/* * Copyright (c) 2012 Linutronix GmbH * Author: Richard Weinberger * * SPDX-License-Identifier: GPL-2.0+ * */ #ifndef __UBOOT__ #include #else #include #include #include #endif #include #include #include "ubi.h" /** * ubi_calc_fm_size - calculates the fastmap size in bytes for an UBI device. * @ubi: UBI device description object */ size_t ubi_calc_fm_size(struct ubi_device *ubi) { size_t size; size = sizeof(struct ubi_fm_sb) + \ sizeof(struct ubi_fm_hdr) + \ sizeof(struct ubi_fm_scan_pool) + \ sizeof(struct ubi_fm_scan_pool) + \ (ubi->peb_count * sizeof(struct ubi_fm_ec)) + \ (sizeof(struct ubi_fm_eba) + \ (ubi->peb_count * sizeof(__be32))) + \ sizeof(struct ubi_fm_volhdr) * UBI_MAX_VOLUMES; return roundup(size, ubi->leb_size); } /** * new_fm_vhdr - allocate a new volume header for fastmap usage. * @ubi: UBI device description object * @vol_id: the VID of the new header * * Returns a new struct ubi_vid_hdr on success. * NULL indicates out of memory. */ static struct ubi_vid_hdr *new_fm_vhdr(struct ubi_device *ubi, int vol_id) { struct ubi_vid_hdr *new; new = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL); if (!new) goto out; new->vol_type = UBI_VID_DYNAMIC; new->vol_id = cpu_to_be32(vol_id); /* UBI implementations without fastmap support have to delete the * fastmap. */ new->compat = UBI_COMPAT_DELETE; out: return new; } /** * add_aeb - create and add a attach erase block to a given list. * @ai: UBI attach info object * @list: the target list * @pnum: PEB number of the new attach erase block * @ec: erease counter of the new LEB * @scrub: scrub this PEB after attaching * * Returns 0 on success, < 0 indicates an internal error. */ static int add_aeb(struct ubi_attach_info *ai, struct list_head *list, int pnum, int ec, int scrub) { struct ubi_ainf_peb *aeb; aeb = kmem_cache_alloc(ai->aeb_slab_cache, GFP_KERNEL); if (!aeb) return -ENOMEM; aeb->pnum = pnum; aeb->ec = ec; aeb->lnum = -1; aeb->scrub = scrub; aeb->copy_flag = aeb->sqnum = 0; ai->ec_sum += aeb->ec; ai->ec_count++; if (ai->max_ec < aeb->ec) ai->max_ec = aeb->ec; if (ai->min_ec > aeb->ec) ai->min_ec = aeb->ec; list_add_tail(&aeb->u.list, list); return 0; } /** * add_vol - create and add a new volume to ubi_attach_info. * @ai: ubi_attach_info object * @vol_id: VID of the new volume * @used_ebs: number of used EBS * @data_pad: data padding value of the new volume * @vol_type: volume type * @last_eb_bytes: number of bytes in the last LEB * * Returns the new struct ubi_ainf_volume on success. * NULL indicates an error. */ static struct ubi_ainf_volume *add_vol(struct ubi_attach_info *ai, int vol_id, int used_ebs, int data_pad, u8 vol_type, int last_eb_bytes) { struct ubi_ainf_volume *av; struct rb_node **p = &ai->volumes.rb_node, *parent = NULL; while (*p) { parent = *p; av = rb_entry(parent, struct ubi_ainf_volume, rb); if (vol_id > av->vol_id) p = &(*p)->rb_left; else p = &(*p)->rb_right; } av = kmalloc(sizeof(struct ubi_ainf_volume), GFP_KERNEL); if (!av) goto out; av->highest_lnum = av->leb_count = av->used_ebs = 0; av->vol_id = vol_id; av->data_pad = data_pad; av->last_data_size = last_eb_bytes; av->compat = 0; av->vol_type = vol_type; av->root = RB_ROOT; if (av->vol_type == UBI_STATIC_VOLUME) av->used_ebs = used_ebs; dbg_bld("found volume (ID %i)", vol_id); rb_link_node(&av->rb, parent, p); rb_insert_color(&av->rb, &ai->volumes); out: return av; } /** * assign_aeb_to_av - assigns a SEB to a given ainf_volume and removes it * from it's original list. * @ai: ubi_attach_info object * @aeb: the to be assigned SEB * @av: target scan volume */ static void assign_aeb_to_av(struct ubi_attach_info *ai, struct ubi_ainf_peb *aeb, struct ubi_ainf_volume *av) { struct ubi_ainf_peb *tmp_aeb; struct rb_node **p = &ai->volumes.rb_node, *parent = NULL; p = &av->root.rb_node; while (*p) { parent = *p; tmp_aeb = rb_entry(parent, struct ubi_ainf_peb, u.rb); if (aeb->lnum != tmp_aeb->lnum) { if (aeb->lnum < tmp_aeb->lnum) p = &(*p)->rb_left; else p = &(*p)->rb_right; continue; } else break; } list_del(&aeb->u.list); av->leb_count++; rb_link_node(&aeb->u.rb, parent, p); rb_insert_color(&aeb->u.rb, &av->root); } /** * update_vol - inserts or updates a LEB which was found a pool. * @ubi: the UBI device object * @ai: attach info object * @av: the volume this LEB belongs to * @new_vh: the volume header derived from new_aeb * @new_aeb: the AEB to be examined * * Returns 0 on success, < 0 indicates an internal error. */ static int update_vol(struct ubi_device *ubi, struct ubi_attach_info *ai, struct ubi_ainf_volume *av, struct ubi_vid_hdr *new_vh, struct ubi_ainf_peb *new_aeb) { struct rb_node **p = &av->root.rb_node, *parent = NULL; struct ubi_ainf_peb *aeb, *victim; int cmp_res; while (*p) { parent = *p; aeb = rb_entry(parent, struct ubi_ainf_peb, u.rb); if (be32_to_cpu(new_vh->lnum) != aeb->lnum) { if (be32_to_cpu(new_vh->lnum) < aeb->lnum) p = &(*p)->rb_left; else p = &(*p)->rb_right; continue; } /* This case can happen if the fastmap gets written * because of a volume change (creation, deletion, ..). * Then a PEB can be within the persistent EBA and the pool. */ if (aeb->pnum == new_aeb->pnum) { ubi_assert(aeb->lnum == new_aeb->lnum); kmem_cache_free(ai->aeb_slab_cache, new_aeb); return 0; } cmp_res = ubi_compare_lebs(ubi, aeb, new_aeb->pnum, new_vh); if (cmp_res < 0) return cmp_res; /* new_aeb is newer */ if (cmp_res & 1) { victim = kmem_cache_alloc(ai->aeb_slab_cache, GFP_KERNEL); if (!victim) return -ENOMEM; victim->ec = aeb->ec; victim->pnum = aeb->pnum; list_add_tail(&victim->u.list, &ai->erase); if (av->highest_lnum == be32_to_cpu(new_vh->lnum)) av->last_data_size = \ be32_to_cpu(new_vh->data_size); dbg_bld("vol %i: AEB %i's PEB %i is the newer", av->vol_id, aeb->lnum, new_aeb->pnum); aeb->ec = new_aeb->ec; aeb->pnum = new_aeb->pnum; aeb->copy_flag = new_vh->copy_flag; aeb->scrub = new_aeb->scrub; kmem_cache_free(ai->aeb_slab_cache, new_aeb); /* new_aeb is older */ } else { dbg_bld("vol %i: AEB %i's PEB %i is old, dropping it", av->vol_id, aeb->lnum, new_aeb->pnum); list_add_tail(&new_aeb->u.list, &ai->erase); } return 0; } /* This LEB is new, let's add it to the volume */ if (av->highest_lnum <= be32_to_cpu(new_vh->lnum)) { av->highest_lnum = be32_to_cpu(new_vh->lnum); av->last_data_size = be32_to_cpu(new_vh->data_size); } if (av->vol_type == UBI_STATIC_VOLUME) av->used_ebs = be32_to_cpu(new_vh->used_ebs); av->leb_count++; rb_link_node(&new_aeb->u.rb, parent, p); rb_insert_color(&new_aeb->u.rb, &av->root); return 0; } /** * process_pool_aeb - we found a non-empty PEB in a pool. * @ubi: UBI device object * @ai: attach info object * @new_vh: the volume header derived from new_aeb * @new_aeb: the AEB to be examined * * Returns 0 on success, < 0 indicates an internal error. */ static int process_pool_aeb(struct ubi_device *ubi, struct ubi_attach_info *ai, struct ubi_vid_hdr *new_vh, struct ubi_ainf_peb *new_aeb) { struct ubi_ainf_volume *av, *tmp_av = NULL; struct rb_node **p = &ai->volumes.rb_node, *parent = NULL; int found = 0; if (be32_to_cpu(new_vh->vol_id) == UBI_FM_SB_VOLUME_ID || be32_to_cpu(new_vh->vol_id) == UBI_FM_DATA_VOLUME_ID) { kmem_cache_free(ai->aeb_slab_cache, new_aeb); return 0; } /* Find the volume this SEB belongs to */ while (*p) { parent = *p; tmp_av = rb_entry(parent, struct ubi_ainf_volume, rb); if (be32_to_cpu(new_vh->vol_id) > tmp_av->vol_id) p = &(*p)->rb_left; else if (be32_to_cpu(new_vh->vol_id) < tmp_av->vol_id) p = &(*p)->rb_right; else { found = 1; break; } } if (found) av = tmp_av; else { ubi_err("orphaned volume in fastmap pool!"); kmem_cache_free(ai->aeb_slab_cache, new_aeb); return UBI_BAD_FASTMAP; } ubi_assert(be32_to_cpu(new_vh->vol_id) == av->vol_id); return update_vol(ubi, ai, av, new_vh, new_aeb); } /** * unmap_peb - unmap a PEB. * If fastmap detects a free PEB in the pool it has to check whether * this PEB has been unmapped after writing the fastmap. * * @ai: UBI attach info object * @pnum: The PEB to be unmapped */ static void unmap_peb(struct ubi_attach_info *ai, int pnum) { struct ubi_ainf_volume *av; struct rb_node *node, *node2; struct ubi_ainf_peb *aeb; for (node = rb_first(&ai->volumes); node; node = rb_next(node)) { av = rb_entry(node, struct ubi_ainf_volume, rb); for (node2 = rb_first(&av->root); node2; node2 = rb_next(node2)) { aeb = rb_entry(node2, struct ubi_ainf_peb, u.rb); if (aeb->pnum == pnum) { rb_erase(&aeb->u.rb, &av->root); av->leb_count--; kmem_cache_free(ai->aeb_slab_cache, aeb); return; } } } } /** * scan_pool - scans a pool for changed (no longer empty PEBs). * @ubi: UBI device object * @ai: attach info object * @pebs: an array of all PEB numbers in the to be scanned pool * @pool_size: size of the pool (number of entries in @pebs) * @max_sqnum: pointer to the maximal sequence number * @free: list of PEBs which are most likely free (and go into @ai->free) * * Returns 0 on success, if the pool is unusable UBI_BAD_FASTMAP is returned. * < 0 indicates an internal error. */ #ifndef __UBOOT__ static int scan_pool(struct ubi_device *ubi, struct ubi_attach_info *ai, int *pebs, int pool_size, unsigned long long *max_sqnum, struct list_head *freef) #else static int scan_pool(struct ubi_device *ubi, struct ubi_attach_info *ai, __be32 *pebs, int pool_size, unsigned long long *max_sqnum, struct list_head *freef) #endif { struct ubi_vid_hdr *vh; struct ubi_ec_hdr *ech; struct ubi_ainf_peb *new_aeb; int i, pnum, err, ret = 0; ech = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL); if (!ech) return -ENOMEM; vh = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL); if (!vh) { kfree(ech); return -ENOMEM; } dbg_bld("scanning fastmap pool: size = %i", pool_size); /* * Now scan all PEBs in the pool to find changes which have been made * after the creation of the fastmap */ for (i = 0; i < pool_size; i++) { int scrub = 0; int image_seq; pnum = be32_to_cpu(pebs[i]); if (ubi_io_is_bad(ubi, pnum)) { ubi_err("bad PEB in fastmap pool!"); ret = UBI_BAD_FASTMAP; goto out; } err = ubi_io_read_ec_hdr(ubi, pnum, ech, 0); if (err && err != UBI_IO_BITFLIPS) { ubi_err("unable to read EC header! PEB:%i err:%i", pnum, err); ret = err > 0 ? UBI_BAD_FASTMAP : err; goto out; } else if (err == UBI_IO_BITFLIPS) scrub = 1; /* * Older UBI implementations have image_seq set to zero, so * we shouldn't fail if image_seq == 0. */ image_seq = be32_to_cpu(ech->image_seq); if (image_seq && (image_seq != ubi->image_seq)) { ubi_err("bad image seq: 0x%x, expected: 0x%x", be32_to_cpu(ech->image_seq), ubi->image_seq); ret = UBI_BAD_FASTMAP; goto out; } err = ubi_io_read_vid_hdr(ubi, pnum, vh, 0); if (err == UBI_IO_FF || err == UBI_IO_FF_BITFLIPS) { unsigned long long ec = be64_to_cpu(ech->ec); unmap_peb(ai, pnum); dbg_bld("Adding PEB to free: %i", pnum); if (err == UBI_IO_FF_BITFLIPS) add_aeb(ai, freef, pnum, ec, 1); else add_aeb(ai, freef, pnum, ec, 0); continue; } else if (err == 0 || err == UBI_IO_BITFLIPS) { dbg_bld("Found non empty PEB:%i in pool", pnum); if (err == UBI_IO_BITFLIPS) scrub = 1; new_aeb = kmem_cache_alloc(ai->aeb_slab_cache, GFP_KERNEL); if (!new_aeb) { ret = -ENOMEM; goto out; } new_aeb->ec = be64_to_cpu(ech->ec); new_aeb->pnum = pnum; new_aeb->lnum = be32_to_cpu(vh->lnum); new_aeb->sqnum = be64_to_cpu(vh->sqnum); new_aeb->copy_flag = vh->copy_flag; new_aeb->scrub = scrub; if (*max_sqnum < new_aeb->sqnum) *max_sqnum = new_aeb->sqnum; err = process_pool_aeb(ubi, ai, vh, new_aeb); if (err) { ret = err > 0 ? UBI_BAD_FASTMAP : err; goto out; } } else { /* We are paranoid and fall back to scanning mode */ ubi_err("fastmap pool PEBs contains damaged PEBs!"); ret = err > 0 ? UBI_BAD_FASTMAP : err; goto out; } } out: ubi_free_vid_hdr(ubi, vh); kfree(ech); return ret; } /** * count_fastmap_pebs - Counts the PEBs found by fastmap. * @ai: The UBI attach info object */ static int count_fastmap_pebs(struct ubi_attach_info *ai) { struct ubi_ainf_peb *aeb; struct ubi_ainf_volume *av; struct rb_node *rb1, *rb2; int n = 0; list_for_each_entry(aeb, &ai->erase, u.list) n++; list_for_each_entry(aeb, &ai->free, u.list) n++; ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb) n++; return n; } /** * ubi_attach_fastmap - creates ubi_attach_info from a fastmap. * @ubi: UBI device object * @ai: UBI attach info object * @fm: the fastmap to be attached * * Returns 0 on success, UBI_BAD_FASTMAP if the found fastmap was unusable. * < 0 indicates an internal error. */ static int ubi_attach_fastmap(struct ubi_device *ubi, struct ubi_attach_info *ai, struct ubi_fastmap_layout *fm) { struct list_head used, freef; struct ubi_ainf_volume *av; struct ubi_ainf_peb *aeb, *tmp_aeb, *_tmp_aeb; struct ubi_fm_sb *fmsb; struct ubi_fm_hdr *fmhdr; struct ubi_fm_scan_pool *fmpl1, *fmpl2; struct ubi_fm_ec *fmec; struct ubi_fm_volhdr *fmvhdr; struct ubi_fm_eba *fm_eba; int ret, i, j, pool_size, wl_pool_size; size_t fm_pos = 0, fm_size = ubi->fm_size; unsigned long long max_sqnum = 0; void *fm_raw = ubi->fm_buf; INIT_LIST_HEAD(&used); INIT_LIST_HEAD(&freef); ai->min_ec = UBI_MAX_ERASECOUNTER; fmsb = (struct ubi_fm_sb *)(fm_raw); ai->max_sqnum = fmsb->sqnum; fm_pos += sizeof(struct ubi_fm_sb); if (fm_pos >= fm_size) goto fail_bad; fmhdr = (struct ubi_fm_hdr *)(fm_raw + fm_pos); fm_pos += sizeof(*fmhdr); if (fm_pos >= fm_size) goto fail_bad; if (be32_to_cpu(fmhdr->magic) != UBI_FM_HDR_MAGIC) { ubi_err("bad fastmap header magic: 0x%x, expected: 0x%x", be32_to_cpu(fmhdr->magic), UBI_FM_HDR_MAGIC); goto fail_bad; } fmpl1 = (struct ubi_fm_scan_pool *)(fm_raw + fm_pos); fm_pos += sizeof(*fmpl1); if (fm_pos >= fm_size) goto fail_bad; if (be32_to_cpu(fmpl1->magic) != UBI_FM_POOL_MAGIC) { ubi_err("bad fastmap pool magic: 0x%x, expected: 0x%x", be32_to_cpu(fmpl1->magic), UBI_FM_POOL_MAGIC); goto fail_bad; } fmpl2 = (struct ubi_fm_scan_pool *)(fm_raw + fm_pos); fm_pos += sizeof(*fmpl2); if (fm_pos >= fm_size) goto fail_bad; if (be32_to_cpu(fmpl2->magic) != UBI_FM_POOL_MAGIC) { ubi_err("bad fastmap pool magic: 0x%x, expected: 0x%x", be32_to_cpu(fmpl2->magic), UBI_FM_POOL_MAGIC); goto fail_bad; } pool_size = be16_to_cpu(fmpl1->size); wl_pool_size = be16_to_cpu(fmpl2->size); fm->max_pool_size = be16_to_cpu(fmpl1->max_size); fm->max_wl_pool_size = be16_to_cpu(fmpl2->max_size); if (pool_size > UBI_FM_MAX_POOL_SIZE || pool_size < 0) { ubi_err("bad pool size: %i", pool_size); goto fail_bad; } if (wl_pool_size > UBI_FM_MAX_POOL_SIZE || wl_pool_size < 0) { ubi_err("bad WL pool size: %i", wl_pool_size); goto fail_bad; } if (fm->max_pool_size > UBI_FM_MAX_POOL_SIZE || fm->max_pool_size < 0) { ubi_err("bad maximal pool size: %i", fm->max_pool_size); goto fail_bad; } if (fm->max_wl_pool_size > UBI_FM_MAX_POOL_SIZE || fm->max_wl_pool_size < 0) { ubi_err("bad maximal WL pool size: %i", fm->max_wl_pool_size); goto fail_bad; } /* read EC values from free list */ for (i = 0; i < be32_to_cpu(fmhdr->free_peb_count); i++) { fmec = (struct ubi_fm_ec *)(fm_raw + fm_pos); fm_pos += sizeof(*fmec); if (fm_pos >= fm_size) goto fail_bad; add_aeb(ai, &ai->free, be32_to_cpu(fmec->pnum), be32_to_cpu(fmec->ec), 0); } /* read EC values from used list */ for (i = 0; i < be32_to_cpu(fmhdr->used_peb_count); i++) { fmec = (struct ubi_fm_ec *)(fm_raw + fm_pos); fm_pos += sizeof(*fmec); if (fm_pos >= fm_size) goto fail_bad; add_aeb(ai, &used, be32_to_cpu(fmec->pnum), be32_to_cpu(fmec->ec), 0); } /* read EC values from scrub list */ for (i = 0; i < be32_to_cpu(fmhdr->scrub_peb_count); i++) { fmec = (struct ubi_fm_ec *)(fm_raw + fm_pos); fm_pos += sizeof(*fmec); if (fm_pos >= fm_size) goto fail_bad; add_aeb(ai, &used, be32_to_cpu(fmec->pnum), be32_to_cpu(fmec->ec), 1); } /* read EC values from erase list */ for (i = 0; i < be32_to_cpu(fmhdr->erase_peb_count); i++) { fmec = (struct ubi_fm_ec *)(fm_raw + fm_pos); fm_pos += sizeof(*fmec); if (fm_pos >= fm_size) goto fail_bad; add_aeb(ai, &ai->erase, be32_to_cpu(fmec->pnum), be32_to_cpu(fmec->ec), 1); } ai->mean_ec = div_u64(ai->ec_sum, ai->ec_count); ai->bad_peb_count = be32_to_cpu(fmhdr->bad_peb_count); /* Iterate over all volumes and read their EBA table */ for (i = 0; i < be32_to_cpu(fmhdr->vol_count); i++) { fmvhdr = (struct ubi_fm_volhdr *)(fm_raw + fm_pos); fm_pos += sizeof(*fmvhdr); if (fm_pos >= fm_size) goto fail_bad; if (be32_to_cpu(fmvhdr->magic) != UBI_FM_VHDR_MAGIC) { ubi_err("bad fastmap vol header magic: 0x%x, " \ "expected: 0x%x", be32_to_cpu(fmvhdr->magic), UBI_FM_VHDR_MAGIC); goto fail_bad; } av = add_vol(ai, be32_to_cpu(fmvhdr->vol_id), be32_to_cpu(fmvhdr->used_ebs), be32_to_cpu(fmvhdr->data_pad), fmvhdr->vol_type, be32_to_cpu(fmvhdr->last_eb_bytes)); if (!av) goto fail_bad; ai->vols_found++; if (ai->highest_vol_id < be32_to_cpu(fmvhdr->vol_id)) ai->highest_vol_id = be32_to_cpu(fmvhdr->vol_id); fm_eba = (struct ubi_fm_eba *)(fm_raw + fm_pos); fm_pos += sizeof(*fm_eba); fm_pos += (sizeof(__be32) * be32_to_cpu(fm_eba->reserved_pebs)); if (fm_pos >= fm_size) goto fail_bad; if (be32_to_cpu(fm_eba->magic) != UBI_FM_EBA_MAGIC) { ubi_err("bad fastmap EBA header magic: 0x%x, " \ "expected: 0x%x", be32_to_cpu(fm_eba->magic), UBI_FM_EBA_MAGIC); goto fail_bad; } for (j = 0; j < be32_to_cpu(fm_eba->reserved_pebs); j++) { int pnum = be32_to_cpu(fm_eba->pnum[j]); if ((int)be32_to_cpu(fm_eba->pnum[j]) < 0) continue; aeb = NULL; list_for_each_entry(tmp_aeb, &used, u.list) { if (tmp_aeb->pnum == pnum) { aeb = tmp_aeb; break; } } if (!aeb) { ubi_err("PEB %i is in EBA but not in used list", pnum); goto fail_bad; } aeb->lnum = j; if (av->highest_lnum <= aeb->lnum) av->highest_lnum = aeb->lnum; assign_aeb_to_av(ai, aeb, av); dbg_bld("inserting PEB:%i (LEB %i) to vol %i", aeb->pnum, aeb->lnum, av->vol_id); } } ret = scan_pool(ubi, ai, fmpl1->pebs, pool_size, &max_sqnum, &freef); if (ret) goto fail; ret = scan_pool(ubi, ai, fmpl2->pebs, wl_pool_size, &max_sqnum, &freef); if (ret) goto fail; if (max_sqnum > ai->max_sqnum) ai->max_sqnum = max_sqnum; list_for_each_entry_safe(tmp_aeb, _tmp_aeb, &freef, u.list) list_move_tail(&tmp_aeb->u.list, &ai->free); list_for_each_entry_safe(tmp_aeb, _tmp_aeb, &used, u.list) list_move_tail(&tmp_aeb->u.list, &ai->erase); ubi_assert(list_empty(&freef)); /* * If fastmap is leaking PEBs (must not happen), raise a * fat warning and fall back to scanning mode. * We do this here because in ubi_wl_init() it's too late * and we cannot fall back to scanning. */ #ifndef __UBOOT__ if (WARN_ON(count_fastmap_pebs(ai) != ubi->peb_count - ai->bad_peb_count - fm->used_blocks)) goto fail_bad; #else if (count_fastmap_pebs(ai) != ubi->peb_count - ai->bad_peb_count - fm->used_blocks) { WARN_ON(1); goto fail_bad; } #endif return 0; fail_bad: ret = UBI_BAD_FASTMAP; fail: list_for_each_entry_safe(tmp_aeb, _tmp_aeb, &used, u.list) { list_del(&tmp_aeb->u.list); kmem_cache_free(ai->aeb_slab_cache, tmp_aeb); } list_for_each_entry_safe(tmp_aeb, _tmp_aeb, &freef, u.list) { list_del(&tmp_aeb->u.list); kmem_cache_free(ai->aeb_slab_cache, tmp_aeb); } return ret; } /** * ubi_scan_fastmap - scan the fastmap. * @ubi: UBI device object * @ai: UBI attach info to be filled * @fm_anchor: The fastmap starts at this PEB * * Returns 0 on success, UBI_NO_FASTMAP if no fastmap was found, * UBI_BAD_FASTMAP if one was found but is not usable. * < 0 indicates an internal error. */ int ubi_scan_fastmap(struct ubi_device *ubi, struct ubi_attach_info *ai, int fm_anchor) { struct ubi_fm_sb *fmsb, *fmsb2; struct ubi_vid_hdr *vh; struct ubi_ec_hdr *ech; struct ubi_fastmap_layout *fm; int i, used_blocks, pnum, ret = 0; size_t fm_size; __be32 crc, tmp_crc; unsigned long long sqnum = 0; mutex_lock(&ubi->fm_mutex); memset(ubi->fm_buf, 0, ubi->fm_size); fmsb = kmalloc(sizeof(*fmsb), GFP_KERNEL); if (!fmsb) { ret = -ENOMEM; goto out; } fm = kzalloc(sizeof(*fm), GFP_KERNEL); if (!fm) { ret = -ENOMEM; kfree(fmsb); goto out; } ret = ubi_io_read(ubi, fmsb, fm_anchor, ubi->leb_start, sizeof(*fmsb)); if (ret && ret != UBI_IO_BITFLIPS) goto free_fm_sb; else if (ret == UBI_IO_BITFLIPS) fm->to_be_tortured[0] = 1; if (be32_to_cpu(fmsb->magic) != UBI_FM_SB_MAGIC) { ubi_err("bad super block magic: 0x%x, expected: 0x%x", be32_to_cpu(fmsb->magic), UBI_FM_SB_MAGIC); ret = UBI_BAD_FASTMAP; goto free_fm_sb; } if (fmsb->version != UBI_FM_FMT_VERSION) { ubi_err("bad fastmap version: %i, expected: %i", fmsb->version, UBI_FM_FMT_VERSION); ret = UBI_BAD_FASTMAP; goto free_fm_sb; } used_blocks = be32_to_cpu(fmsb->used_blocks); if (used_blocks > UBI_FM_MAX_BLOCKS || used_blocks < 1) { ubi_err("number of fastmap blocks is invalid: %i", used_blocks); ret = UBI_BAD_FASTMAP; goto free_fm_sb; } fm_size = ubi->leb_size * used_blocks; if (fm_size != ubi->fm_size) { ubi_err("bad fastmap size: %zi, expected: %zi", fm_size, ubi->fm_size); ret = UBI_BAD_FASTMAP; goto free_fm_sb; } ech = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL); if (!ech) { ret = -ENOMEM; goto free_fm_sb; } vh = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL); if (!vh) { ret = -ENOMEM; goto free_hdr; } for (i = 0; i < used_blocks; i++) { int image_seq; pnum = be32_to_cpu(fmsb->block_loc[i]); if (ubi_io_is_bad(ubi, pnum)) { ret = UBI_BAD_FASTMAP; goto free_hdr; } ret = ubi_io_read_ec_hdr(ubi, pnum, ech, 0); if (ret && ret != UBI_IO_BITFLIPS) { ubi_err("unable to read fastmap block# %i EC (PEB: %i)", i, pnum); if (ret > 0) ret = UBI_BAD_FASTMAP; goto free_hdr; } else if (ret == UBI_IO_BITFLIPS) fm->to_be_tortured[i] = 1; image_seq = be32_to_cpu(ech->image_seq); if (!ubi->image_seq) ubi->image_seq = image_seq; /* * Older UBI implementations have image_seq set to zero, so * we shouldn't fail if image_seq == 0. */ if (image_seq && (image_seq != ubi->image_seq)) { ubi_err("wrong image seq:%d instead of %d", be32_to_cpu(ech->image_seq), ubi->image_seq); ret = UBI_BAD_FASTMAP; goto free_hdr; } ret = ubi_io_read_vid_hdr(ubi, pnum, vh, 0); if (ret && ret != UBI_IO_BITFLIPS) { ubi_err("unable to read fastmap block# %i (PEB: %i)", i, pnum); goto free_hdr; } if (i == 0) { if (be32_to_cpu(vh->vol_id) != UBI_FM_SB_VOLUME_ID) { ubi_err("bad fastmap anchor vol_id: 0x%x," \ " expected: 0x%x", be32_to_cpu(vh->vol_id), UBI_FM_SB_VOLUME_ID); ret = UBI_BAD_FASTMAP; goto free_hdr; } } else { if (be32_to_cpu(vh->vol_id) != UBI_FM_DATA_VOLUME_ID) { ubi_err("bad fastmap data vol_id: 0x%x," \ " expected: 0x%x", be32_to_cpu(vh->vol_id), UBI_FM_DATA_VOLUME_ID); ret = UBI_BAD_FASTMAP; goto free_hdr; } } if (sqnum < be64_to_cpu(vh->sqnum)) sqnum = be64_to_cpu(vh->sqnum); ret = ubi_io_read(ubi, ubi->fm_buf + (ubi->leb_size * i), pnum, ubi->leb_start, ubi->leb_size); if (ret && ret != UBI_IO_BITFLIPS) { ubi_err("unable to read fastmap block# %i (PEB: %i, " \ "err: %i)", i, pnum, ret); goto free_hdr; } } kfree(fmsb); fmsb = NULL; fmsb2 = (struct ubi_fm_sb *)(ubi->fm_buf); tmp_crc = be32_to_cpu(fmsb2->data_crc); fmsb2->data_crc = 0; crc = crc32(UBI_CRC32_INIT, ubi->fm_buf, fm_size); if (crc != tmp_crc) { ubi_err("fastmap data CRC is invalid"); ubi_err("CRC should be: 0x%x, calc: 0x%x", tmp_crc, crc); ret = UBI_BAD_FASTMAP; goto free_hdr; } fmsb2->sqnum = sqnum; fm->used_blocks = used_blocks; ret = ubi_attach_fastmap(ubi, ai, fm); if (ret) { if (ret > 0) ret = UBI_BAD_FASTMAP; goto free_hdr; } for (i = 0; i < used_blocks; i++) { struct ubi_wl_entry *e; e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL); if (!e) { while (i--) kfree(fm->e[i]); ret = -ENOMEM; goto free_hdr; } e->pnum = be32_to_cpu(fmsb2->block_loc[i]); e->ec = be32_to_cpu(fmsb2->block_ec[i]); fm->e[i] = e; } ubi->fm = fm; ubi->fm_pool.max_size = ubi->fm->max_pool_size; ubi->fm_wl_pool.max_size = ubi->fm->max_wl_pool_size; ubi_msg("attached by fastmap"); ubi_msg("fastmap pool size: %d", ubi->fm_pool.max_size); ubi_msg("fastmap WL pool size: %d", ubi->fm_wl_pool.max_size); ubi->fm_disabled = 0; ubi_free_vid_hdr(ubi, vh); kfree(ech); out: mutex_unlock(&ubi->fm_mutex); if (ret == UBI_BAD_FASTMAP) ubi_err("Attach by fastmap failed, doing a full scan!"); return ret; free_hdr: ubi_free_vid_hdr(ubi, vh); kfree(ech); free_fm_sb: kfree(fmsb); kfree(fm); goto out; } /** * ubi_write_fastmap - writes a fastmap. * @ubi: UBI device object * @new_fm: the to be written fastmap * * Returns 0 on success, < 0 indicates an internal error. */ static int ubi_write_fastmap(struct ubi_device *ubi, struct ubi_fastmap_layout *new_fm) { size_t fm_pos = 0; void *fm_raw; struct ubi_fm_sb *fmsb; struct ubi_fm_hdr *fmh; struct ubi_fm_scan_pool *fmpl1, *fmpl2; struct ubi_fm_ec *fec; struct ubi_fm_volhdr *fvh; struct ubi_fm_eba *feba; struct rb_node *node; struct ubi_wl_entry *wl_e; struct ubi_volume *vol; struct ubi_vid_hdr *avhdr, *dvhdr; struct ubi_work *ubi_wrk; int ret, i, j, free_peb_count, used_peb_count, vol_count; int scrub_peb_count, erase_peb_count; fm_raw = ubi->fm_buf; memset(ubi->fm_buf, 0, ubi->fm_size); avhdr = new_fm_vhdr(ubi, UBI_FM_SB_VOLUME_ID); if (!avhdr) { ret = -ENOMEM; goto out; } dvhdr = new_fm_vhdr(ubi, UBI_FM_DATA_VOLUME_ID); if (!dvhdr) { ret = -ENOMEM; goto out_kfree; } spin_lock(&ubi->volumes_lock); spin_lock(&ubi->wl_lock); fmsb = (struct ubi_fm_sb *)fm_raw; fm_pos += sizeof(*fmsb); ubi_assert(fm_pos <= ubi->fm_size); fmh = (struct ubi_fm_hdr *)(fm_raw + fm_pos); fm_pos += sizeof(*fmh); ubi_assert(fm_pos <= ubi->fm_size); fmsb->magic = cpu_to_be32(UBI_FM_SB_MAGIC); fmsb->version = UBI_FM_FMT_VERSION; fmsb->used_blocks = cpu_to_be32(new_fm->used_blocks); /* the max sqnum will be filled in while *reading* the fastmap */ fmsb->sqnum = 0; fmh->magic = cpu_to_be32(UBI_FM_HDR_MAGIC); free_peb_count = 0; used_peb_count = 0; scrub_peb_count = 0; erase_peb_count = 0; vol_count = 0; fmpl1 = (struct ubi_fm_scan_pool *)(fm_raw + fm_pos); fm_pos += sizeof(*fmpl1); fmpl1->magic = cpu_to_be32(UBI_FM_POOL_MAGIC); fmpl1->size = cpu_to_be16(ubi->fm_pool.size); fmpl1->max_size = cpu_to_be16(ubi->fm_pool.max_size); for (i = 0; i < ubi->fm_pool.size; i++) fmpl1->pebs[i] = cpu_to_be32(ubi->fm_pool.pebs[i]); fmpl2 = (struct ubi_fm_scan_pool *)(fm_raw + fm_pos); fm_pos += sizeof(*fmpl2); fmpl2->magic = cpu_to_be32(UBI_FM_POOL_MAGIC); fmpl2->size = cpu_to_be16(ubi->fm_wl_pool.size); fmpl2->max_size = cpu_to_be16(ubi->fm_wl_pool.max_size); for (i = 0; i < ubi->fm_wl_pool.size; i++) fmpl2->pebs[i] = cpu_to_be32(ubi->fm_wl_pool.pebs[i]); for (node = rb_first(&ubi->free); node; node = rb_next(node)) { wl_e = rb_entry(node, struct ubi_wl_entry, u.rb); fec = (struct ubi_fm_ec *)(fm_raw + fm_pos); fec->pnum = cpu_to_be32(wl_e->pnum); fec->ec = cpu_to_be32(wl_e->ec); free_peb_count++; fm_pos += sizeof(*fec); ubi_assert(fm_pos <= ubi->fm_size); } fmh->free_peb_count = cpu_to_be32(free_peb_count); for (node = rb_first(&ubi->used); node; node = rb_next(node)) { wl_e = rb_entry(node, struct ubi_wl_entry, u.rb); fec = (struct ubi_fm_ec *)(fm_raw + fm_pos); fec->pnum = cpu_to_be32(wl_e->pnum); fec->ec = cpu_to_be32(wl_e->ec); used_peb_count++; fm_pos += sizeof(*fec); ubi_assert(fm_pos <= ubi->fm_size); } for (i = 0; i < UBI_PROT_QUEUE_LEN; i++) { list_for_each_entry(wl_e, &ubi->pq[i], u.list) { fec = (struct ubi_fm_ec *)(fm_raw + fm_pos); fec->pnum = cpu_to_be32(wl_e->pnum); fec->ec = cpu_to_be32(wl_e->ec); used_peb_count++; fm_pos += sizeof(*fec); ubi_assert(fm_pos <= ubi->fm_size); } } fmh->used_peb_count = cpu_to_be32(used_peb_count); for (node = rb_first(&ubi->scrub); node; node = rb_next(node)) { wl_e = rb_entry(node, struct ubi_wl_entry, u.rb); fec = (struct ubi_fm_ec *)(fm_raw + fm_pos); fec->pnum = cpu_to_be32(wl_e->pnum); fec->ec = cpu_to_be32(wl_e->ec); scrub_peb_count++; fm_pos += sizeof(*fec); ubi_assert(fm_pos <= ubi->fm_size); } fmh->scrub_peb_count = cpu_to_be32(scrub_peb_count); list_for_each_entry(ubi_wrk, &ubi->works, list) { if (ubi_is_erase_work(ubi_wrk)) { wl_e = ubi_wrk->e; ubi_assert(wl_e); fec = (struct ubi_fm_ec *)(fm_raw + fm_pos); fec->pnum = cpu_to_be32(wl_e->pnum); fec->ec = cpu_to_be32(wl_e->ec); erase_peb_count++; fm_pos += sizeof(*fec); ubi_assert(fm_pos <= ubi->fm_size); } } fmh->erase_peb_count = cpu_to_be32(erase_peb_count); for (i = 0; i < UBI_MAX_VOLUMES + UBI_INT_VOL_COUNT; i++) { vol = ubi->volumes[i]; if (!vol) continue; vol_count++; fvh = (struct ubi_fm_volhdr *)(fm_raw + fm_pos); fm_pos += sizeof(*fvh); ubi_assert(fm_pos <= ubi->fm_size); fvh->magic = cpu_to_be32(UBI_FM_VHDR_MAGIC); fvh->vol_id = cpu_to_be32(vol->vol_id); fvh->vol_type = vol->vol_type; fvh->used_ebs = cpu_to_be32(vol->used_ebs); fvh->data_pad = cpu_to_be32(vol->data_pad); fvh->last_eb_bytes = cpu_to_be32(vol->last_eb_bytes); ubi_assert(vol->vol_type == UBI_DYNAMIC_VOLUME || vol->vol_type == UBI_STATIC_VOLUME); feba = (struct ubi_fm_eba *)(fm_raw + fm_pos); fm_pos += sizeof(*feba) + (sizeof(__be32) * vol->reserved_pebs); ubi_assert(fm_pos <= ubi->fm_size); for (j = 0; j < vol->reserved_pebs; j++) feba->pnum[j] = cpu_to_be32(vol->eba_tbl[j]); feba->reserved_pebs = cpu_to_be32(j); feba->magic = cpu_to_be32(UBI_FM_EBA_MAGIC); } fmh->vol_count = cpu_to_be32(vol_count); fmh->bad_peb_count = cpu_to_be32(ubi->bad_peb_count); avhdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi)); avhdr->lnum = 0; spin_unlock(&ubi->wl_lock); spin_unlock(&ubi->volumes_lock); dbg_bld("writing fastmap SB to PEB %i", new_fm->e[0]->pnum); ret = ubi_io_write_vid_hdr(ubi, new_fm->e[0]->pnum, avhdr); if (ret) { ubi_err("unable to write vid_hdr to fastmap SB!"); goto out_kfree; } for (i = 0; i < new_fm->used_blocks; i++) { fmsb->block_loc[i] = cpu_to_be32(new_fm->e[i]->pnum); fmsb->block_ec[i] = cpu_to_be32(new_fm->e[i]->ec); } fmsb->data_crc = 0; fmsb->data_crc = cpu_to_be32(crc32(UBI_CRC32_INIT, fm_raw, ubi->fm_size)); for (i = 1; i < new_fm->used_blocks; i++) { dvhdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi)); dvhdr->lnum = cpu_to_be32(i); dbg_bld("writing fastmap data to PEB %i sqnum %llu", new_fm->e[i]->pnum, be64_to_cpu(dvhdr->sqnum)); ret = ubi_io_write_vid_hdr(ubi, new_fm->e[i]->pnum, dvhdr); if (ret) { ubi_err("unable to write vid_hdr to PEB %i!", new_fm->e[i]->pnum); goto out_kfree; } } for (i = 0; i < new_fm->used_blocks; i++) { ret = ubi_io_write(ubi, fm_raw + (i * ubi->leb_size), new_fm->e[i]->pnum, ubi->leb_start, ubi->leb_size); if (ret) { ubi_err("unable to write fastmap to PEB %i!", new_fm->e[i]->pnum); goto out_kfree; } } ubi_assert(new_fm); ubi->fm = new_fm; dbg_bld("fastmap written!"); out_kfree: ubi_free_vid_hdr(ubi, avhdr); ubi_free_vid_hdr(ubi, dvhdr); out: return ret; } /** * erase_block - Manually erase a PEB. * @ubi: UBI device object * @pnum: PEB to be erased * * Returns the new EC value on success, < 0 indicates an internal error. */ static int erase_block(struct ubi_device *ubi, int pnum) { int ret; struct ubi_ec_hdr *ec_hdr; long long ec; ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL); if (!ec_hdr) return -ENOMEM; ret = ubi_io_read_ec_hdr(ubi, pnum, ec_hdr, 0); if (ret < 0) goto out; else if (ret && ret != UBI_IO_BITFLIPS) { ret = -EINVAL; goto out; } ret = ubi_io_sync_erase(ubi, pnum, 0); if (ret < 0) goto out; ec = be64_to_cpu(ec_hdr->ec); ec += ret; if (ec > UBI_MAX_ERASECOUNTER) { ret = -EINVAL; goto out; } ec_hdr->ec = cpu_to_be64(ec); ret = ubi_io_write_ec_hdr(ubi, pnum, ec_hdr); if (ret < 0) goto out; ret = ec; out: kfree(ec_hdr); return ret; } /** * invalidate_fastmap - destroys a fastmap. * @ubi: UBI device object * @fm: the fastmap to be destroyed * * Returns 0 on success, < 0 indicates an internal error. */ static int invalidate_fastmap(struct ubi_device *ubi, struct ubi_fastmap_layout *fm) { int ret; struct ubi_vid_hdr *vh; ret = erase_block(ubi, fm->e[0]->pnum); if (ret < 0) return ret; vh = new_fm_vhdr(ubi, UBI_FM_SB_VOLUME_ID); if (!vh) return -ENOMEM; /* deleting the current fastmap SB is not enough, an old SB may exist, * so create a (corrupted) SB such that fastmap will find it and fall * back to scanning mode in any case */ vh->sqnum = cpu_to_be64(ubi_next_sqnum(ubi)); ret = ubi_io_write_vid_hdr(ubi, fm->e[0]->pnum, vh); return ret; } /** * ubi_update_fastmap - will be called by UBI if a volume changes or * a fastmap pool becomes full. * @ubi: UBI device object * * Returns 0 on success, < 0 indicates an internal error. */ int ubi_update_fastmap(struct ubi_device *ubi) { int ret, i; struct ubi_fastmap_layout *new_fm, *old_fm; struct ubi_wl_entry *tmp_e; mutex_lock(&ubi->fm_mutex); ubi_refill_pools(ubi); if (ubi->ro_mode || ubi->fm_disabled) { mutex_unlock(&ubi->fm_mutex); return 0; } ret = ubi_ensure_anchor_pebs(ubi); if (ret) { mutex_unlock(&ubi->fm_mutex); return ret; } new_fm = kzalloc(sizeof(*new_fm), GFP_KERNEL); if (!new_fm) { mutex_unlock(&ubi->fm_mutex); return -ENOMEM; } new_fm->used_blocks = ubi->fm_size / ubi->leb_size; old_fm = ubi->fm; ubi->fm = NULL; if (new_fm->used_blocks > UBI_FM_MAX_BLOCKS) { ubi_err("fastmap too large"); ret = -ENOSPC; goto err; } for (i = 1; i < new_fm->used_blocks; i++) { spin_lock(&ubi->wl_lock); tmp_e = ubi_wl_get_fm_peb(ubi, 0); spin_unlock(&ubi->wl_lock); if (!tmp_e && !old_fm) { int j; ubi_err("could not get any free erase block"); for (j = 1; j < i; j++) ubi_wl_put_fm_peb(ubi, new_fm->e[j], j, 0); ret = -ENOSPC; goto err; } else if (!tmp_e && old_fm) { ret = erase_block(ubi, old_fm->e[i]->pnum); if (ret < 0) { int j; for (j = 1; j < i; j++) ubi_wl_put_fm_peb(ubi, new_fm->e[j], j, 0); ubi_err("could not erase old fastmap PEB"); goto err; } new_fm->e[i] = old_fm->e[i]; } else { new_fm->e[i] = tmp_e; if (old_fm) ubi_wl_put_fm_peb(ubi, old_fm->e[i], i, old_fm->to_be_tortured[i]); } } spin_lock(&ubi->wl_lock); tmp_e = ubi_wl_get_fm_peb(ubi, 1); spin_unlock(&ubi->wl_lock); if (old_fm) { /* no fresh anchor PEB was found, reuse the old one */ if (!tmp_e) { ret = erase_block(ubi, old_fm->e[0]->pnum); if (ret < 0) { int i; ubi_err("could not erase old anchor PEB"); for (i = 1; i < new_fm->used_blocks; i++) ubi_wl_put_fm_peb(ubi, new_fm->e[i], i, 0); goto err; } new_fm->e[0] = old_fm->e[0]; new_fm->e[0]->ec = ret; } else { /* we've got a new anchor PEB, return the old one */ ubi_wl_put_fm_peb(ubi, old_fm->e[0], 0, old_fm->to_be_tortured[0]); new_fm->e[0] = tmp_e; } } else { if (!tmp_e) { int i; ubi_err("could not find any anchor PEB"); for (i = 1; i < new_fm->used_blocks; i++) ubi_wl_put_fm_peb(ubi, new_fm->e[i], i, 0); ret = -ENOSPC; goto err; } new_fm->e[0] = tmp_e; } down_write(&ubi->work_sem); down_write(&ubi->fm_sem); ret = ubi_write_fastmap(ubi, new_fm); up_write(&ubi->fm_sem); up_write(&ubi->work_sem); if (ret) goto err; out_unlock: mutex_unlock(&ubi->fm_mutex); kfree(old_fm); return ret; err: kfree(new_fm); ubi_warn("Unable to write new fastmap, err=%i", ret); ret = 0; if (old_fm) { ret = invalidate_fastmap(ubi, old_fm); if (ret < 0) { ubi_err("Unable to invalidiate current fastmap!"); ubi_ro_mode(ubi); } else if (ret) ret = 0; } goto out_unlock; }