summaryrefslogtreecommitdiff
path: root/arch/arm/mach-imx/imx8/cpu.c
blob: 4eb15de93e10c8c593c33117beaf65e3e7c560be (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
// SPDX-License-Identifier: GPL-2.0+
/*
 * Copyright 2018 NXP
 */

#include <common.h>
#include <clk.h>
#include <cpu.h>
#include <dm.h>
#include <dm/device-internal.h>
#include <dm/lists.h>
#include <dm/uclass.h>
#include <errno.h>
#include <fdt_support.h>
#include <fdtdec.h>
#include <thermal.h>
#include <asm/arch/sci/sci.h>
#include <asm/arch/sid.h>
#include <asm/arch/sys_proto.h>
#include <asm/arch-imx/cpu.h>
#include <asm/armv8/cpu.h>
#include <asm/armv8/mmu.h>
#include <asm/mach-imx/boot_mode.h>

DECLARE_GLOBAL_DATA_PTR;

#define BT_PASSOVER_TAG	0x504F
struct pass_over_info_t *get_pass_over_info(void)
{
	struct pass_over_info_t *p =
		(struct pass_over_info_t *)PASS_OVER_INFO_ADDR;

	if (p->barker != BT_PASSOVER_TAG ||
	    p->len != sizeof(struct pass_over_info_t))
		return NULL;

	return p;
}

int arch_cpu_init(void)
{
#ifdef CONFIG_SPL_BUILD
	struct pass_over_info_t *pass_over;

	if (is_soc_rev(CHIP_REV_A)) {
		pass_over = get_pass_over_info();
		if (pass_over && pass_over->g_ap_mu == 0) {
			/*
			 * When ap_mu is 0, means the U-Boot booted
			 * from first container
			 */
			sc_misc_boot_status(-1, SC_MISC_BOOT_STATUS_SUCCESS);
		}
	}
#endif

	return 0;
}

int arch_cpu_init_dm(void)
{
	struct udevice *devp;
	int node, ret;

	node = fdt_node_offset_by_compatible(gd->fdt_blob, -1, "fsl,imx8-mu");
	ret = device_bind_driver_to_node(gd->dm_root, "imx8_scu", "imx8_scu",
					 offset_to_ofnode(node), &devp);

	if (ret) {
		printf("could not find scu %d\n", ret);
		return ret;
	}

	ret = device_probe(devp);
	if (ret) {
		printf("scu probe failed %d\n", ret);
		return ret;
	}

	return 0;
}

int print_bootinfo(void)
{
	enum boot_device bt_dev = get_boot_device();

	puts("Boot:  ");
	switch (bt_dev) {
	case SD1_BOOT:
		puts("SD0\n");
		break;
	case SD2_BOOT:
		puts("SD1\n");
		break;
	case SD3_BOOT:
		puts("SD2\n");
		break;
	case MMC1_BOOT:
		puts("MMC0\n");
		break;
	case MMC2_BOOT:
		puts("MMC1\n");
		break;
	case MMC3_BOOT:
		puts("MMC2\n");
		break;
	case FLEXSPI_BOOT:
		puts("FLEXSPI\n");
		break;
	case SATA_BOOT:
		puts("SATA\n");
		break;
	case NAND_BOOT:
		puts("NAND\n");
		break;
	case USB_BOOT:
		puts("USB\n");
		break;
	default:
		printf("Unknown device %u\n", bt_dev);
		break;
	}

	return 0;
}

enum boot_device get_boot_device(void)
{
	enum boot_device boot_dev = SD1_BOOT;

	sc_rsrc_t dev_rsrc;

	sc_misc_get_boot_dev(-1, &dev_rsrc);

	switch (dev_rsrc) {
	case SC_R_SDHC_0:
		boot_dev = MMC1_BOOT;
		break;
	case SC_R_SDHC_1:
		boot_dev = SD2_BOOT;
		break;
	case SC_R_SDHC_2:
		boot_dev = SD3_BOOT;
		break;
	case SC_R_NAND:
		boot_dev = NAND_BOOT;
		break;
	case SC_R_FSPI_0:
		boot_dev = FLEXSPI_BOOT;
		break;
	case SC_R_SATA_0:
		boot_dev = SATA_BOOT;
		break;
	case SC_R_USB_0:
	case SC_R_USB_1:
	case SC_R_USB_2:
		boot_dev = USB_BOOT;
		break;
	default:
		break;
	}

	return boot_dev;
}

#ifdef CONFIG_ENV_IS_IN_MMC
__weak int board_mmc_get_env_dev(int devno)
{
	return CONFIG_SYS_MMC_ENV_DEV;
}

int mmc_get_env_dev(void)
{
	sc_rsrc_t dev_rsrc;
	int devno;

	sc_misc_get_boot_dev(-1, &dev_rsrc);

	switch (dev_rsrc) {
	case SC_R_SDHC_0:
		devno = 0;
		break;
	case SC_R_SDHC_1:
		devno = 1;
		break;
	case SC_R_SDHC_2:
		devno = 2;
		break;
	default:
		/* If not boot from sd/mmc, use default value */
		return CONFIG_SYS_MMC_ENV_DEV;
	}

	return board_mmc_get_env_dev(devno);
}
#endif

#ifdef CONFIG_OF_SYSTEM_SETUP
static bool check_owned_resource(sc_rsrc_t rsrc_id)
{
	sc_ipc_t ipcHndl = 0;
	bool owned;

	ipcHndl = -1;

	owned = sc_rm_is_resource_owned(ipcHndl, rsrc_id);

	return owned;
}

static int disable_fdt_node(void *blob, int nodeoffset)
{
	int rc, ret;
	const char *status = "disabled";

	do {
		rc = fdt_setprop(blob, nodeoffset, "status", status, strlen(status) + 1);
		if (rc) {
			if (rc == -FDT_ERR_NOSPACE) {
				ret = fdt_increase_size(blob, 512);
				if (ret)
					return ret;
			}
		}
	} while (rc == -FDT_ERR_NOSPACE);

	return rc;
}

static void update_fdt_with_owned_resources(void *blob)
{
	/* Traverses the fdt nodes,
	  * check its power domain and use the resource id in the power domain
	  * for checking whether it is owned by current partition
	  */

	int offset = 0, next_off, addr;
	int depth, next_depth;
	unsigned int rsrc_id;
	const fdt32_t *php;
	const char *name;
	int rc;

	for (offset = fdt_next_node(blob, offset, &depth); offset > 0;
		 offset = fdt_next_node(blob, offset, &depth)) {

		debug("Node name: %s, depth %d\n", fdt_get_name(blob, offset, NULL), depth);

		if (!fdtdec_get_is_enabled(blob, offset)) {
			debug("   - ignoring disabled device\n");
			continue;
		}

		if (!fdt_node_check_compatible(blob, offset, "nxp,imx8-pd")) {
			/* Skip to next depth=1 node*/
			next_off = offset;
			next_depth = depth;
			do {
				offset = next_off;
				depth = next_depth;
				next_off = fdt_next_node(blob, offset, &next_depth);
				if (next_off < 0 || next_depth < 1)
					break;

				debug("PD name: %s, offset %d, depth %d\n",
					fdt_get_name(blob, next_off, NULL), next_off, next_depth);
			} while (next_depth > 1);

			continue;
		}

		php = fdt_getprop(blob, offset, "power-domains", NULL);
		if (!php) {
			debug("   - ignoring no power-domains\n");
		} else {
			addr = fdt_node_offset_by_phandle(blob, fdt32_to_cpu(*php));
			rsrc_id = fdtdec_get_uint(blob, addr, "reg", 0);

			if (rsrc_id == SC_R_LAST) {
				name = fdt_get_name(blob, offset, NULL);
				printf("%s's power domain use SC_R_LAST\n", name);
				continue;
			}

			debug("power-domains phandle 0x%x, addr 0x%x, resource id %u\n",
				fdt32_to_cpu(*php), addr, rsrc_id);

			if (!check_owned_resource(rsrc_id)) {

				/* If the resource is not owned, disable it in FDT */
				rc = disable_fdt_node(blob, offset);
				if (!rc)
					printf("Disable %s, resource id %u, pd phandle 0x%x\n",
						fdt_get_name(blob, offset, NULL), rsrc_id, fdt32_to_cpu(*php));
				else
					printf("Unable to disable %s, err=%s\n",
						fdt_get_name(blob, offset, NULL), fdt_strerror(rc));
			}
		}
	}
}
#endif

#ifdef CONFIG_IMX_SMMU
static int get_srsc_from_fdt_node_power_domain(void *blob, int device_offset)
{
	const fdt32_t *prop;
	int pdnode_offset;

	prop = fdt_getprop(blob, device_offset, "power-domains", NULL);
	if (!prop) {
		debug("node %s has no power-domains\n",
				fdt_get_name(blob, device_offset, NULL));
		return -ENOENT;
	}

	pdnode_offset = fdt_node_offset_by_phandle(blob, fdt32_to_cpu(*prop));
	if (pdnode_offset < 0) {
		pr_err("failed to fetch node %s power-domain",
				fdt_get_name(blob, device_offset, NULL));
		return pdnode_offset;
	}

	return fdtdec_get_uint(blob, pdnode_offset, "reg", -ENOENT);
}

static int config_smmu_resource_sid(int rsrc, int sid)
{
	sc_err_t err;

	err = sc_rm_set_master_sid(-1, rsrc, sid);
	debug("set_master_sid rsrc=%d sid=0x%x err=%d\n", rsrc, sid, err);
	if (err != SC_ERR_NONE) {
		pr_err("fail set_master_sid rsrc=%d sid=0x%x err=%d", rsrc, sid, err);
		return -EINVAL;
	}

	return 0;
}

static int config_smmu_fdt_device_sid(void *blob, int device_offset, int sid)
{
	int rsrc;
	const char *name = fdt_get_name(blob, device_offset, NULL);

	rsrc = get_srsc_from_fdt_node_power_domain(blob, device_offset);
	debug("configure node %s sid 0x%x rsrc=%d\n", name, sid, rsrc);
	if (rsrc < 0) {
		debug("failed to determine SC_R_* for node %s\n", name);
		return rsrc;
	}

	return config_smmu_resource_sid(rsrc, sid);
}

/* assign master sid based on iommu properties in fdt */
static int config_smmu_fdt(void *blob)
{
	int offset, proplen;
	const fdt32_t *prop;
	const char *name;

	offset = 0;
	while ((offset = fdt_next_node(blob, offset, NULL)) > 0)
	{
		name = fdt_get_name(blob, offset, NULL);
		prop = fdt_getprop(blob, offset, "iommus", &proplen);
		if (!prop)
			continue;
		debug("node %s iommus proplen %d\n", name, proplen);

		if (proplen == 12) {
			int sid = fdt32_to_cpu(prop[1]);
			config_smmu_fdt_device_sid(blob, offset, sid);
		} else if (proplen != 4) {
			debug("node %s ignore unexpected iommus proplen=%d\n", name, proplen);
		}
	}

	return 0;
}
#endif

#ifdef CONFIG_OF_SYSTEM_SETUP
int ft_system_setup(void *blob, bd_t *bd)
{
	update_fdt_with_owned_resources(blob);
#ifdef CONFIG_IMX_SMMU
	config_smmu_fdt(blob);
#endif

	return 0;
}
#endif

#define MEMSTART_ALIGNMENT  SZ_2M /* Align the memory start with 2MB */

static int get_owned_memreg(sc_rm_mr_t mr, sc_faddr_t *addr_start,
			    sc_faddr_t *addr_end)
{
	sc_faddr_t start, end;
	int ret;
	bool owned;

	owned = sc_rm_is_memreg_owned(-1, mr);
	if (owned) {
		ret = sc_rm_get_memreg_info(-1, mr, &start, &end);
		if (ret) {
			printf("Memreg get info failed, %d\n", ret);
			return -EINVAL;
		}
		debug("0x%llx -- 0x%llx\n", start, end);
		*addr_start = start;
		*addr_end = end;

		return 0;
	}

	return -EINVAL;
}

phys_size_t get_effective_memsize(void)
{
	sc_rm_mr_t mr;
	sc_faddr_t start, end, end1;
	int err;

	end1 = (sc_faddr_t)PHYS_SDRAM_1 + PHYS_SDRAM_1_SIZE;

	for (mr = 0; mr < 64; mr++) {
		err = get_owned_memreg(mr, &start, &end);
		if (!err) {
			start = roundup(start, MEMSTART_ALIGNMENT);
			/* Too small memory region, not use it */
			if (start > end)
				continue;

			/* Find the memory region runs the U-Boot */
			if (start >= PHYS_SDRAM_1 && start <= end1 &&
			    (start <= CONFIG_SYS_TEXT_BASE &&
			    end >= CONFIG_SYS_TEXT_BASE)) {
				if ((end + 1) <= ((sc_faddr_t)PHYS_SDRAM_1 +
				    PHYS_SDRAM_1_SIZE))
					return (end - PHYS_SDRAM_1 + 1);
				else
					return PHYS_SDRAM_1_SIZE;
			}
		}
	}

	return PHYS_SDRAM_1_SIZE;
}

int dram_init(void)
{
	sc_rm_mr_t mr;
	sc_faddr_t start, end, end1, end2;
	int err;

	end1 = (sc_faddr_t)PHYS_SDRAM_1 + PHYS_SDRAM_1_SIZE;
	end2 = (sc_faddr_t)PHYS_SDRAM_2 + PHYS_SDRAM_2_SIZE;
	for (mr = 0; mr < 64; mr++) {
		err = get_owned_memreg(mr, &start, &end);
		if (!err) {
			start = roundup(start, MEMSTART_ALIGNMENT);
			/* Too small memory region, not use it */
			if (start > end)
				continue;

			if (start >= PHYS_SDRAM_1 && start <= end1) {
				if ((end + 1) <= end1)
					gd->ram_size += end - start + 1;
				else
					gd->ram_size += end1 - start;
			} else if (start >= PHYS_SDRAM_2 && start <= end2) {
				if ((end + 1) <= end2)
					gd->ram_size += end - start + 1;
				else
					gd->ram_size += end2 - start;
			}
		}
	}

	/* If error, set to the default value */
	if (!gd->ram_size) {
		gd->ram_size = PHYS_SDRAM_1_SIZE;
		gd->ram_size += PHYS_SDRAM_2_SIZE;
	}
	return 0;
}

static void dram_bank_sort(int current_bank)
{
	phys_addr_t start;
	phys_size_t size;

	while (current_bank > 0) {
		if (gd->bd->bi_dram[current_bank - 1].start >
		    gd->bd->bi_dram[current_bank].start) {
			start = gd->bd->bi_dram[current_bank - 1].start;
			size = gd->bd->bi_dram[current_bank - 1].size;

			gd->bd->bi_dram[current_bank - 1].start =
				gd->bd->bi_dram[current_bank].start;
			gd->bd->bi_dram[current_bank - 1].size =
				gd->bd->bi_dram[current_bank].size;

			gd->bd->bi_dram[current_bank].start = start;
			gd->bd->bi_dram[current_bank].size = size;
		}
		current_bank--;
	}
}

int dram_init_banksize(void)
{
	sc_rm_mr_t mr;
	sc_faddr_t start, end, end1, end2;
	int i = 0;
	int err;

	end1 = (sc_faddr_t)PHYS_SDRAM_1 + PHYS_SDRAM_1_SIZE;
	end2 = (sc_faddr_t)PHYS_SDRAM_2 + PHYS_SDRAM_2_SIZE;

	for (mr = 0; mr < 64 && i < CONFIG_NR_DRAM_BANKS; mr++) {
		err = get_owned_memreg(mr, &start, &end);
		if (!err) {
			start = roundup(start, MEMSTART_ALIGNMENT);
			if (start > end) /* Small memory region, no use it */
				continue;

			if (start >= PHYS_SDRAM_1 && start <= end1) {
				gd->bd->bi_dram[i].start = start;

				if ((end + 1) <= end1)
					gd->bd->bi_dram[i].size =
						end - start + 1;
				else
					gd->bd->bi_dram[i].size = end1 - start;

				dram_bank_sort(i);
				i++;
			} else if (start >= PHYS_SDRAM_2 && start <= end2) {
				gd->bd->bi_dram[i].start = start;

				if ((end + 1) <= end2)
					gd->bd->bi_dram[i].size =
						end - start + 1;
				else
					gd->bd->bi_dram[i].size = end2 - start;

				dram_bank_sort(i);
				i++;
			}
		}
	}

	/* If error, set to the default value */
	if (!i) {
		gd->bd->bi_dram[0].start = PHYS_SDRAM_1;
		gd->bd->bi_dram[0].size = PHYS_SDRAM_1_SIZE;
		gd->bd->bi_dram[1].start = PHYS_SDRAM_2;
		gd->bd->bi_dram[1].size = PHYS_SDRAM_2_SIZE;
	}

	return 0;
}

static u64 get_block_attrs(sc_faddr_t addr_start)
{
	u64 attr = PTE_BLOCK_MEMTYPE(MT_DEVICE_NGNRNE) | PTE_BLOCK_NON_SHARE |
		PTE_BLOCK_PXN | PTE_BLOCK_UXN;

	if ((addr_start >= PHYS_SDRAM_1 &&
	     addr_start <= ((sc_faddr_t)PHYS_SDRAM_1 + PHYS_SDRAM_1_SIZE)) ||
	    (addr_start >= PHYS_SDRAM_2 &&
	     addr_start <= ((sc_faddr_t)PHYS_SDRAM_2 + PHYS_SDRAM_2_SIZE)))
		return (PTE_BLOCK_MEMTYPE(MT_NORMAL) | PTE_BLOCK_OUTER_SHARE);

	return attr;
}

static u64 get_block_size(sc_faddr_t addr_start, sc_faddr_t addr_end)
{
	sc_faddr_t end1, end2;

	end1 = (sc_faddr_t)PHYS_SDRAM_1 + PHYS_SDRAM_1_SIZE;
	end2 = (sc_faddr_t)PHYS_SDRAM_2 + PHYS_SDRAM_2_SIZE;

	if (addr_start >= PHYS_SDRAM_1 && addr_start <= end1) {
		if ((addr_end + 1) > end1)
			return end1 - addr_start;
	} else if (addr_start >= PHYS_SDRAM_2 && addr_start <= end2) {
		if ((addr_end + 1) > end2)
			return end2 - addr_start;
	}

	return (addr_end - addr_start + 1);
}

#define MAX_PTE_ENTRIES 512
#define MAX_MEM_MAP_REGIONS 16

static struct mm_region imx8_mem_map[MAX_MEM_MAP_REGIONS];
struct mm_region *mem_map = imx8_mem_map;

void enable_caches(void)
{
	sc_rm_mr_t mr;
	sc_faddr_t start, end;
	int err, i;

	/* Create map for registers access from 0x1c000000 to 0x80000000*/
	imx8_mem_map[0].virt = 0x1c000000UL;
	imx8_mem_map[0].phys = 0x1c000000UL;
	imx8_mem_map[0].size = 0x64000000UL;
	imx8_mem_map[0].attrs = PTE_BLOCK_MEMTYPE(MT_DEVICE_NGNRNE) |
			 PTE_BLOCK_NON_SHARE | PTE_BLOCK_PXN | PTE_BLOCK_UXN;

	i = 1;
	for (mr = 0; mr < 64 && i < MAX_MEM_MAP_REGIONS; mr++) {
		err = get_owned_memreg(mr, &start, &end);
		if (!err) {
			imx8_mem_map[i].virt = start;
			imx8_mem_map[i].phys = start;
			imx8_mem_map[i].size = get_block_size(start, end);
			imx8_mem_map[i].attrs = get_block_attrs(start);
			i++;
		}
	}

	if (i < MAX_MEM_MAP_REGIONS) {
		imx8_mem_map[i].size = 0;
		imx8_mem_map[i].attrs = 0;
	} else {
		puts("Error, need more MEM MAP REGIONS reserved\n");
		icache_enable();
		return;
	}

	for (i = 0; i < MAX_MEM_MAP_REGIONS; i++) {
		debug("[%d] vir = 0x%llx phys = 0x%llx size = 0x%llx attrs = 0x%llx\n",
		      i, imx8_mem_map[i].virt, imx8_mem_map[i].phys,
		      imx8_mem_map[i].size, imx8_mem_map[i].attrs);
	}

	icache_enable();
	dcache_enable();
}

#if !CONFIG_IS_ENABLED(SYS_DCACHE_OFF)
u64 get_page_table_size(void)
{
	u64 one_pt = MAX_PTE_ENTRIES * sizeof(u64);
	u64 size = 0;

	/*
	 * For each memory region, the max table size:
	 * 2 level 3 tables + 2 level 2 tables + 1 level 1 table
	 */
	size = (2 + 2 + 1) * one_pt * MAX_MEM_MAP_REGIONS + one_pt;

	/*
	 * We need to duplicate our page table once to have an emergency pt to
	 * resort to when splitting page tables later on
	 */
	size *= 2;

	/*
	 * We may need to split page tables later on if dcache settings change,
	 * so reserve up to 4 (random pick) page tables for that.
	 */
	size += one_pt * 4;

	return size;
}
#endif

#define FUSE_MAC0_WORD0 708
#define FUSE_MAC0_WORD1 709
#define FUSE_MAC1_WORD0 710
#define FUSE_MAC1_WORD1 711

void imx_get_mac_from_fuse(int dev_id, unsigned char *mac)
{
	u32 word[2], val[2] = {};
	int i, ret;

	if (dev_id == 0) {
		word[0] = FUSE_MAC0_WORD0;
		word[1] = FUSE_MAC0_WORD1;
	} else {
		word[0] = FUSE_MAC1_WORD0;
		word[1] = FUSE_MAC1_WORD1;
	}

	for (i = 0; i < 2; i++) {
		ret = sc_misc_otp_fuse_read(-1, word[i], &val[i]);
		if (ret < 0)
			goto err;
	}

	mac[0] = val[0];
	mac[1] = val[0] >> 8;
	mac[2] = val[0] >> 16;
	mac[3] = val[0] >> 24;
	mac[4] = val[1];
	mac[5] = val[1] >> 8;

	debug("%s: MAC%d: %02x.%02x.%02x.%02x.%02x.%02x\n",
	      __func__, dev_id, mac[0], mac[1], mac[2], mac[3], mac[4], mac[5]);
	return;
err:
	printf("%s: fuse %d, err: %d\n", __func__, word[i], ret);
}

#ifdef CONFIG_IMX_SMMU
struct smmu_sid dev_sids[] = {
	{ SC_R_SDHC_0, 0x11, "SDHC0" },
	{ SC_R_SDHC_1, 0x11, "SDHC1" },
	{ SC_R_SDHC_2, 0x11, "SDHC2" },
	{ SC_R_ENET_0, 0x12, "FEC0" },
	{ SC_R_ENET_1, 0x12, "FEC1" },
};

sc_err_t imx8_config_smmu_sid(struct smmu_sid *dev_sids, int size)
{
	int i;
	sc_err_t sciErr = SC_ERR_NONE;

	if ((dev_sids == NULL) || (size <= 0))
		return SC_ERR_NONE;

	for (i = 0; i < size; i++) {
		sciErr = sc_rm_set_master_sid(-1,
					      dev_sids[i].rsrc,
					      dev_sids[i].sid);
		if (sciErr != SC_ERR_NONE) {
			printf("set master sid error\n");
			return sciErr;
		}
	}

	return SC_ERR_NONE;
}
#endif

void arch_preboot_os(void)
{
#ifdef CONFIG_IMX_SMMU
	sc_pm_set_resource_power_mode(-1, SC_R_SMMU, SC_PM_PW_MODE_ON);

	imx8_config_smmu_sid(dev_sids, ARRAY_SIZE(dev_sids));
#endif
}

u32 get_cpu_rev(void)
{
	u32 id = 0, rev = 0;
	int ret;

	ret = sc_misc_get_control(-1, SC_R_SYSTEM, SC_C_ID, &id);
	if (ret)
		return 0;

	rev = (id >> 5)  & 0xf;
	id = (id & 0x1f) + MXC_SOC_IMX8;  /* Dummy ID for chip */

	return (id << 12) | rev;
}

#if CONFIG_IS_ENABLED(CPU)
struct cpu_imx_platdata {
	const char *name;
	const char *rev;
	const char *type;
	u32 cpurev;
	u32 freq_mhz;
};

const char *get_imx8_type(u32 imxtype)
{
	switch (imxtype) {
	case MXC_CPU_IMX8QXP:
	case MXC_CPU_IMX8QXP_A0:
		return "QXP";
	case MXC_CPU_IMX8QM:
		return "QM";
	default:
		return "??";
	}
}

const char *get_imx8_rev(u32 rev)
{
	switch (rev) {
	case CHIP_REV_A:
		return "A";
	case CHIP_REV_B:
		return "B";
	default:
		return "?";
	}
}

const char *get_core_name(void)
{
	if (is_cortex_a35())
		return "A35";
	else if (is_cortex_a53())
		return "A53";
	else if (is_cortex_a72())
		return "A72";
	else
		return "?";
}

#if IS_ENABLED(CONFIG_IMX_SCU_THERMAL)
static int cpu_imx_get_temp(void)
{
	struct udevice *thermal_dev;
	int cpu_tmp, ret;

	ret = uclass_get_device_by_name(UCLASS_THERMAL, "cpu-thermal0",
					&thermal_dev);

	if (!ret) {
		ret = thermal_get_temp(thermal_dev, &cpu_tmp);
		if (ret)
			return 0xdeadbeef;
	} else {
		return 0xdeadbeef;
	}

	return cpu_tmp;
}
#else
static int cpu_imx_get_temp(void)
{
	return 0;
}
#endif

int cpu_imx_get_desc(struct udevice *dev, char *buf, int size)
{
	struct cpu_imx_platdata *plat = dev_get_platdata(dev);
	int ret;

	if (size < 100)
		return -ENOSPC;

	ret = snprintf(buf, size, "NXP i.MX8%s Rev%s %s at %u MHz",
		       plat->type, plat->rev, plat->name, plat->freq_mhz);

	if (IS_ENABLED(CONFIG_IMX_SCU_THERMAL)) {
		buf = buf + ret;
		size = size - ret;
		ret = snprintf(buf, size, " at %dC", cpu_imx_get_temp());
	}

	snprintf(buf + ret, size - ret, "\n");

	return 0;
}

static int cpu_imx_get_info(struct udevice *dev, struct cpu_info *info)
{
	struct cpu_imx_platdata *plat = dev_get_platdata(dev);

	info->cpu_freq = plat->freq_mhz * 1000;
	info->features = BIT(CPU_FEAT_L1_CACHE) | BIT(CPU_FEAT_MMU);
	return 0;
}

static int cpu_imx_get_count(struct udevice *dev)
{
	return 4;
}

static int cpu_imx_get_vendor(struct udevice *dev,  char *buf, int size)
{
	snprintf(buf, size, "NXP");
	return 0;
}

static const struct cpu_ops cpu_imx8_ops = {
	.get_desc	= cpu_imx_get_desc,
	.get_info	= cpu_imx_get_info,
	.get_count	= cpu_imx_get_count,
	.get_vendor	= cpu_imx_get_vendor,
};

static const struct udevice_id cpu_imx8_ids[] = {
	{ .compatible = "arm,cortex-a35" },
	{ .compatible = "arm,cortex-a53" },
	{ }
};

static ulong imx8_get_cpu_rate(void)
{
	ulong rate;
	int ret;
	int type = is_cortex_a35() ? SC_R_A35 : is_cortex_a53() ?
		   SC_R_A53 : SC_R_A72;

	ret = sc_pm_get_clock_rate(-1, type, SC_PM_CLK_CPU,
				   (sc_pm_clock_rate_t *)&rate);
	if (ret) {
		printf("Could not read CPU frequency: %d\n", ret);
		return 0;
	}

	return rate;
}

static int imx8_cpu_probe(struct udevice *dev)
{
	struct cpu_imx_platdata *plat = dev_get_platdata(dev);
	u32 cpurev;

	cpurev = get_cpu_rev();
	plat->cpurev = cpurev;
	plat->name = get_core_name();
	plat->rev = get_imx8_rev(cpurev & 0xFFF);
	plat->type = get_imx8_type((cpurev & 0xFF000) >> 12);
	plat->freq_mhz = imx8_get_cpu_rate() / 1000000;
	return 0;
}

U_BOOT_DRIVER(cpu_imx8_drv) = {
	.name		= "imx8x_cpu",
	.id		= UCLASS_CPU,
	.of_match	= cpu_imx8_ids,
	.ops		= &cpu_imx8_ops,
	.probe		= imx8_cpu_probe,
	.platdata_auto_alloc_size = sizeof(struct cpu_imx_platdata),
	.flags		= DM_FLAG_PRE_RELOC,
};
#endif