summaryrefslogtreecommitdiff
path: root/drivers/mxc/amd-gpu/platform/hal/MX35/linux/gsl_hal.c
blob: dbe52501b25a3aa669c8ebd496d25f615de49224 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
/* Copyright (c) 2008-2010, Advanced Micro Devices. All rights reserved.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 and
 * only version 2 as published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
 * 02110-1301, USA.
 *
 */
 
#include "gsl_hal.h"
#include "gsl_halconfig.h"
#include "gsl_linux_map.h"

#include <linux/clk.h>
#include <linux/kernel.h>
#include <linux/pci.h>
#include <linux/vmalloc.h>

#include <asm/atomic.h>
#include <asm/uaccess.h>
#include <asm/tlbflush.h>
#include <asm/cacheflush.h>

//////////////////////////////////////////////////////////////////////////////
// constants
//////////////////////////////////////////////////////////////////////////////


//////////////////////////////////////////////////////////////////////////////
// defines
//////////////////////////////////////////////////////////////////////////////

#define GSL_HAL_MEM1                        0
#define GSL_HAL_MEM2                        1   
#define GSL_HAL_MEM3                        2

//#define GSL_HAL_DEBUG
//////////////////////////////////////////////////////////////////////////////
// types
//////////////////////////////////////////////////////////////////////////////

typedef struct _gsl_hal_t {
    gsl_memregion_t z160_regspace;
#if 0   
    gsl_memregion_t z430_regspace;
#endif  
    gsl_memregion_t memchunk;
    gsl_memregion_t memspace[GSL_SHMEM_MAX_APERTURES];
} gsl_hal_t;

//////////////////////////////////////////////////////////////////////////////
//  functions
//////////////////////////////////////////////////////////////////////////////

KGSLHAL_API int
kgsl_hal_allocphysical(unsigned int virtaddr, unsigned int numpages, unsigned int scattergatterlist[])
{
    //
    // allocate physically contiguous memory
    //
    
	int i;
	void *va;

	va = (void*)gsl_linux_map_alloc(virtaddr, numpages*PAGE_SIZE);

	if (!va)
		return (GSL_FAILURE_OUTOFMEM);

	for(i = 0; i < numpages; i++)
	{
		scattergatterlist[i] = page_to_phys(vmalloc_to_page(va));
		va += PAGE_SIZE;
	}

	return (GSL_SUCCESS);
}

// ---------------------------------------------------------------------------

KGSLHAL_API int
kgsl_hal_freephysical(unsigned int virtaddr, unsigned int numpages, unsigned int scattergatterlist[])
{
    //
    // free physical memory
    //

	gsl_linux_map_free(virtaddr);

    return(GSL_SUCCESS);
}

//----------------------------------------------------------------------------

KGSLHAL_API int 
kgsl_hal_init(void)
{
    gsl_hal_t *hal;
    unsigned long totalsize, mem1size;
    unsigned int va, pa;

    if (gsl_driver.hal)
    {
        return (GSL_FAILURE_ALREADYINITIALIZED);
    }

    gsl_driver.hal = (void *)kos_malloc(sizeof(gsl_hal_t));

    if (!gsl_driver.hal)
    {
        return (GSL_FAILURE_OUTOFMEM);
    }

    kos_memset(gsl_driver.hal, 0, sizeof(gsl_hal_t));


    // overlay structure on hal memory
    hal = (gsl_hal_t *) gsl_driver.hal;

#if 0
    // setup register space
    hal->z430_regspace.mmio_phys_base   = GSL_HAL_GPUBASE_REG_YDX;
    hal->z430_regspace.sizebytes        = GSL_HAL_SIZE_REG_YDX;
    hal->z430_regspace.mmio_virt_base   = (unsigned char*)ioremap(hal->z430_regspace.mmio_phys_base, hal->z430_regspace.sizebytes);

    if (hal->z430_regspace.mmio_virt_base == NULL) 
    {
        return (GSL_FAILURE_SYSTEMERROR);
    }

#ifdef GSL_HAL_DEBUG
    printk(KERN_INFO "%s: hal->z430_regspace.mmio_phys_base = 0x%p\n", __func__, (void*)hal->z430_regspace.mmio_phys_base);
    printk(KERN_INFO "%s: hal->z430_regspace.mmio_virt_base = 0x%p\n", __func__, (void*)hal->z430_regspace.mmio_virt_base);
    printk(KERN_INFO "%s: hal->z430_regspace.sizebytes      = 0x%08x\n", __func__, hal->z430_regspace.sizebytes);
#endif
#endif

    hal->z160_regspace.mmio_phys_base   = GSL_HAL_GPUBASE_REG_G12;
    hal->z160_regspace.sizebytes        = GSL_HAL_SIZE_REG_G12;
    hal->z160_regspace.mmio_virt_base   = (unsigned char*)ioremap(hal->z160_regspace.mmio_phys_base, hal->z160_regspace.sizebytes);

    if (hal->z160_regspace.mmio_virt_base == NULL) 
    {
        return (GSL_FAILURE_SYSTEMERROR);
    }

#ifdef GSL_HAL_DEBUG
    printk(KERN_INFO "%s: hal->z160_regspace.mmio_phys_base = 0x%p\n", __func__, (void*)hal->z160_regspace.mmio_phys_base);
    printk(KERN_INFO "%s: hal->z160_regspace.mmio_virt_base = 0x%p\n", __func__, (void*)hal->z160_regspace.mmio_virt_base);
    printk(KERN_INFO "%s: hal->z160_regspace.sizebytes      = 0x%08x\n", __func__, hal->z160_regspace.sizebytes);
#endif
    
#ifdef GSL_MMU_TRANSLATION_ENABLED
    totalsize = GSL_HAL_SHMEM_SIZE_EMEM2 + GSL_HAL_SHMEM_SIZE_PHYS;
    mem1size = GSL_HAL_SHMEM_SIZE_EMEM1;
#else
    totalsize = GSL_HAL_SHMEM_SIZE_EMEM1 + GSL_HAL_SHMEM_SIZE_EMEM2 + GSL_HAL_SHMEM_SIZE_PHYS;
	mem1size = GSL_HAL_SHMEM_SIZE_EMEM1;
#endif

    // allocate a single chunk of physical memory
    va = (unsigned int)dma_alloc_coherent(0, totalsize, (dma_addr_t *)&pa, GFP_DMA | GFP_KERNEL);
    
    if (va)
    {
        kos_memset((void *)va, 0, totalsize);
    
        hal->memchunk.mmio_virt_base = (void *)va;
        hal->memchunk.mmio_phys_base = pa;
        hal->memchunk.sizebytes      = totalsize;

#ifdef GSL_HAL_DEBUG
        printk(KERN_INFO "%s: hal->memchunk.mmio_phys_base = 0x%p\n", __func__, (void*)hal->memchunk.mmio_phys_base);
        printk(KERN_INFO "%s: hal->memchunk.mmio_virt_base = 0x%p\n", __func__, (void*)hal->memchunk.mmio_virt_base);
        printk(KERN_INFO "%s: hal->memchunk.sizebytes      = 0x%08x\n", __func__, hal->memchunk.sizebytes);
#endif
        
        hal->memspace[GSL_HAL_MEM2].mmio_virt_base = (void *) va;
        hal->memspace[GSL_HAL_MEM2].gpu_base       = pa;
        hal->memspace[GSL_HAL_MEM2].sizebytes      = GSL_HAL_SHMEM_SIZE_EMEM2;
        va += GSL_HAL_SHMEM_SIZE_EMEM2;
        pa += GSL_HAL_SHMEM_SIZE_EMEM2;

#ifdef GSL_HAL_DEBUG
        printk(KERN_INFO "%s: hal->memspace[GSL_HAL_MEM2].gpu_base       = 0x%p\n", __func__, (void*)hal->memspace[GSL_HAL_MEM2].gpu_base);
        printk(KERN_INFO "%s: hal->memspace[GSL_HAL_MEM2].mmio_virt_base = 0x%p\n", __func__, (void*)hal->memspace[GSL_HAL_MEM2].mmio_virt_base);
        printk(KERN_INFO "%s: hal->memspace[GSL_HAL_MEM2].sizebytes      = 0x%08x\n", __func__, hal->memspace[GSL_HAL_MEM2].sizebytes);
#endif
        
        hal->memspace[GSL_HAL_MEM3].mmio_virt_base  = (void *) va;
        hal->memspace[GSL_HAL_MEM3].gpu_base        = pa;
        hal->memspace[GSL_HAL_MEM3].sizebytes       = GSL_HAL_SHMEM_SIZE_PHYS;
        va += GSL_HAL_SHMEM_SIZE_PHYS;
        pa += GSL_HAL_SHMEM_SIZE_PHYS;

#ifdef GSL_HAL_DEBUG
        printk(KERN_INFO "%s: hal->memspace[GSL_HAL_MEM3].gpu_base       = 0x%p\n", __func__, (void*)hal->memspace[GSL_HAL_MEM3].gpu_base);
        printk(KERN_INFO "%s: hal->memspace[GSL_HAL_MEM3].mmio_virt_base = 0x%p\n", __func__, (void*)hal->memspace[GSL_HAL_MEM3].mmio_virt_base);
        printk(KERN_INFO "%s: hal->memspace[GSL_HAL_MEM3].sizebytes      = 0x%08x\n", __func__, hal->memspace[GSL_HAL_MEM3].sizebytes);
#endif
        
#ifdef GSL_MMU_TRANSLATION_ENABLED
		gsl_linux_map_init();
		hal->memspace[GSL_HAL_MEM1].mmio_virt_base = (void *)GSL_LINUX_MAP_RANGE_START;
		hal->memspace[GSL_HAL_MEM1].gpu_base       = GSL_LINUX_MAP_RANGE_START;
		hal->memspace[GSL_HAL_MEM1].sizebytes      = mem1size;
#else
        hal->memspace[GSL_HAL_MEM1].mmio_virt_base = (void *) va;
        hal->memspace[GSL_HAL_MEM1].gpu_base       = pa;
        hal->memspace[GSL_HAL_MEM1].sizebytes      = mem1size;
#endif

#ifdef GSL_HAL_DEBUG
        printk(KERN_INFO "%s: hal->memspace[GSL_HAL_MEM1].gpu_base       = 0x%p\n", __func__, (void*)hal->memspace[GSL_HAL_MEM1].gpu_base);
        printk(KERN_INFO "%s: hal->memspace[GSL_HAL_MEM1].mmio_virt_base = 0x%p\n", __func__, (void*)hal->memspace[GSL_HAL_MEM1].mmio_virt_base);
        printk(KERN_INFO "%s: hal->memspace[GSL_HAL_MEM1].sizebytes      = 0x%08x\n", __func__, hal->memspace[GSL_HAL_MEM1].sizebytes);
#endif
    }
    else
    {
        kgsl_hal_close();
        return (GSL_FAILURE_SYSTEMERROR);
    }

    return GSL_SUCCESS;
}

//----------------------------------------------------------------------------

KGSLHAL_API int 
kgsl_hal_close(void)
{
    gsl_hal_t  *hal;

    if (gsl_driver.hal)
    {
        // overlay structure on hal memory
        hal = (gsl_hal_t *) gsl_driver.hal;

        // unmap registers
#if 0
        if (hal->z430_regspace.mmio_virt_base)
        {
            iounmap(hal->z430_regspace.mmio_virt_base);
        }
#endif
        if (hal->z160_regspace.mmio_virt_base)
        {
            iounmap(hal->z160_regspace.mmio_virt_base);
        }
        
        // free physical block
        if (hal->memchunk.mmio_virt_base)
        {
            dma_free_coherent(0, hal->memchunk.sizebytes, hal->memchunk.mmio_virt_base, hal->memchunk.mmio_phys_base);
        }

#ifdef GSL_MMU_TRANSLATION_ENABLED
		gsl_linux_map_destroy();
#endif

        // release hal struct
        kos_memset(hal, 0, sizeof(gsl_hal_t));
        kos_free(gsl_driver.hal);
        gsl_driver.hal = NULL;
    }

    return (GSL_SUCCESS);
}

//----------------------------------------------------------------------------

KGSLHAL_API int
kgsl_hal_getshmemconfig(gsl_shmemconfig_t *config)
{ 
    int        status = GSL_FAILURE_DEVICEERROR;
    gsl_hal_t  *hal   = (gsl_hal_t *) gsl_driver.hal;

    kos_memset(config, 0, sizeof(gsl_shmemconfig_t));

    if (hal)
    {
        config->numapertures = GSL_SHMEM_MAX_APERTURES;

#ifdef GSL_MMU_TRANSLATION_ENABLED
        config->apertures[0].id        = GSL_APERTURE_MMU;
#else
        config->apertures[0].id        = GSL_APERTURE_EMEM;
#endif
        config->apertures[0].channel   = GSL_CHANNEL_1;
        config->apertures[0].hostbase  = (unsigned int)hal->memspace[GSL_HAL_MEM1].mmio_virt_base;
        config->apertures[0].gpubase   = hal->memspace[GSL_HAL_MEM1].gpu_base;
        config->apertures[0].sizebytes = hal->memspace[GSL_HAL_MEM1].sizebytes;

        config->apertures[1].id        = GSL_APERTURE_EMEM;
        config->apertures[1].channel   = GSL_CHANNEL_2;
        config->apertures[1].hostbase  = (unsigned int)hal->memspace[GSL_HAL_MEM2].mmio_virt_base;
        config->apertures[1].gpubase   = hal->memspace[GSL_HAL_MEM2].gpu_base;
        config->apertures[1].sizebytes = hal->memspace[GSL_HAL_MEM2].sizebytes;

        config->apertures[2].id        = GSL_APERTURE_PHYS;
        config->apertures[2].channel   = GSL_CHANNEL_1;
        config->apertures[2].hostbase  = (unsigned int)hal->memspace[GSL_HAL_MEM3].mmio_virt_base;
        config->apertures[2].gpubase   = hal->memspace[GSL_HAL_MEM3].gpu_base;
        config->apertures[2].sizebytes = hal->memspace[GSL_HAL_MEM3].sizebytes;

        status = GSL_SUCCESS;
    }

    return (status);
}

//----------------------------------------------------------------------------

KGSLHAL_API int
kgsl_hal_getdevconfig(gsl_deviceid_t device_id, gsl_devconfig_t *config)
{ 
    int        status = GSL_FAILURE_DEVICEERROR;
    gsl_hal_t  *hal   = (gsl_hal_t *) gsl_driver.hal;

    kos_memset(config, 0, sizeof(gsl_devconfig_t));

    if (hal)
    {
        switch (device_id)
        {
            case GSL_DEVICE_YAMATO:
            {
#if 0           
                mh_mmu_config_u      mmu_config   = {0};

                config->gmemspace.gpu_base        = 0;
                config->gmemspace.mmio_virt_base  = 0;
                config->gmemspace.mmio_phys_base  = 0;
                config->gmemspace.sizebytes       = GSL_HAL_SIZE_GMEM;

                config->regspace.gpu_base         = 0;
                config->regspace.mmio_virt_base   = (unsigned char *)hal->z430_regspace.mmio_virt_base;
                config->regspace.mmio_phys_base   = (unsigned int) hal->z430_regspace.mmio_phys_base;
                config->regspace.sizebytes        = GSL_HAL_SIZE_REG_YDX;

                mmu_config.f.mmu_enable           = 1;
#ifdef GSL_MMU_TRANSLATION_ENABLED
                mmu_config.f.split_mode_enable    = 0;
                mmu_config.f.rb_w_clnt_behavior   = 1;
                mmu_config.f.cp_w_clnt_behavior   = 1;
                mmu_config.f.cp_r0_clnt_behavior  = 1;
                mmu_config.f.cp_r1_clnt_behavior  = 1;
                mmu_config.f.cp_r2_clnt_behavior  = 1;
                mmu_config.f.cp_r3_clnt_behavior  = 1;
                mmu_config.f.cp_r4_clnt_behavior  = 1;
                mmu_config.f.vgt_r0_clnt_behavior = 1;
                mmu_config.f.vgt_r1_clnt_behavior = 1;
                mmu_config.f.tc_r_clnt_behavior   = 1;
                mmu_config.f.pa_w_clnt_behavior   = 1;
#endif // GSL_MMU_TRANSLATION_ENABLED

                config->mmu_config                = mmu_config.val;
#ifdef GSL_MMU_TRANSLATION_ENABLED
                config->va_base                   = hal->memspace[GSL_HAL_MEM1].gpu_base;
                config->va_range                  = hal->memspace[GSL_HAL_MEM1].sizebytes;
#else
                config->va_base                   = 0x00000000;
                config->va_range                  = 0x00000000;
#endif // GSL_MMU_TRANSLATION_ENABLED
        
                // turn off memory protection unit by setting acceptable physical address range to include all pages
                config->mpu_base                  = 0x00000000; // hal->memchunk.mmio_virt_base;
                config->mpu_range                 = 0xFFFFF000; // hal->memchunk.sizebytes;

                status = GSL_SUCCESS;
#endif
                break;
            }

            case GSL_DEVICE_G12:
            {
#ifndef GSL_MMU_TRANSLATION_ENABLED
                unsigned int mmu_config = {0};
#endif
                config->regspace.gpu_base       = 0;
                config->regspace.mmio_virt_base = (unsigned char *)hal->z160_regspace.mmio_virt_base;
                config->regspace.mmio_phys_base = (unsigned int) hal->z160_regspace.mmio_phys_base;
                config->regspace.sizebytes      = GSL_HAL_SIZE_REG_G12;

                

#ifdef GSL_MMU_TRANSLATION_ENABLED
                config->mmu_config              = 0x00555551;
                config->va_base                 = hal->memspace[GSL_HAL_MEM1].gpu_base;
                config->va_range                = hal->memspace[GSL_HAL_MEM1].sizebytes;
#else
                config->mmu_config              = mmu_config;
                config->va_base                 = 0x00000000;
                config->va_range                = 0x00000000;
#endif // GSL_MMU_TRANSLATION_ENABLED

                config->mpu_base                = 0x00000000; //(unsigned int) hal->memchunk.mmio_virt_base;
                config->mpu_range               = 0xFFFFF000; //hal->memchunk.sizebytes;

                status = GSL_SUCCESS;
                break;
            }

            default:

                break;
        }
    }

    return (status);
}

//----------------------------------------------------------------------------
//
// kgsl_hal_getchipid
//
// The proper platform method, build from RBBM_PERIPHIDx and RBBM_PATCH_RELEASE
//
KGSLHAL_API gsl_chipid_t
kgsl_hal_getchipid(gsl_deviceid_t device_id)
{
    return (0);
}

//----------------------------------------------------------------------------

KGSLHAL_API int 
kgsl_hal_getplatformtype(char *platform)
{
    if (gsl_driver.hal)
    {
        kos_strcpy(platform, GSL_HAL_PLATFORM);
        return (GSL_SUCCESS);
    }
    else
    {
        return (GSL_FAILURE_NOTINITIALIZED);
    }
}

//---------------------------------------------------------------------------

KGSLHAL_API int
kgsl_hal_setpowerstate(gsl_deviceid_t device_id, int state, unsigned int value)
{
	struct clk *gpu_clk = 0;

    // unreferenced formal parameters
    (void) value;
	
	switch (device_id)
	{
	case GSL_DEVICE_G12:
		gpu_clk = clk_get(0, "gpu2d_clk");
		break;
	default:
		return (GSL_FAILURE_DEVICEERROR);
	}
	
	if (!gpu_clk)
		return (GSL_FAILURE_DEVICEERROR);

    switch (state)
    {
	case GSL_PWRFLAGS_CLK_ON:
		break;
	case GSL_PWRFLAGS_POWER_ON:
		clk_enable(gpu_clk);
		kgsl_device_autogate_init(&gsl_driver.device[device_id-1]);
		break;
	case GSL_PWRFLAGS_CLK_OFF:
		break;
	case GSL_PWRFLAGS_POWER_OFF:
		if (kgsl_device_idle(device_id, GSL_TIMEOUT_DEFAULT) != GSL_SUCCESS)
		{
			return (GSL_FAILURE_DEVICEERROR);
		}
		kgsl_device_autogate_exit(&gsl_driver.device[device_id-1]);
		clk_disable(gpu_clk);
		break;
	default:
		break;
    }
	
    return (GSL_SUCCESS);
}

KGSLHAL_API int kgsl_clock(gsl_deviceid_t dev, int enable)
{
	struct clk *gpu_clk = 0;

	switch (dev)
	{
	case GSL_DEVICE_G12:
		gpu_clk = clk_get(0, "gpu2d_clk");
		break;
	default:
		printk(KERN_ERR "GPU device %d is invalid!\n", dev);
		return (GSL_FAILURE_DEVICEERROR);
	}

	if (IS_ERR(gpu_clk)) {
		printk(KERN_ERR "%s: GPU clock get failed!\n", __func__);
		return (GSL_FAILURE_DEVICEERROR);
	}

	if (enable) 
		clk_enable(gpu_clk);
	else
		clk_disable(gpu_clk);

	return (GSL_SUCCESS);
}