// SPDX-License-Identifier: GPL-2.0+ /* * EFI image loader * * based partly on wine code * * Copyright (c) 2016 Alexander Graf */ #include #include #include const efi_guid_t efi_global_variable_guid = EFI_GLOBAL_VARIABLE_GUID; const efi_guid_t efi_guid_device_path = EFI_DEVICE_PATH_PROTOCOL_GUID; const efi_guid_t efi_guid_loaded_image = EFI_LOADED_IMAGE_PROTOCOL_GUID; const efi_guid_t efi_guid_loaded_image_device_path = EFI_LOADED_IMAGE_DEVICE_PATH_PROTOCOL_GUID; const efi_guid_t efi_simple_file_system_protocol_guid = EFI_SIMPLE_FILE_SYSTEM_PROTOCOL_GUID; const efi_guid_t efi_file_info_guid = EFI_FILE_INFO_GUID; static int machines[] = { #if defined(__aarch64__) IMAGE_FILE_MACHINE_ARM64, #elif defined(__arm__) IMAGE_FILE_MACHINE_ARM, IMAGE_FILE_MACHINE_THUMB, IMAGE_FILE_MACHINE_ARMNT, #endif #if defined(__x86_64__) IMAGE_FILE_MACHINE_AMD64, #elif defined(__i386__) IMAGE_FILE_MACHINE_I386, #endif #if defined(__riscv) && (__riscv_xlen == 32) IMAGE_FILE_MACHINE_RISCV32, #endif #if defined(__riscv) && (__riscv_xlen == 64) IMAGE_FILE_MACHINE_RISCV64, #endif 0 }; /** * efi_print_image_info() - print information about a loaded image * * If the program counter is located within the image the offset to the base * address is shown. * * @obj: EFI object * @image: loaded image * @pc: program counter (use NULL to suppress offset output) * Return: status code */ static efi_status_t efi_print_image_info(struct efi_loaded_image_obj *obj, struct efi_loaded_image *image, void *pc) { printf("UEFI image"); printf(" [0x%p:0x%p]", image->image_base, image->image_base + image->image_size - 1); if (pc && pc >= image->image_base && pc < image->image_base + image->image_size) printf(" pc=0x%zx", pc - image->image_base); if (image->file_path) printf(" '%pD'", image->file_path); printf("\n"); return EFI_SUCCESS; } /** * efi_print_image_infos() - print information about all loaded images * * @pc: program counter (use NULL to suppress offset output) */ void efi_print_image_infos(void *pc) { struct efi_object *efiobj; struct efi_handler *handler; list_for_each_entry(efiobj, &efi_obj_list, link) { list_for_each_entry(handler, &efiobj->protocols, link) { if (!guidcmp(handler->guid, &efi_guid_loaded_image)) { efi_print_image_info( (struct efi_loaded_image_obj *)efiobj, handler->protocol_interface, pc); } } } } /** * efi_loader_relocate() - relocate UEFI binary * * @rel: pointer to the relocation table * @rel_size: size of the relocation table in bytes * @efi_reloc: actual load address of the image * @pref_address: preferred load address of the image * Return: status code */ static efi_status_t efi_loader_relocate(const IMAGE_BASE_RELOCATION *rel, unsigned long rel_size, void *efi_reloc, unsigned long pref_address) { unsigned long delta = (unsigned long)efi_reloc - pref_address; const IMAGE_BASE_RELOCATION *end; int i; if (delta == 0) return EFI_SUCCESS; end = (const IMAGE_BASE_RELOCATION *)((const char *)rel + rel_size); while (rel < end && rel->SizeOfBlock) { const uint16_t *relocs = (const uint16_t *)(rel + 1); i = (rel->SizeOfBlock - sizeof(*rel)) / sizeof(uint16_t); while (i--) { uint32_t offset = (uint32_t)(*relocs & 0xfff) + rel->VirtualAddress; int type = *relocs >> EFI_PAGE_SHIFT; uint64_t *x64 = efi_reloc + offset; uint32_t *x32 = efi_reloc + offset; uint16_t *x16 = efi_reloc + offset; switch (type) { case IMAGE_REL_BASED_ABSOLUTE: break; case IMAGE_REL_BASED_HIGH: *x16 += ((uint32_t)delta) >> 16; break; case IMAGE_REL_BASED_LOW: *x16 += (uint16_t)delta; break; case IMAGE_REL_BASED_HIGHLOW: *x32 += (uint32_t)delta; break; case IMAGE_REL_BASED_DIR64: *x64 += (uint64_t)delta; break; #ifdef __riscv case IMAGE_REL_BASED_RISCV_HI20: *x32 = ((*x32 & 0xfffff000) + (uint32_t)delta) | (*x32 & 0x00000fff); break; case IMAGE_REL_BASED_RISCV_LOW12I: case IMAGE_REL_BASED_RISCV_LOW12S: /* We know that we're 4k aligned */ if (delta & 0xfff) { printf("Unsupported reloc offset\n"); return EFI_LOAD_ERROR; } break; #endif default: printf("Unknown Relocation off %x type %x\n", offset, type); return EFI_LOAD_ERROR; } relocs++; } rel = (const IMAGE_BASE_RELOCATION *)relocs; } return EFI_SUCCESS; } void __weak invalidate_icache_all(void) { /* If the system doesn't support icache_all flush, cross our fingers */ } /** * efi_set_code_and_data_type() - determine the memory types to be used for code * and data. * * @loaded_image_info: image descriptor * @image_type: field Subsystem of the optional header for * Windows specific field */ static void efi_set_code_and_data_type( struct efi_loaded_image *loaded_image_info, uint16_t image_type) { switch (image_type) { case IMAGE_SUBSYSTEM_EFI_APPLICATION: loaded_image_info->image_code_type = EFI_LOADER_CODE; loaded_image_info->image_data_type = EFI_LOADER_DATA; break; case IMAGE_SUBSYSTEM_EFI_BOOT_SERVICE_DRIVER: loaded_image_info->image_code_type = EFI_BOOT_SERVICES_CODE; loaded_image_info->image_data_type = EFI_BOOT_SERVICES_DATA; break; case IMAGE_SUBSYSTEM_EFI_RUNTIME_DRIVER: case IMAGE_SUBSYSTEM_EFI_ROM: loaded_image_info->image_code_type = EFI_RUNTIME_SERVICES_CODE; loaded_image_info->image_data_type = EFI_RUNTIME_SERVICES_DATA; break; default: printf("%s: invalid image type: %u\n", __func__, image_type); /* Let's assume it is an application */ loaded_image_info->image_code_type = EFI_LOADER_CODE; loaded_image_info->image_data_type = EFI_LOADER_DATA; break; } } /** * efi_load_pe() - relocate EFI binary * * This function loads all sections from a PE binary into a newly reserved * piece of memory. On success the entry point is returned as handle->entry. * * @handle: loaded image handle * @efi: pointer to the EFI binary * @loaded_image_info: loaded image protocol * Return: status code */ efi_status_t efi_load_pe(struct efi_loaded_image_obj *handle, void *efi, struct efi_loaded_image *loaded_image_info) { IMAGE_NT_HEADERS32 *nt; IMAGE_DOS_HEADER *dos; IMAGE_SECTION_HEADER *sections; int num_sections; void *efi_reloc; int i; const IMAGE_BASE_RELOCATION *rel; unsigned long rel_size; int rel_idx = IMAGE_DIRECTORY_ENTRY_BASERELOC; uint64_t image_base; unsigned long virt_size = 0; int supported = 0; dos = efi; if (dos->e_magic != IMAGE_DOS_SIGNATURE) { printf("%s: Invalid DOS Signature\n", __func__); return EFI_LOAD_ERROR; } nt = (void *) ((char *)efi + dos->e_lfanew); if (nt->Signature != IMAGE_NT_SIGNATURE) { printf("%s: Invalid NT Signature\n", __func__); return EFI_LOAD_ERROR; } for (i = 0; machines[i]; i++) if (machines[i] == nt->FileHeader.Machine) { supported = 1; break; } if (!supported) { printf("%s: Machine type 0x%04x is not supported\n", __func__, nt->FileHeader.Machine); return EFI_LOAD_ERROR; } /* Calculate upper virtual address boundary */ num_sections = nt->FileHeader.NumberOfSections; sections = (void *)&nt->OptionalHeader + nt->FileHeader.SizeOfOptionalHeader; for (i = num_sections - 1; i >= 0; i--) { IMAGE_SECTION_HEADER *sec = §ions[i]; virt_size = max_t(unsigned long, virt_size, sec->VirtualAddress + sec->Misc.VirtualSize); } /* Read 32/64bit specific header bits */ if (nt->OptionalHeader.Magic == IMAGE_NT_OPTIONAL_HDR64_MAGIC) { IMAGE_NT_HEADERS64 *nt64 = (void *)nt; IMAGE_OPTIONAL_HEADER64 *opt = &nt64->OptionalHeader; image_base = opt->ImageBase; efi_set_code_and_data_type(loaded_image_info, opt->Subsystem); handle->image_type = opt->Subsystem; efi_reloc = efi_alloc(virt_size, loaded_image_info->image_code_type); if (!efi_reloc) { printf("%s: Could not allocate %lu bytes\n", __func__, virt_size); return EFI_OUT_OF_RESOURCES; } handle->entry = efi_reloc + opt->AddressOfEntryPoint; rel_size = opt->DataDirectory[rel_idx].Size; rel = efi_reloc + opt->DataDirectory[rel_idx].VirtualAddress; virt_size = ALIGN(virt_size, opt->SectionAlignment); } else if (nt->OptionalHeader.Magic == IMAGE_NT_OPTIONAL_HDR32_MAGIC) { IMAGE_OPTIONAL_HEADER32 *opt = &nt->OptionalHeader; image_base = opt->ImageBase; efi_set_code_and_data_type(loaded_image_info, opt->Subsystem); handle->image_type = opt->Subsystem; efi_reloc = efi_alloc(virt_size, loaded_image_info->image_code_type); if (!efi_reloc) { printf("%s: Could not allocate %lu bytes\n", __func__, virt_size); return EFI_OUT_OF_RESOURCES; } handle->entry = efi_reloc + opt->AddressOfEntryPoint; rel_size = opt->DataDirectory[rel_idx].Size; rel = efi_reloc + opt->DataDirectory[rel_idx].VirtualAddress; virt_size = ALIGN(virt_size, opt->SectionAlignment); } else { printf("%s: Invalid optional header magic %x\n", __func__, nt->OptionalHeader.Magic); return EFI_LOAD_ERROR; } /* Copy PE headers */ memcpy(efi_reloc, efi, sizeof(*dos) + sizeof(*nt) + nt->FileHeader.SizeOfOptionalHeader + num_sections * sizeof(IMAGE_SECTION_HEADER)); /* Load sections into RAM */ for (i = num_sections - 1; i >= 0; i--) { IMAGE_SECTION_HEADER *sec = §ions[i]; memset(efi_reloc + sec->VirtualAddress, 0, sec->Misc.VirtualSize); memcpy(efi_reloc + sec->VirtualAddress, efi + sec->PointerToRawData, sec->SizeOfRawData); } /* Run through relocations */ if (efi_loader_relocate(rel, rel_size, efi_reloc, (unsigned long)image_base) != EFI_SUCCESS) { efi_free_pages((uintptr_t) efi_reloc, (virt_size + EFI_PAGE_MASK) >> EFI_PAGE_SHIFT); return EFI_LOAD_ERROR; } /* Flush cache */ flush_cache((ulong)efi_reloc, ALIGN(virt_size, EFI_CACHELINE_SIZE)); invalidate_icache_all(); /* Populate the loaded image interface bits */ loaded_image_info->image_base = efi_reloc; loaded_image_info->image_size = virt_size; return EFI_SUCCESS; }