq);
		if (!*merged_request)
			elv_merged_request(q, rq, ELEVATOR_BACK_MERGE);
		return true;
	case ELEVATOR_FRONT_MERGE:
		if (!blk_mq_sched_allow_merge(q, rq, bio))
			return false;
		if (!bio_attempt_front_merge(q, rq, bio))
			return false;
		*merged_request = attempt_front_merge(q, rq);
		if (!*merged_request)
			elv_merged_request(q, rq, ELEVATOR_FRONT_MERGE);
		return true;
	default:
		return false;
	}
}
EXPORT_SYMBOL_GPL(blk_mq_sched_try_merge);

/*
 * Reverse check our software queue for entries that we could potentially
 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
 * too much time checking for merges.
 */
static bool blk_mq_attempt_merge(struct request_queue *q,
				 struct blk_mq_ctx *ctx, struct bio *bio)
{
	struct request *rq;
	int checked = 8;

	lockdep_assert_held(&ctx->lock);

	list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
		bool merged = false;

		if (!checked--)
			break;

		if (!blk_rq_merge_ok(rq, bio))
			continue;

		switch (blk_try_merge(rq, bio)) {
		case ELEVATOR_BACK_MERGE:
			if (blk_mq_sched_allow_merge(q, rq, bio))
				merged = bio_attempt_back_merge(q, rq, bio);
			break;
		case ELEVATOR_FRONT_MERGE:
			if (blk_mq_sched_allow_merge(q, rq, bio))
				merged = bio_attempt_front_merge(q, rq, bio);
			break;
		case ELEVATOR_DISCARD_MERGE:
			merged = bio_attempt_discard_merge(q, rq, bio);
			break;
		default:
			continue;
		}

		if (merged)
			ctx->rq_merged++;
		return merged;
	}

	return false;
}

bool __blk_mq_sched_bio_merge(struct request_queue *q, struct bio *bio)
{
	struct elevator_queue *e = q->elevator;
	struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
	bool ret = false;

	if (e && e->type->ops.mq.bio_merge) {
		blk_mq_put_ctx(ctx);
		return e->type->ops.mq.bio_merge(hctx, bio);
	}

	if ((hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
			!list_empty_careful(&ctx->rq_list)) {
		/* default per sw-queue merge */
		spin_lock(&ctx->lock);
		ret = blk_mq_attempt_merge(q, ctx, bio);
		spin_unlock(&ctx->lock);
	}

	blk_mq_put_ctx(ctx);
	return ret;
}

bool blk_mq_sched_try_insert_merge(struct request_queue *q, struct request *rq)
{
	return rq_mergeable(rq) && elv_attempt_insert_merge(q, rq);
}
EXPORT_SYMBOL_GPL(blk_mq_sched_try_insert_merge);

void blk_mq_sched_request_inserted(struct request *rq)
{
	trace_block_rq_insert(rq->q, rq);
}
EXPORT_SYMBOL_GPL(blk_mq_sched_request_inserted);

static bool blk_mq_sched_bypass_insert(struct blk_mq_hw_ctx *hctx,
				       struct request *rq)
{
	if (rq->tag == -1) {
		rq->rq_flags |= RQF_SORTED;
		return false;
	}

	/*
	 * If we already have a real request tag, send directly to
	 * the dispatch list.
	 */
	spin_lock(&hctx->lock);
	list_add(&rq->queuelist, &hctx->dispatch);
	spin_unlock(&hctx->lock);
	return true;
}

/**
 * list_for_each_entry_rcu_rr - iterate in a round-robin fashion over rcu list
 * @pos:    loop cursor.
 * @skip:   the list element that will not be examined. Iteration starts at
 *          @skip->next.
 * @head:   head of the list to examine. This list must have at least one
 *          element, namely @skip.
 * @member: name of the list_head structure within typeof(*pos).
 */
#define list_for_each_entry_rcu_rr(pos, skip, head, member)		\
	for ((pos) = (skip);						\
	     (pos = (pos)->member.next != (head) ? list_entry_rcu(	\
			(pos)->member.next, typeof(*pos), member) :	\
	      list_entry_rcu((pos)->member.next->next, typeof(*pos), member)), \
	     (pos) != (skip); )

/*
 * Called after a driver tag has been freed to check whether a hctx needs to
 * be restarted. Restarts @hctx if its tag set is not shared. Restarts hardware
 * queues in a round-robin fashion if the tag set of @hctx is shared with other
 * hardware queues.
 */
void blk_mq_sched_restart(struct blk_mq_hw_ctx *const hctx)
{
	struct blk_mq_tags *const tags = hctx->tags;
	struct blk_mq_tag_set *const set = hctx->queue->tag_set;
	struct request_queue *const queue = hctx->queue, *q;
	struct blk_mq_hw_ctx *hctx2;
	unsigned int i, j;

	if (set->flags & BLK_MQ_F_TAG_SHARED) {
		/*
		 * If this is 0, then we know that no hardware queues
		 * have RESTART marked. We're done.
		 */
		if (!atomic_read(&queue->shared_hctx_restart))
			return;

		rcu_read_lock();
		list_for_each_entry_rcu_rr(q, queue, &set->tag_list,
					   tag_set_list) {
			queue_for_each_hw_ctx(q, hctx2, i)
				if (hctx2->tags == tags &&
				    blk_mq_sched_restart_hctx(hctx2))
					goto done;
		}
		j = hctx->queue_num + 1;
		for (i = 0; i < queue->nr_hw_queues; i++, j++) {
			if (j == queue->nr_hw_queues)
				j = 0;
			hctx2 = queue->queue_hw_ctx[j];
			if (hctx2->tags == tags &&
			    blk_mq_sched_restart_hctx(hctx2))
				break;
		}
done:
		rcu_read_unlock();
	} else {
		blk_mq_sched_restart_hctx(hctx);
	}
}

/*
 * Add flush/fua to the queue. If we fail getting a driver tag, then
 * punt to the requeue list. Requeue will re-invoke us from a context
 * that's safe to block from.
 */
static void blk_mq_sched_insert_flush(struct blk_mq_hw_ctx *hctx,
				      struct request *rq, bool can_block)
{
	if (blk_mq_get_driver_tag(rq, &hctx, can_block)) {
		blk_insert_flush(rq);
		blk_mq_run_hw_queue(hctx, true);
	} else
		blk_mq_add_to_requeue_list(rq, false, true);
}

void blk_mq_sched_insert_request(struct request *rq, bool at_head,
				 bool run_queue, bool async, bool can_block)
{
	struct request_queue *q = rq->q;
	struct elevator_queue *e = q->elevator;
	struct blk_mq_ctx *ctx = rq->mq_ctx;
	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);

	if (rq->tag == -1 && op_is_flush(rq->cmd_flags)) {
		blk_mq_sched_insert_flush(hctx, rq, can_block);
		return;
	}

	if (e && blk_mq_sched_bypass_insert(hctx, rq))
		goto run;

	if (e && e->type->ops.mq.insert_requests) {
		LIST_HEAD(list);

		list_add(&rq->queuelist, &list);
		e->type->ops.mq.insert_requests(hctx, &list, at_head);
	} else {
		spin_lock(&ctx->lock);
		__blk_mq_insert_request(hctx, rq, at_head);
		spin_unlock(&ctx->lock);
	}

run:
	if (run_queue)
		blk_mq_run_hw_queue(hctx, async);
}

void blk_mq_sched_insert_requests(struct request_queue *q,
				  struct blk_mq_ctx *ctx,
				  struct list_head *list, bool run_queue_async)
{
	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
	struct elevator_queue *e = hctx->queue->elevator;

	if (e) {
		struct request *rq, *next;

		/*
		 * We bypass requests that already have a driver tag assigned,
		 * which should only be flushes. Flushes are only ever inserted
		 * as single requests, so we shouldn't ever hit the
		 * WARN_ON_ONCE() below (but let's handle it just in case).
		 */
		list_for_each_entry_safe(rq, next, list, queuelist) {
			if (WARN_ON_ONCE(rq->tag != -1)) {
				list_del_init(&rq->queuelist);
				blk_mq_sched_bypass_insert(hctx, rq);
			}
		}
	}

	if (e && e->type->ops.mq.insert_requests)
		e->type->ops.mq.insert_requests(hctx, list, false);
	else
		blk_mq_insert_requests(hctx, ctx, list);

	blk_mq_run_hw_queue(hctx, run_queue_async);
}

static void blk_mq_sched_free_tags(struct blk_mq_tag_set *set,
				   struct blk_mq_hw_ctx *hctx,
				   unsigned int hctx_idx)
{
	if (hctx->sched_tags) {
		blk_mq_free_rqs(set, hctx->sched_tags, hctx_idx);
		blk_mq_free_rq_map(hctx->sched_tags);
		hctx->sched_tags = NULL;
	}
}

static int blk_mq_sched_alloc_tags(struct request_queue *q,
				   struct blk_mq_hw_ctx *hctx,
				   unsigned int hctx_idx)
{
	struct blk_mq_tag_set *set = q->tag_set;
	int ret;

	hctx->sched_tags = blk_mq_alloc_rq_map(set, hctx_idx, q->nr_requests,
					       set->reserved_tags);
	if (!hctx->sched_tags)
		return -ENOMEM;

	ret = blk_mq_alloc_rqs(set, hctx->sched_tags, hctx_idx, q->nr_requests);
	if (ret)
		blk_mq_sched_free_tags(set, hctx, hctx_idx);

	return ret;
}

static void blk_mq_sched_tags_teardown(struct request_queue *q)
{
	struct blk_mq_tag_set *set = q->tag_set;
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_sched_free_tags(set, hctx, i);
}

int blk_mq_sched_init_hctx(struct request_queue *q, struct blk_mq_hw_ctx *hctx,
			   unsigned int hctx_idx)
{
	struct elevator_queue *e = q->elevator;
	int ret;

	if (!e)
		return 0;

	ret = blk_mq_sched_alloc_tags(q, hctx, hctx_idx);
	if (ret)
		return ret;

	if (e->type->ops.mq.init_hctx) {
		ret = e->type->ops.mq.init_hctx(hctx, hctx_idx);
		if (ret) {
			blk_mq_sched_free_tags(q->tag_set, hctx, hctx_idx);
			return ret;
		}
	}

	blk_mq_debugfs_register_sched_hctx(q, hctx);

	return 0;
}

void blk_mq_sched_exit_hctx(struct request_queue *q, struct blk_mq_hw_ctx *hctx,
			    unsigned int hctx_idx)
{
	struct elevator_queue *e = q->elevator;

	if (!e)
		return;

	blk_mq_debugfs_unregister_sched_hctx(hctx);

	if (e->type->ops.mq.exit_hctx && hctx->sched_data) {
		e->type->ops.mq.exit_hctx(hctx, hctx_idx);
		hctx->sched_data = NULL;
	}

	blk_mq_sched_free_tags(q->tag_set, hctx, hctx_idx);
}

int blk_mq_init_sched(struct request_queue *q, struct elevator_type *e)
{
	struct blk_mq_hw_ctx *hctx;
	struct elevator_queue *eq;
	unsigned int i;
	int ret;

	if (!e) {
		q->elevator = NULL;
		return 0;
	}

	/*
	 * Default to double of smaller one between hw queue_depth and 128,
	 * since we don't split into sync/async like the old code did.
	 * Additionally, this is a per-hw queue depth.
	 */
	q->nr_requests = 2 * min_t(unsigned int, q->tag_set->queue_depth,
				   BLKDEV_MAX_RQ);

	queue_for_each_hw_ctx(q, hctx, i) {
		ret = blk_mq_sched_alloc_tags(q, hctx, i);
		if (ret)
			goto err;
	}

	ret = e->ops.mq.init_sched(q, e);
	if (ret)
		goto err;

	blk_mq_debugfs_register_sched(q);

	queue_for_each_hw_ctx(q, hctx, i) {
		if (e->ops.mq.init_hctx) {
			ret = e->ops.mq.init_hctx(hctx, i);
			if (ret) {
				eq = q->elevator;
				blk_mq_exit_sched(q, eq);
				kobject_put(&eq->kobj);
				return ret;
			}
		}
		blk_mq_debugfs_register_sched_hctx(q, hctx);
	}

	return 0;

err:
	blk_mq_sched_tags_teardown(q);
	q->elevator = NULL;
	return ret;
}

void blk_mq_exit_sched(struct request_queue *q, struct elevator_queue *e)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		blk_mq_debugfs_unregister_sched_hctx(hctx);
		if (e->type->ops.mq.exit_hctx && hctx->sched_data) {
			e->type->ops.mq.exit_hctx(hctx, i);
			hctx->sched_data = NULL;
		}
	}
	blk_mq_debugfs_unregister_sched(q);
	if (e->type->ops.mq.exit_sched)
		e->type->ops.mq.exit_sched(e);
	blk_mq_sched_tags_teardown(q);
	q->elevator = NULL;
}

int blk_mq_sched_init(struct request_queue *q)
{
	int ret;

	mutex_lock(&q->sysfs_lock);
	ret = elevator_init(q, NULL);
	mutex_unlock(&q->sysfs_lock);

	return ret;
}