summaryrefslogtreecommitdiff
path: root/drivers/net/can/spi/mcp25xxfd/mcp25xxfd_can_rx.c
blob: a9e0da434e292a3e747217b7973fc1b09cd78b90 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
// SPDX-License-Identifier: GPL-2.0

/* CAN bus driver for Microchip 25XXFD CAN Controller with SPI Interface
 *
 * Copyright 2019 Martin Sperl <kernel@martin.sperl.org>
 *
 * Based on Microchip MCP251x CAN controller driver written by
 * David Vrabel, Copyright 2006 Arcom Control Systems Ltd.
 */

#include <linux/can/core.h>
#include <linux/can/dev.h>
#include <linux/device.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/netdevice.h>
#include <linux/skbuff.h>
#include <linux/slab.h>
#include <linux/spi/spi.h>

#include "mcp25xxfd_cmd.h"
#include "mcp25xxfd_can.h"
#include "mcp25xxfd_can_debugfs.h"
#include "mcp25xxfd_can_id.h"
#include "mcp25xxfd_can_priv.h"
#include "mcp25xxfd_can_rx.h"

/* module parameters */
static unsigned int rx_prefetch_bytes = -1;
module_param(rx_prefetch_bytes, uint, 0664);
MODULE_PARM_DESC(rx_prefetch_bytes,
		 "number of bytes to blindly prefetch when reading a rx-fifo");

static struct sk_buff *
mcp25xxfd_can_rx_submit_normal_frame(struct mcp25xxfd_can_priv *cpriv,
				     u32 id, u32 dlc, u8 **data)
{
	struct can_frame *frame;
	struct sk_buff *skb;

	/* allocate frame */
	skb = alloc_can_skb(cpriv->can.dev, &frame);
	if (!skb)
		return NULL;

	/* set id, dlc and flags */
	frame->can_id = id;
	frame->can_dlc = dlc;

	/* and set the pointer to data */
	*data = frame->data;

	return skb;
}

/* it is almost identical except for the type of the frame... */
static struct sk_buff *
mcp25xxfd_can_rx_submit_fd_frame(struct mcp25xxfd_can_priv *cpriv,
				 u32 id, u32 flags, u32 len, u8 **data)
{
	struct canfd_frame *frame;
	struct sk_buff *skb;

	/* allocate frame */
	skb = alloc_canfd_skb(cpriv->can.dev, &frame);
	if (!skb)
		return NULL;

	/* set id, dlc and flags */
	frame->can_id = id;
	frame->len = len;
	frame->flags |= flags;

	/* and set the pointer to data */
	*data = frame->data;

	return skb;
}

int mcp25xxfd_can_rx_submit_frame(struct mcp25xxfd_can_priv *cpriv, int fifo)
{
	struct net_device *net = cpriv->can.dev;
	int addr = cpriv->fifos.info[fifo].offset;
	struct mcp25xxfd_can_obj_rx *rx =
		(struct mcp25xxfd_can_obj_rx *)(cpriv->sram + addr);
	u8 *data = NULL;
	struct sk_buff *skb;
	u32 id, dlc, len, flags;

	/* compute the can_id */
	mcp25xxfd_can_id_from_mcp25xxfd(rx->id, rx->flags, &id);

	/* and dlc */
	dlc = (rx->flags & MCP25XXFD_CAN_OBJ_FLAGS_DLC_MASK) >>
		MCP25XXFD_CAN_OBJ_FLAGS_DLC_SHIFT;
	len = can_dlc2len(dlc);

	/* update stats */
	net->stats.rx_packets++;
	net->stats.rx_bytes += len;
	MCP25XXFD_DEBUGFS_INCR(cpriv->fifos.rx.dlc_usage[dlc]);
	if (rx->flags & MCP25XXFD_CAN_OBJ_FLAGS_FDF)
		MCP25XXFD_DEBUGFS_INCR(cpriv->fifos.rx.fd_count);

	/* add to rx_history */
	cpriv->rx_history.dlc[cpriv->rx_history.index] = dlc;
	cpriv->rx_history.brs[cpriv->rx_history.index] =
		(rx->flags & MCP25XXFD_CAN_OBJ_FLAGS_BRS) ? CANFD_BRS : 0;
	cpriv->rx_history.index++;
	if (cpriv->rx_history.index >= MCP25XXFD_CAN_RX_DLC_HISTORY_SIZE)
		cpriv->rx_history.index = 0;

	/* allocate the skb buffer */
	if (rx->flags & MCP25XXFD_CAN_OBJ_FLAGS_FDF) {
		flags = 0;
		flags |= (rx->flags & MCP25XXFD_CAN_OBJ_FLAGS_BRS) ?
			CANFD_BRS : 0;
		flags |= (rx->flags & MCP25XXFD_CAN_OBJ_FLAGS_ESI) ?
			CANFD_ESI : 0;
		skb = mcp25xxfd_can_rx_submit_fd_frame(cpriv, id, flags,
						       len, &data);
	} else {
		skb = mcp25xxfd_can_rx_submit_normal_frame(cpriv, id,
							   len, &data);
	}
	if (!skb) {
		netdev_err(net, "cannot allocate RX skb\n");
		net->stats.rx_dropped++;
		return -ENOMEM;
	}

	/* copy the payload data */
	memcpy(data, rx->data, len);

	/* and submit the frame */
	netif_rx_ni(skb);

	return 0;
}

static int mcp25xxfd_can_rx_read_frame(struct mcp25xxfd_can_priv *cpriv,
				       int fifo, int prefetch_bytes, bool read)
{
	struct spi_device *spi = cpriv->priv->spi;
	struct net_device *net = cpriv->can.dev;
	int addr = cpriv->fifos.info[fifo].offset;
	struct mcp25xxfd_can_obj_rx *rx =
		(struct mcp25xxfd_can_obj_rx *)(cpriv->sram + addr);
	int dlc;
	int len, ret;

	/* we read the header plus prefetch_bytes */
	if (read) {
		MCP25XXFD_DEBUGFS_INCR(cpriv->stats.rx_single_reads);
		ret = mcp25xxfd_cmd_readn(spi, MCP25XXFD_SRAM_ADDR(addr),
					  rx, sizeof(*rx) + prefetch_bytes);
		if (ret)
			return ret;
	}

	/* transpose the headers to CPU format */
	rx->id = le32_to_cpu(*(__le32 *)&rx->id);
	rx->flags = le32_to_cpu(*(__le32 *)&rx->flags);
	rx->ts = le32_to_cpu(*(__le32 *)&rx->ts);

	/* compute len */
	dlc = (rx->flags & MCP25XXFD_CAN_OBJ_FLAGS_DLC_MASK) >>
		MCP25XXFD_CAN_OBJ_FLAGS_DLC_SHIFT;
	len = can_dlc2len(min_t(int, dlc, (net->mtu == CANFD_MTU) ? 15 : 8));

	/* read the remaining data for canfd frames */
	if (read && len > prefetch_bytes) {
		/* update stats */
		MCP25XXFD_DEBUGFS_STATS_INCR(cpriv,
					     rx_reads_prefetched_too_few);
		MCP25XXFD_DEBUGFS_STATS_ADD(cpriv,
					    rx_reads_prefetched_too_few_bytes,
					    len - prefetch_bytes);
		/* here the extra portion reading data after prefetch */
		ret = mcp25xxfd_cmd_readn(spi,
					  MCP25XXFD_SRAM_ADDR(addr) +
					  sizeof(*rx) + prefetch_bytes,
					  &rx->data[prefetch_bytes],
					  len - prefetch_bytes);
		if (ret)
			return ret;
	}

	/* update stats */
	MCP25XXFD_DEBUGFS_INCR(cpriv->stats.rx_reads);
	if (len < prefetch_bytes) {
		MCP25XXFD_DEBUGFS_STATS_INCR(cpriv,
					     rx_reads_prefetched_too_many);
		MCP25XXFD_DEBUGFS_STATS_ADD(cpriv,
					    rx_reads_prefetched_too_many,
					    prefetch_bytes - len);
	}

	/* clear the rest of the buffer - just to be safe */
	memset(rx->data + len, 0, ((net->mtu == CANFD_MTU) ? 64 : 8) - len);

	/* increment the statistics counter */
	MCP25XXFD_DEBUGFS_INCR(cpriv->fifos.info[fifo].use_count);

	/* add the fifo to the process queues */
	mcp25xxfd_can_queue_frame(cpriv, fifo, rx->ts, true);

	/* and clear the interrupt flag for that fifo */
	return mcp25xxfd_cmd_write_mask(spi, MCP25XXFD_CAN_FIFOCON(fifo),
					MCP25XXFD_CAN_FIFOCON_FRESET,
					MCP25XXFD_CAN_FIFOCON_FRESET);
}

static int mcp25xxfd_can_read_rx_frame_bulk(struct mcp25xxfd_can_priv *cpriv,
					    int fstart,
					    int fend)
{
	struct net_device *net = cpriv->can.dev;
	int count = abs(fend - fstart) + 1;
	int flowest = min_t(int, fstart, fend);
	int addr = cpriv->fifos.info[flowest].offset;
	struct mcp25xxfd_can_obj_rx *rx =
		(struct mcp25xxfd_can_obj_rx *)(cpriv->sram + addr);
	int len = (sizeof(*rx) + ((net->mtu == CANFD_MTU) ? 64 : 8)) * count;
	int fifo, i, ret;

	/* update stats */
	MCP25XXFD_DEBUGFS_STATS_INCR(cpriv, rx_bulk_reads);
	i = min_t(int, MCP25XXFD_CAN_RX_BULK_READ_BINS - 1, count - 1);
	MCP25XXFD_DEBUGFS_STATS_INCR(cpriv, rx_bulk_read_sizes[i]);

	/* we read the header plus read_min data bytes */
	ret = mcp25xxfd_cmd_readn(cpriv->priv->spi, MCP25XXFD_SRAM_ADDR(addr),
				  rx, len);
	if (ret)
		return ret;

	/* now process all of them - no need to read... */
	for (fifo = fstart; count > 0; fifo ++, count--) {
		ret = mcp25xxfd_can_rx_read_frame(cpriv, fifo, 8, false);
		if (ret)
			return ret;
	}

	return 0;
}

/* predict dlc size based on historic behaviour */
static int mcp25xxfd_can_rx_predict_prefetch(struct mcp25xxfd_can_priv *cpriv)
{
	int dlc, i, top;
	u8 histo[16];

	/* if we have a prefetch set then use that one */
	if (rx_prefetch_bytes != -1)
		return min_t(int, rx_prefetch_bytes,
			     (cpriv->can.dev->mtu == CANFD_MTU) ? 64 : 8);

	/* memset */
	memset(histo, 0, sizeof(histo));

	/* for all others compute the histogram */
	for (i = 0; i < MCP25XXFD_CAN_RX_DLC_HISTORY_SIZE; i++)
		histo[cpriv->rx_history.dlc[i]]++;

	/* and now find the highest fit */
	for (i = (cpriv->can.dev->mtu == CANFD_MTU) ? 15 : 8, dlc = 8, top = 0;
	      i >= 0; i--) {
		if (top < histo[i]) {
			top = histo[i];
			dlc = i;
		}
	}

	/* compute length from dlc */
	cpriv->rx_history.predicted_len = can_dlc2len(dlc);

	/* return the predicted length */
	return cpriv->rx_history.predicted_len;
}

/* at least in can2.0 mode we can read multiple RX-fifos in one go
 * in case they are ajactent to each other and thus we can reduce
 * the number of spi messages produced and this improves spi-bus
 * usage efficiency.
 * In canFD mode this may also be possible, but would need some
 * statistics to decide if it is worth reading a full 64 bytes
 * in one go.
 * But those statistics can get used to predict how many bytes
 * to read together with the can header (which is fixed to 8 at
 * this very moment.
 *
 * notes on the rational here:
 * * Reading just the CAN header info takes:
 *   * bytes read
 *     *  2 bytes command+address
 *     * 12 bytes data (id, flags, timestamp)
 *   * so that is at the very least 112 SCK (= 14 byte * 8 SCK/1 byte)
 *     - on a Raspberry pi 3 for such short requests actually
 *       126 SCK (=14 byte * 9 SCK/1 byte)
 *   * some SPI framework overhead which is observed to be 5-10 us
 *     on a raspberry pi 3 (time between SCK and stop SCK start)
 *   * with an effective 17.85 MHz SPI clock on a RPI it takes in total:
 *     it takes 12us = 6us + 6us
 * * now reading 8 bytes of CAN data (can2.0) takes:
 *   * bytes read
 *     *  2 bytes command+address
 *     *  8 bytes data
 *   * so that is at the very least 80 SCK (= 10 byte * 8 SCK/1 byte)
 *     - on a Raspberry pi 3 for such short requests actually
 *       90 SCK (= 10 byte * 9 SCK/1 byte)
 *   * some SPI framework overhead which is observed to be 5-10 us
 *     on a raspberry pi 3 (time between SCK and stop SCK start)
 *   * with an effective 17.85 MHz SPI clock on a RPI it takes in total:
 *     it takes 11us = 5.0us + 6us
 * * now reading CAN header plus 8 bytes of CAN data (can2.0) takes:
 *   * bytes read
 *     *  2 bytes command+address
 *     * 20 bytes data
 *   * so that is at the very least 176 SCK (= 22 byte * 8 SCK/1 byte)
 *     - on a Raspberry pi 3 for such short requests actually
 *       198 SCK (= 22 byte * 9 SCK/1 byte)
 *   * some SPI framework overhead which is observed to be 5-10 us
 *     on a raspberry pi 3 (time between SCK and stop SCK start)
 *   * with an effective 17.85 MHz SPI clock on a RPI it takes in total:
 *     it takes 17.1us = 11.1us + 6us
 *   * this is faster than the 2 individual SPI transfers for header
 *     and data which is in total 23us
 *     * this is even true for the case where we only have a single
 *       data byte (DLC=1) - the time here is 19.5us on a RPI3
 *     * the only time where we are less efficient is for the DLC=0 case.
 *       but the assumption here is that this is a rare case
 * To put it into perspective here the full table for a RPI3:
 * LE 2m  pr0 pr1 pr2 pr3 pr4 pr5  pr6  pr7  pr8 pr12 pr16 pr20 pr24 pr32 pr48
 *                                                                         pr64
 *  0  7.1 7.1
 *  1 14.6    7.6 8.1 8.6 9.1 9.6 10.1 10.6 11.1 13.1
 *  2 15.1        8.1 8.6 9.1 9.6 10.1 10.6 11.1 13.1
 *  3 15.6            8.6 9.1 9.6 10.1 10.6 11.1 13.1 15.1
 *  4 16.1                9.1 9.6 10.1 10.6 11.1 13.1 15.1
 *  5 16.6                    9.6 10.1 10.6 11.1 13.1 15.1
 *  6 17.1                        10.1 10.6 11.1 13.1 15.1
 *  7 17.6                             10.6 11.1 13.1 15.1 17.1
 *  8 18.1                                  11.1 13.1 15.1 17.1
 * 12 20.1                                       13.1 15.1 17.1 19.2
 * 16 22.1                                            15.1 17.1 19.2
 * 20 24.1                                                 17.1 19.2 23.2
 * 24 26.2                                                      19.2 23.2
 * 32 30.2                                                           23.2
 * 48 38.3                                                                31.3
 * 64 46.3                                                                 39.3
 * (Parameters: SPI Clock=17.8MHz, SCK/byte=9, overhead=6us)
 * Legend:
 *   LE = length,
 *   2m    = 2 SPI messages (header+data - except for LEN=0, only header)
 *  prX/pX = prefecth length times (only shown when < 2m and Len >= Prefetch)
 *
 * The diagonal schows the "optimal" time when the size of the Can frame would
 * be known ahead of time - i.e if it would be possible to define RX reception
 * filters based on can DLC values
 *
 * So for any Can frame except for LEN=0 the prefetch data solution is
 * better for prefetch of data=12 for CanFD.
 *
 * Here another table showing the optimal prefetch limits for SPI speeds
 * vs overhead_us at 8 or 9 SCLK/byte
 *
 * MHZ  2us@8   2us@9   4us@8   4us@9   6us@8   6us@9   8us@8   8us@9
 * 10.0 8b***   8b***   8b      8b*     12b**   8b*     12b     12b*
 * 12.5 8b**    8b***   12b***  8b      12b     12b*    16b*    16b**
 * 15.0 8b**    8b**    12b**   12b***  16b**   12b     20b**   16b
 * 17.5 8b*     8b*     12b*    12b**   16b     16b**   20b     20b**
 * 20.0 8b      8b*     16b***  12b*    20b**   16b     24b*    20b
 * (a * signifies not a full match, but for any length > count(*))
 *
 * So 8 bytes prefetch seems to be a very good tradeoff for can frame
 * except for DLC/LEN=0 frames.
 * The question here is mainly: how many frames do we have with DLC=0
 * vs all others.
 *
 * With some statistics of recent CAN frames this may be set dynamically
 * in the future.
 *
 * For this to work efficiently we would also need an estimate on
 * the SPI framework overhead, which is a function of the spi-bus-driver
 * implementation details, CPU type and speed as well as system load.
 * Also the effective SPI-clock speed is needed as well as the
 * number of spi clock cycles it takes for a single byte to get transferred
 * The bcm283x SOC for example pauses the SPI clock one cycle after
 * every byte it sends unless the data is fed to the controller by DMA.
 * (but for short transfers DMA mapping is very expensive and not worth
 * the effort. PIO and - in some situations - polling is used instead to
 * reduce the number of interrupts and the need for thread scheduling as
 * much as possible)
 *
 * This also means that for can2.0 only configured interfaces
 * reading multiple rx fifos is a realistic option of optimization
 */

static int mcp25xxfd_can_rx_read_single_frames(struct mcp25xxfd_can_priv *cpriv,
					       int prefetch)
{
	int i, f, ret;

	/* loop all frames */
	for (i = 0, f = cpriv->fifos.rx.start; i < cpriv->fifos.rx.count;
	     i++, f++) {
		if (cpriv->status.rxif & BIT(f)) {
			/* read the frame */
			ret = mcp25xxfd_can_rx_read_frame(cpriv, f,
							  prefetch, true);
			if (ret)
				return ret;
		}
	}

	return 0;
}

static int mcp25xxfd_can_rx_read_bulk_frames(struct mcp25xxfd_can_priv *cpriv)
{
	int i, start, end;
	int ret;

	/* iterate over fifos trying to find fifos next to each other */
	for (i = 0, start = cpriv->fifos.rx.start, end = start;
	     i < cpriv->fifos.rx.count; i++, end++, start = end) {
		/* if bit is not set then continue */
		if (!(cpriv->status.rxif & BIT(start)))
			continue;
		/* find the last fifo with a bit set in sequence */
		for (end = start; cpriv->status.rxif & BIT(end + 1); end++)
			;
		/* and now read those fifos in bulk */
		ret = mcp25xxfd_can_read_rx_frame_bulk(cpriv, start, end);
		if (ret)
			return ret;
	}

	return 0;
}

static int mcp25xxfd_can_rx_read_fd_frames(struct mcp25xxfd_can_priv *cpriv)
{
	int i, count_dlc15, count_brs, prefetch;

	/* get a prediction on prefetch */
	prefetch = mcp25xxfd_can_rx_predict_prefetch(cpriv);

	/* if the prefetch is < 64 then just read single */
	if (prefetch < 64)
		return mcp25xxfd_can_rx_read_single_frames(cpriv, prefetch);

	/* check if we have mostly brs frames of those DLC=15 frames */
	for (i = 0, count_brs = 0, count_dlc15 = 0;
	     i < MCP25XXFD_CAN_RX_DLC_HISTORY_SIZE; i++)
		if (cpriv->rx_history.dlc[i] == 15) {
			count_dlc15++;
			if (cpriv->rx_history.brs[i])
				count_brs++;
		}

	/* if we have at least 33% brs frames then run bulk */
	if (count_brs * 3 >= count_dlc15)
		return mcp25xxfd_can_rx_read_bulk_frames(cpriv);
	else
		return mcp25xxfd_can_rx_read_single_frames(cpriv, prefetch);
}

static int mcp25xxfd_can_rx_read_frames(struct mcp25xxfd_can_priv *cpriv)
{
	if (cpriv->can.dev->mtu == CANFD_MTU)
		return mcp25xxfd_can_rx_read_fd_frames(cpriv);
	else
		return mcp25xxfd_can_rx_read_bulk_frames(cpriv);
}

int mcp25xxfd_can_rx_handle_int_rxif(struct mcp25xxfd_can_priv *cpriv)
{
	if (!cpriv->status.rxif)
		return 0;

	MCP25XXFD_DEBUGFS_STATS_INCR(cpriv, int_rx_count);

	/* read all the fifos */
	return mcp25xxfd_can_rx_read_frames(cpriv);
}

int mcp25xxfd_can_rx_handle_int_rxovif(struct mcp25xxfd_can_priv *cpriv)
{
	u32 mask = MCP25XXFD_CAN_FIFOSTA_RXOVIF;
	int ret, i, reg;

	if (!cpriv->status.rxovif)
		return 0;

	MCP25XXFD_DEBUGFS_STATS_INCR(cpriv, int_rxov_count);

	/* clear all fifos that have an overflow bit set */
	for (i = 0; i < 32; i++) {
		if (cpriv->status.rxovif & BIT(i)) {
			/* clear fifo status */
			reg = MCP25XXFD_CAN_FIFOSTA(i);
			ret = mcp25xxfd_cmd_write_mask(cpriv->priv->spi,
						       reg, 0, mask);
			if (ret)
				return ret;

			/* update statistics */
			cpriv->can.dev->stats.rx_over_errors++;
			cpriv->can.dev->stats.rx_errors++;

			/* and prepare ERROR FRAME */
			cpriv->error_frame.id |= CAN_ERR_CRTL;
			cpriv->error_frame.data[1] |=
				CAN_ERR_CRTL_RX_OVERFLOW;
		}
	}

	return 0;
}